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Abstract. We consider a coloring problem on dynamic, one-dimensional
point sets: points appearing and disappearing on a line at given times.
We wish to color them with k colors so that at any time, any sequence of
p(k) consecutive points, for some function p, contains at least one point
of each color.
We prove that no such function p(k) exists in general. However, in the
restricted case in which points appear gradually, but never disappear,
we give a coloring algorithm guaranteeing the property at any time with
p(k) = 3k−2. This can be interpreted as coloring point sets in R2 with k
colors such that any bottomless rectangle containing at least 3k−2 points
contains at least one point of each color. Here a bottomless rectangle is
an axis-aligned rectangle whose bottom edge is below the lowest point of
the set. For this problem, we also prove a lower bound p(k) > ck, where
c > 1.67. Hence, for every k there exists a point set, every k-coloring
of which is such that there exists a bottomless rectangle containing ck
points and missing at least one of the k colors.
Chen et al. (2009) proved that no such function p(k) exists in the case
of general axis-aligned rectangles. Our result also complements recent
results from Keszegh and Pálvölgyi on cover-decomposability of octants
(2011, 2012).

1 Introduction

It is straightforward to color n points lying on a line with k colors in such
a way that any set of k consecutive points receive different colors; just color



them cyclically with the colors 1, 2, . . . , k, 1, . . . . What can we do if points can
appear and disappear on the line, and we wish a similar property to hold at any
time? More precisely, we fix the number k of colors, and wish to maintain the
property that at any given time, any sequence of p(k) consecutive points, for
some function p, contains at least one point of each color.

We show that in general, such a function does not exist: there are dynamic
point sets on a line that are impossible to color with two colors so that monochro-
matic subsequences have bounded length. This holds even if the whole schedule
of appearances and disappearances is known in advance. This family of point
sets is described in Section 2.

We prove, however, that there exists a linear function p in the case where
points can appear on the line at any time, but never disappear. Furthermore,
this is achieved in a constructive, semi-online fashion: the coloring decision for
a point can be delayed, but at any time the currently colored points yield a
suitable coloring of the set. The algorithm is described in Section 3.

In Section 4, we restate the result in terms of a coloring problem in R2: for
any integer k ≥ 1, every point set in R2 can be colored with k colors so that
any bottomless rectangle containing at least 3k − 2 points contains one point of
each color. Here, an axis-aligned rectangle is said to be bottomless whenever the
y-coordinate of its bottom edge is −∞.

In Section 5, we give lower bounds on the problem of coloring points with
respect to bottomless rectangles. We show that the number of points p(k) con-
tained in a bottomless rectangle must be at least 1.67k.

Finally, in Section 6, we consider an alternative problem in which we fix the
size of the sequence to k, but we are allowed to increase the number of colors.

Motivations and previous works. The problem is motivated by previous intrigu-
ing results in the field of geometric hypergraph coloring. Here, a geometric hy-
pergraph is a set system defined by a set of points and a set of geometric ranges,
typically polygons, disks, or pseudodisks. Every hyperedge of the hypergraph is
the intersection of the point set with a range.

It was shown recently [7] that for every convex polygon P , there exists a
constant c, such that any point set in R2 can be colored with k colors in such
a way that any translation of P containing at least p(k) = ck points contains
at least one point of each color. This improves on several previous intermediate
results [15, 17, 2]. Similar positive results for other families of geometric hyper-
graphs are given by Aloupis et al. [3, 1], and Smorodinsky and Yuditsky [18].
Discussions on the relation between this coloring problem and ε-nets can be
found in Pach and Tardos [13].

The problem for translates of polygons can be cast in its dual form as a
covering decomposition problem: given a set of translates of a polygon P , we
wish to color them with k colors so that any point covered by at least p(k) of
them is covered by at least one of each color. The two problems can be seen to
be equivalent by replacing the points by translates of a symmetric image of P
centered on these points. The covering decomposition problem has a long history
that dates back to conjectures by János Pach in the early 80s (see for instance



[11, 4], and references therein). The decomposability of coverings by unit disks
was considered in a seemingly lost unpublished manuscript by Mani and Pach in
1986. Up to recently, however, surprisingly little was known about this problem.

