Sandra Lang‘s Publications

This list is also available as BiBTeX file.
[1]
Matias Korman, Stefan Langerman, Wolfgang Mulzer, Alexander Pilz, Maria Saumell, and Birgit Vogtenhuber. The dual diameter of triangulations. Computational Geometry: Theory and Applications, 68:243--252, 2018. Special Issue in Memory of Ferran Hurtado. [ bib | DOI | http ]
[2]
Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman, and Pavel Valtr. Reconstructing Point Set Order Types from Radial Orderings. International Journal of Computational Geometry & Applications, 26(3/4):167--184, 2016. [ bib | DOI | .pdf ]
[3]
Matias Korman, Stefan Langerman, Wolfgang Mulzer, Alexander Pilz, Maria Saumell, and Birgit Vogtenhuber. Minimum Dual Diameter Triangulations. In Proc. 30th European Workshop on Computational Geometry (EuroCG 2014), page online, March 2014. [ bib ]
[4]
Oswin Aichholzer, Jean Cardinal, Vincent Kusters, Stefan Langerman, and Pavel Valtr. Reconstructing Point Set Order Types from Radial Orderings. In Algorithms and Computation - 25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings, pages 15--26, 2014. [ bib | DOI | .pdf ]
[5]
A. Asinowski, J. Cardinal, N. Cohen, S. Collette, T. Hackl, M. Hoffmann, K. Knauer, S. Langerman, M. Lasoń, P. Micek, G. Rote, and T. Ueckerdt. Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles. In Lecture Notes in Computer Science (LNCS), Proc. 13th Algorithms and Data Structures Symposium (WADS 2013), volume 8037, pages 73--84, London, Ontario, Canada, 2013. [ bib | .pdf ]
[6]
O. Aichholzer, S.R. Allen, G. Aloupis, L. Barba, P. Bose, J.-L. De Carufel, J. Iacono, S. Langerman, D.L. Souvaine, P. Taslakin, and M. Yagnatinsky. Sum of Squared Edges for MST of a Point Set in a Unit Square. In Proc. of the 16th Japan Conference on Discrete and Computational Geometry and Graphs (JCDCG2 2013), Tokyo, Japan, 2013. [ bib ]
[7]
O. Aichholzer, S.R. Allen, G. Aloupis, L. Barba, P. Bose, S. Langerman, and J. Iacono. Sum of Squared Edges for MST of a Point Set in a Unit Square. In Proc. 22nd Annual Fall Workshop on Computational Geometry, University of Maryland, Maryland, USA, 2012. [ bib ]

This file was generated by bibtex2html 1.98.