For other classes of ranges, such as axis-aligned rectangles, disks, translates
of some concave polygons, or arbitrarily oriented strips [5, 12, 14, 16], such a
coloring does not always exists, even when we restrict ourselves to two colors.

Keszegh [8] showed in 2007 that every point set could be 2-colored so that any
bottomless rectangle containing at least 4 points contains both colors. Our posi-
tive result on bottomless rectangles (Corollary 2) is a generalization of Keszegh’s
results to k-colorings. Later, Keszegh and Pálvölgyi [9] proved the following
cover-decomposability property of octants in R3: every collection of translates of
the positive octant can be 2-colored so that any point of R3 that is covered by at
least 12 octants is covered by at least one of each color. This result generalizes
the previous one (with a looser constant), as incidence systems of bottomless
rectangles in the plane can be produced by restricted systems of octants in R3.
It also implies similar covering decomposition results for homothetic copies of a
triangle. More recently, they generalized their result to k-colorings, and proved

an upper bound of p(k) < 122
k

on the corresponding function p(k) [10].

2 Coloring dynamic point sets

A dynamic point set S in R is a collection of triples (vi, ai, di) ∈ R3, with di ≥ ai,
that is interpreted as follows: the point vi ∈ R appears on the real line at time
ai and disappears at time di. Hence, the set S(t) of points that are present at
time t are the points vi with t ∈ [ai, di). A k-coloring of a dynamic point set
assigns one of k colors to each such triple.

We now show that it is not possible to find a 2-coloring of such a point set
while avoiding long monochromatic subsequences at any time.

Theorem 1. For every p ∈ N, there exists a dynamic point set S with the
following property: for every 2-coloring of S, there exists a time t such that S(t)
contains p consecutive points of the same color.

Proof. In order to prove this result, we work on an equivalent two-dimensional
version of the problem. From a dynamic point set, we can build n horizontal
segments in the plane, where the ith segment goes from (ai, vi) to (di, vi). At
any time t the visible points S(t) correspond to the intervals that intersect the
line x = t. It is therefore equivalent, in order to obtain our result, to build a
collection of horizontal segments in the plane that cannot be 2-colored in such a
way that any set of p segments intersecting some vertical segment contains one
element of each color.

Our construction borrows a technique from Pach, Tardos, and Tóth [14]. In
this paper, the authors provide an example of a set system whose base set cannot
be 2-colored without leaving some set monochromatic. This set system S is built
on top of the 1 + p+ · · ·+ pp−1 = 1−pp

1−p vertices of a p-regular tree T p of depth
p, and contains two kinds of sets :



• the 1 + p+ · · ·+ pp−2 sets of siblings: the sets of p vertices having the same
father,
• the pp−1 sets of p vertices corresponding to a path from the root vertex to

one of the leaves in T p.

It is not difficult to realize that this set system is not 2-colorable: by contradic-
tion, if every set of siblings is non-monochromatic, we can greedily construct a
monochromatic path from the root to a leaf.

We now build a collection of horizontal segments corresponding to the vertices
of T p, in such a way that for any set E ∈ S there exists a time t at which
the elements of E are consecutive among those that intersect the line x = t.
For any p (see Fig. 1), the construction starts with a building block B1

p of p

horizontal segments, the ith segment going from (− i
p , i) to (0, i). Because these

p segments represent siblings in T p, they are consecutive on the vertical line that
goes through their rightmost endpoint, and hence cannot all receive the same
color.

Block Bj+1
p is built from a copy of B1

p to which are added p resized and

translated copies of Bj
p : the ith copy lies in the rectangle with top-right corner

(− i−1
p , i+1) and bottom-left corner (− i

p , i). By adding to Bp−1
p a last horizontal

segment below all others, corresponding to the root of T p, the ancestors of
a segment are precisely those that are below it on the vertical line that goes
through its leftmost point. When such sets of ancestors are of cardinality p− 1,
which only happens when one considers the set of ancestors of a leaf, then the
set formed by the leaf and its ancestors is required to be non-monochromatic.

With this construction we ensure that a feasible 2-coloring of the segments
would yield a proper 2-coloring of S, which we know does not exist. ut
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(b) The corresponding set of horizontal
segments B2

3 , with a root segment a.

Fig. 1. The recursive construction of Theorem 1, for p = 3.

The above result implies that no function p(k) exists for any k that an-
swers the original question. If it were the case, then we could simply merge
color classes of a k-coloring into two groups and contradict the above statement.
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Fig. 2. A corner with coordinates (a, b, c).

Theorem 1 can also be interpreted as
the indecomposability of coverings by
a specific class of unbounded poly-
topes in R3. We define a corner with
coordinates (a, b, c) as the following
subset of R3: {(x, y, z) ∈ R3 : a ≤ x ≤
b, y ≤ c, z ≥ c}. An example is given
in Fig. 2. One can verify that a point
(x, y, z) is contained in a corner a, b, c
if and only if the vertical line segment
with endpoints (x, y) and (x, z) inter-
sects the horizontal line segment with
endpoints (a, c) and (b, c). The corol-
lary follows.

Corollary 1. For every p ∈ N, there exists a collection S of corners with the
following property: for every 2-coloring of S, there exists a point x ∈ R3 con-
tained in exactly p corners of S, all of the same color. In other words, corners
are not cover-decomposable.

3 Coloring point sets under insertion

Since we cannot bound the function p(k) in the general case, we now consider
a simple restriction on our dynamic point sets: we let the deletion times di be
infinite for every i. Hence, points appear on the line, but never disappear.

A natural idea to tackle this problem is to consider an online coloring strategy,
that would assign a color to each point in order of their arrival times ai, without
any knowledge of the points appearing later. However, we cannot guarantee any
bound on p(k) unless we delay some of the coloring decisions. To see this, consider
the case k = 2, and call the two colors red and blue. An online algorithm must
color each new point in red or blue as soon as it is presented. We can design an
adversary such that the following invariant holds: at any time, the set of points
is composed of a sequence of consecutive red points, followed by a sequence
of consecutive blue points. The adversary simply chooses the new point to lie
exactly between the two sequences at each step.

Our computation model will be semi-online: The algorithm considers the
points in their order of the arrival time ai. At any time, a point in the sequence
either has one of the k colors, or is uncolored. Uncolored points can be colored
later, but once a point is colored, it keeps its color for the rest of the procedure. At
any time, the colors that are already assigned suffice to satisfy the property that
any subsequence of 3k− 2 points has one point of each color, i.e., p(k) ≤ 3k− 2.

Theorem 2. Every dynamic point set without disappearing points can be k-
colored in the semi-online model such that at any time, every subsequence of at
least 3k − 2 consecutive points contains at least one point of each color.



Proof. We define a gap for color i as a maximal interval (set of consecutive
points) containing no point of color i, that is, either between two successive
occurrences of color i, or before the first occurrence (first gap), or after the last
occurrence (last gap), or the whole line if no point has color i. A gap is simply
a gap for color i, for some 1 ≤ i ≤ k. We propose an algorithm for a semi-online
model keeping the sizes of all gaps to be at most 3k − 3. This means every
set of 3k − 2 consecutive points contains each color at least once and implies
p(k) ≤ 3k − 2. The algorithm maintains two invariants:
(a) every gap contains at most 3k − 3 points; (b) if there is some point colored
with i then every gap for color i, except the first and the last gap, contains at
least k − 1 points.

The two invariants are vacuous when the set of points is empty. Now, suppose
that the invariants hold for an intermediate set of points and consider a new
point on the line presented by an adversary. Clearly, invariant (b) cannot be
violated in the extended set as no gaps decrease in size. However, there may
arise some gaps of size 3k − 2 violating (a). If not then the invariants hold for
the extended set and the algorithm does not color any point in this step. Suppose
there are some gaps of size 3k − 2, consider one of them, say a gap of color i,
and denote the points in the gap in their natural ordering on the line from left
to right as (`1, . . . , `k−1,m1, . . . ,mk, r1, . . . rk−1). Now, color i does not appear
among these points. Invariant (b) yields that none of the k− 1 remaining colors
appears twice among m1, . . . ,mk. Thus, there is some mj , which is uncolored
and the algorithm colors it with i. This splits the large gap into two smaller
gaps. Moreover, since there are k − 1 `-points and k − 1 r-points invariant (b)
is maintained for both new i-gaps. The algorithm repeats that process until all
gaps are of size at most 3k − 3.

This concludes the proof, as after the algorithm ends all remaining uncolored
points can be arbitrary colored. ut

4 Coloring points with respect to bottomless rectangles

A bottomless rectangle is a set of the form {(x, y) ∈ R2 : a ≤ x ≤ b, y ≤ c}, for a
triple of real numbers (a, b, c) with a ≤ b. We consider the following geometric
coloring problem: given a set of points in the plane, we wish to color them with k
colors so that any bottomless rectangle containing at least p(k) points contains
at least one point of each color. It is not difficult to realize that the problem is
equivalent to that of the previous section.

Corollary 2. Every point set S ⊂ R2 can be colored with k colors so that any
bottomless rectangle containing at least 3k − 2 points of S contains at least one
point of each color.

Proof. The algorithm proceeds by sweeping S vertically in increasing y-
coordinate order. This defines a dynamic point set S′ that contains at time
t the x-coordinates of the points below the horizontal line of equation y = t. The
set of points of S that are contained in a bottomless rectangle {(x, y) ∈ R2 : a ≤



x ≤ b, y ≤ t} correspond to the points in the interval [a, b] in S′(t). Hence, the
two coloring problems are equivalent, and Theorem 2 applies. ut

5 Lower Bound

We now give a lower bound on the smallest possible value of p(k).

Theorem 3. For any k sufficiently large, there exists a point set P such that
for any k-coloring of P , there exists a color i ∈ [k] and a bottomless rectangle
containing at least 1.677k − 2.5 points, none of which are colored with color i.

Proof. Fix k ≥ 100. For n ∈ N and 0 ≤ a < k we define the point set P = P (n, a)
to be the union of point sets L, R and B (standing for left, right and bottom,
respectively) as follows:

L := {(i− n, 2i− 1) ∈ R2 | i ∈ [n]}
B := {(i, 0) ∈ R2 | i ∈ [a]}
R := {(a+ i, 2n+ 2− 2i) ∈ R2 | i ∈ [n]}

See Figure 3(a) for an illustration. Note that |L| = |R| = n and |B| = a. Consider

L R

B

(a)

p1

p2

p3

p4

p5

X1

X2

X3

X4

X5

X6

(b)

Fig. 3. (a) The point set P = P (n, a) with n = 7 and a = 4, and (b) the bottomless
rectangles X1, . . . , X6 corresponding to the color class P (c∗) = {p1, . . . , p5}.

any coloring of the points in P with colors from [k]. For a color i ∈ [k] we define
P (i) to be the subset of points of P colored with i. We assume for the sake of
contradiction that every bottomless rectangle that contains b := b1.677k − 2.5c
points, contains one point of each color. In the remainder of the proof we will
identify a bottomless rectangle containing b′ points but no point of one particular
color. We give a lower bound for b′ depending on n and a, but independent of
the fixed coloring under consideration. Taking sufficiently large n and choosing
a = b0.655kc we will prove b′ > b, which contradicts our assumption and hence
concludes the proof.



A color used at least once for the points in B is called a low color and a point
colored with a low color is a low point. Note that there are low points outside of
the set B. Let ` be the number of low colors. Clearly, ` ≤ |B| = a.

Claim 1

(i) For every non-low color c there are at least
⌊

n
b−a

⌋
points of color c in L.

(ii) There are at least
`−1∑
i=0

⌊
n

b−i

⌋
low points in L.

Proof. Fix a color c ∈ [k] and assume that the j leftmost points in B are not col-
ored with c. Order the points in L colored with c according to their x-coordinate:
p1, p2,. . . , pm. Now for each 1 < i ≤ m there is a bottomless rectangle containing
all points in L between pi−1 and pi, and the leftmost j points in B, and nothing
else. Additionally, there is a bottomless rectangle containing all points in L to
the left of p1 together with j leftmost points in B, and a bottomless rectangle
containing all points in L to the right of pm together with j leftmost points in
B. Note that all these rectangles are disjoint within L and each point from L
not colored with c lies in exactly one such rectangle. Since each such rectangle
X avoids the color c we get that |X ∩ P | ≤ b − 1 and |X ∩ L| ≤ b − 1 − j and
therefore

m+ (m+ 1)(b− 1− j) = m(b− j) + b− j − 1 ≥ |L| = n,

m ≥
⌊

n

b− j

⌋
. (1)

In order to prove (i) consider a non-low color c. As c is not used on points in B
at all we can put j = a in (1) and the statement of (i) follows. Now, if c is a low
color, then j defined as the maximum number of leftmost points in B avoiding
c is always less than a. However, we obtain different j for different low colors c.
Thus the sum of inequality (1) over all low colors is minimized by

∑`−1
i=0b

n
b−ic,

which gives (ii). ut
By Claim 1 (i) and (ii) combined we get that there is a set S of k − a non-

low colors such that at most n −
∑a−1

i=0 b
n

b−ic points in L have a color from S.

Analogously, at most n−
∑a−1

i=0 b
n

b−ic in R have a color from S. Summing up we
get: ∑

c∈S
|P (c)| =

∑
c∈S

(
|P (c) ∩ L|+ |P (c) ∩R|

)
≤ 2n− 2

a−1∑
i=0

⌊
n

b− i

⌋
≤ 2n− 2

a−1∑
i=0

(
n

b− i
− 1

)

= 2n

(
1−

b∑
i=b−a+1

1

i

)
+ 2a

= 2n

(
1−

b∑
i=1

1

i
+

b−a∑
i=1

1

i

)
+ 2a.



Using that
∑x

i=1
1
i = ln(x+ 1)−

∑∞
j=1

Bj

j(x+1)j +γ for every x ≥ 1, where Bj are

the Bernoulli numbers of second kind and γ is the Euler-Mascheroni constant,
we obtain ∑

c∈S
|P (c)| < 2n (1− ln(b+ 1) + ln(b− a+ 1)) + 2a

= 2n

(
1− ln

(
b+ 1

b− a+ 1

))
+ 2a.

From the pigeonhole principle we know that there has to exist a color c∗ ∈ S,
such that

q := |P (c∗)| ≤

⌊
2n(1− ln( b+1

b−a+1 )) + 2a

k − a

⌋
. (2)

Enumerate the points in P (c∗) by p1, p2, . . . , pq according to their increasing y-
coordinates, i.e., we have i < j iff pi has smaller y-coordinate than pj . Now we
consider all maximal bottomless rectangles that completely contain B and con-
tain no point of color c∗. There are exactly q+1 such rectangles: For every point
pi ∈ P (c∗) there is a bottomless rectangle Xi whose top side lies immediately
below pi. And one further bottomless rectangle Xq+1 containing the entire strip
between L and R, and with sides bounded by the point in P (c∗) ∩ L and the
point in P (c∗) ∩R with the highest index. See Figure 3(b) for an illustration.

Claim 2
∑q

i=1 |Xi ∩ (L ∪R)| ≥ 3
2

(
2n− q − b+ a

)
.

Proof. Let Y1 and Yq+1 be the sets of points in L∪R with y-coordinate smaller
than p1 and larger than pq, respectively. Let Yi, 2 ≤ i ≤ q, be the set of points
with y-coordinate between pi−1 and pi. Note that Yi ⊂ Xi ∩ (L ∪ R) for all
1 ≤ i ≤ q + 1, and that the q + 1 sets Y1, . . . , Yq+1 partition the points of
L ∪ R that are not colored with c∗. Clearly, |Xi ∩ Yi| = |Yi|. We claim that
|Xi+1 ∩ Yi| ≥ 1

2 |Yi|, for i = 1, . . . , q.

Without loss of generality, let us assume that pi ∈ L. Then either Yi = ∅
or the point in Yi with largest y-coordinate lies in R. Since points from L and
R alternate in the ordering of L ∪ R with respect to increasing y-coordinate it
follows that Yi is almost equally partitioned into its left part Yi ∩L and its right
part Yi ∩ R. Since the topmost point in Yi lies in R we have |Yi ∩ R| ≥ 1

2 |Yi|.
Now since pi ∈ L we have Xi+1 ⊃ Yi ∩R, and thus

|Xi+1 ∩ Yi| ≥ |Yi ∩R| ≥
1

2
|Yi|. (3)

Note also that |Xq+1 ∩ Yq| + |Yq+1| ≤ |Xq+1 ∩ (L ∪ R)| < b − a as Xq+1 avoids
color c∗, so |Xq+1| < b, and contains all a points in B.



Now we calculate

q∑
i=1

|Xi ∩ (L ∪R)| ≥
( q∑
i=1

|Xi ∩ Yi|+ |Xi+1 ∩ Yi|
)
− |Xq+1 ∩ Yq|

(3)

≥
q∑

i=1

3

2
|Yi| − |Xq+1 ∩ Yq|

=
3

2

(
2n− |P (c∗)| − |Yq+1|

)
− |Xq+1 ∩ Yq|

≥ 3

2

(
2n− q − (|Yq+1|+ |Xq+1 ∩ Yq|)

)
≥ 3

2

(
2n− q − (b− a)

)
.

ut

From Claim 2 we get from the pigeonhole principle that there is a bottomless
rectangle X∗ ∈ {X1, . . . , Xq} with

|X∗| ≥
3
2 (2n− q − b+ a)

q
+ a =

3n

q
− 3

2
− 3(b− a)

2q
+ a

(2)

≥ 3(k − a)

2
(
1− ln

(
b+1

b−a+1

)
+ 2a

n

) + a− 3

2
− 3(b− a)

2q

Now, if we increase n, then q = |P (c∗)| increases as well, and for sufficiently large

n the terms 2a
n in the denominator and the additive term 3(b−a)

2q become negli-

gible. In particular, with a := b0.655kc and b = b1.677k − 2.5c and sufficiently
large n we have

|X∗| ≥ 3(k − a)

2
(
1− ln

(
b+1

b−a+1

)) + a− 3

2

=
3(k − b0.655kc)

2
(
1− ln

( b1.677k−2.5c+1
b1.677k−2.5c−b0.655kc+1

)) + b0.655kc − 3

2

≥ 3(k − 0.655k)

2
(
1− ln

(
1.677k−2.5−1+1

1.677k−2.5−0.655k−1+1

)) + 0.655k − 1− 3

2

=
1.035k

2
(
1− ln

(
1.677k−2.5
1.022k−2.5

)) + 0.655k − 2.5.

For k →∞ (starting with k ≥ 3) the above expression is monotonously increas-

ing and its limit is given by
(

1.035

2
(
1−ln

(
1.677
1.022

)) + 0.655
)
k > 1.68k. Hence if k is

big enough (k ≥ 100 is actually enough) the bottomless rectangle X∗ contains
strictly more than 1.677k − 2.5 points but no point of color c∗, which is a con-
tradiction and concludes the proof. ut



6 Increasing the Number of Colors

1

2

3

4

Fig. 4. A point set witnessing c(k) ≥ 2k−1
for k = 4.

There is another problem which can
be tackled this time in an online
model. The number c(k) is the mini-
mum number of colors needed to color
the points on a line such that any set
of at most k consecutive points is com-
pletely colored by distinct colors. The
same problem has been considered for
other types of geometric hypergraphs
by Aloupis et al. [3]. Again, the al-
gorithm considers the points in their
order of the arrival time ai but now

colors them immediately.

Proposition 1. Every dynamic point set without disappearing points can be
(2k− 1)-colored in the online model such that at any time, every subsequence of
at least k consecutive points contains no color twice.

Proof. At the arrival of a new point p denote by (`1, . . . , `k−1) and (r1, . . . , rk−1)
the k − 1 points to its left and to its right, respectively. Together they have at
most 2k−2 colors, Thus, there is at least one of the 2k−1 colors unused among
these points. The algorithm colors p with this color. ut

Corollary 3. Every point set S ⊂ R2 can be colored with 2k − 1 colors so that
any bottomless rectangle containing at least k points of S contains no color twice.

The number of colors used in Corollary 3 is smallest possible. This is witnessed
by a point set S consisting of k points of the form {(i, 2i) | 0 ≤ i ≤ k − 1} and
k − 1 points of the form {(2k − i, 2i − 1) | 1 ≤ i ≤ k − 1}, see Fig. 4 for an
example. It is easy to see that every pair of points in such a point set is in a
common bottomless rectangle of size at most k. Finally, let us remark that an
upper bound on c(k) for dynamic point sets in which points can both appear and
disappear, as in Section 2, can be obtained by bounding the chromatic number of
the corresponding so-called bar k-visibility graph, as defined by Dean et al. [6]. In
particular, they show that those graphs have O(kn) edges, yielding c(k) = O(k)
for that case.
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