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Abstract

This diploma thesis deals with pseudo-triangular surfaces and flipping therein, as
introduced in [3]. They defined a projectivity attribute for pseudo-triangulations
and introduced a stability condition to decide it. Using a program from preliminary
work of this thesis, we found a counter-example for concluding from stability to
projectivity.

Our aim is to redefine the stability-condition to be able to correctly conclude to
projectivity in all cases. Our investigations lead to a proper combinatorial under-
standing of the projectivity of pseudo-triangulations. Thereby, we find a new class
of cell complexes: punched pseudo-triangulations, which are a relaxation of pseudo-
triangulations. In addition, we prove the existence of finite flipping sequences to
the optimal surface that avoid the creation of non-pseudo-triangular cell complexes.
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1 Introduction

In computational geometry [21] it is a common task to partition a given geometric
domain into cell complexes. This is often done using triangular meshes, usually
referred to as triangulations. In the last years, a relaxation of triangulations, the
so-called pseudo-triangulations, attracted more and more interest because of their
large area of application. Pseudo-triangulations apply to ray shooting [9, 12], vis-
ibility [19, 18], guarding [20, 23|, rigidity [24, 22, 13] and kinetic collision detec-
tion [1, 14, 15].

The article [3], the groundwork for this thesis, introduces polyhedral surfaces in
3-D for pseudo-triangulations. The paper proved that each pseudo-triangulation can
be "lifted” into a surface and adapted the 2-dimensional edge flips for pseudo-trian-
gulations to surfaces of pseudo-triangulations. Further, the work [3] introduced the
projectivity attribute for pseudo-triangulations, because the surfaces of projective
pseudo-triangulations always project to cell complexes that again are pseudo-trian-
gulations in the generic case.

To decide projectivity, the stability condition for pseudo-triangulations was in-
troduced in [3]. Excluding special cases based on the geometric placement, the
stability allowed to directly conclude to projectivity. They were also able to show
the existence of a finite sequence of improving surface flips to the optimal surface
from every given starting triangulation.

In the preliminary stages of this thesis a computer program was developed, us-
ing the theory provided in [3]. This program was designed to calculate and display
surfaces from pseudo-triangulations and to allow the user to apply surface flips by
clicking edges of the surface. During the test phase, there sometimes emerged sur-
faces that were not predicted by the theory, although the program worked correctly
with respect to the theory. Though the underlying pseudo-triangulations of the
surfaces were stable, the projections of those surfaces were no pseudo-triangular
cell complexes any more. Therefore further flipping was not possible, as flips were
only defined for pseudo-triangulations, respectively surfaces thereof.

After closer examination we discovered that we had found examples where the
stability-condition from [3] does not allow to correctly decide projectivity of the
pseudo-triangulation. We searched for other counter-examples for the stability-
projectivity relation and tried to classify them. We paid attention to commonalities
and attempted to formulate simple conditions for a new and correct stability. But
we soon faced the fact that the problem was not as easy as thought at the beginning.

Therefore we restarted at investigating the projectivity of pseudo-triangulations
and searching for new attributes and conditions that describe projectivity. We
investigated combinatorial coplanarity of facets, what is a necessary requirement
for non-projectivity of pseudo-triangulations.

When we successfully corrected the stability-condition and thereby discovered
that flipping may lead into non-pseudo-triangular cell complexes, we were concerned
that a finite flipping sequence to the optimal surface will not be guaranteed within



the class of pseudo-triangulations. Basically the problem arose, what to do, when
flipping into such a cell complex. So we had to analyze the non-pseudo-triangular
cell complexes and show that it is always possible to reach the optimal surface with
a finite sequence of admissible flips.

1.1 Overview of results

We start by stating some geometric definitions, forming the fundamental theory
used for this thesis, in Section 2. This includes basic geometrical structures like
the convex hull and triangulations (Section 2.1), pseudo-triangulations and their
properties (Section 2.2) and flipping therein (Section 2.3). Further we summarize
the results and definitions about surfaces from pseudo-triangulations from [3] and
state some additional definitions for later use, in Section 2.4.

In Section 3, we first exemplify the insufficiency of the stated stability-projec-
tivity connection from [3]. We show that the phenomenon is forced by combinatorial
planar edges that cannot be removed by trivial flips. We investigate the connection
between these edges and combinatorial coplanar subsets of faces and introduce the
concept of 3-reducibility. In Section 4 we use the 3-reducibility as a powerful tool
for deciding combinatorial coplanarity and (in an advanced form) also for deciding
combinatorial projectivity.

In Section 5, we investigate the different structures that form combinatorial
non-projective pseudo-triangulations. Finally we state the definition for the new
stability condition, called combinatorial stability, and prove that this condition suf-
fices to characterize combinatorial projectivity.

In the last section (Section 6) we prove the existence of a finite sequence of ad-
missible flips to the optimal surface. Therefore we analyze the special case of combi-
natorial non-projective pseudo-triangulations, where the projection of the surface is
a punched pseudo-triangulation, where so-called deformations arise. We introduce
the hidden edges, combinatorial planar edges that remain after a trivial flip in the
case of deformations. First we reprove the existence of a finite flipping sequence
to the optimal surface, by using hidden edges to complete punched pseudo-trian-
gulations to "real” pseudo-triangulations. Further we provide an upper bound on
the number of hidden edges. Finally, we prove the existence of a finite sequence
of improving surface flips (including the trivial flip) from every triangular surface
to the optimum, without ever creating a deformation and therefore never needing
hidden edges.



2 Basic Theory

2.1 Overview of basic structures

At first we want to (re)state some fundamental geometric definitions that will be
used in this thesis. This should prevent misunderstandings as some definitions may
slightly differ from other publications.

We start by defining the convex hull of a set, S, of points. There exist a lot of
different equivalent definitions for the convex hull. A natural concept that is easy
to understand is the so-called rubber band definition: ”If S is a finite set of points
in the plane, imagine surrounding S by a large, stretched rubber band; when the
band is released it will assume the shape of the convex hull of S” [21]. A more
mathematical and general definition that can also be found in [21] is the following
one. We denote the d-dimensional Euclidean space with E¢.

Definition 2.1 (Convex Set) A subset D of E? is convez if, for each pair of
points (p1,pa) in D, the straight line segment Pipsy is entirely contained in D.

Definition 2.2 (Convex Hull) The convex hull, denoted as conv(S), of a finite
set, S, of points is the smallest conver set containing S.

In this thesis we are basically operating in 2-dimensional space and enter 3-space
only for surface construction, what will be discussed later on. Therefore we restrict
ourselves to E? for the next definitions. Similar definitions can be found in [21, 8, 7].

Definition 2.3 (Polygonal Region) A polygonal region, R, is a 2-dimensional
subset of the plane with piecewise linear boundary, denoted with O(R). The
1-dimensional components of O(R) are called edges of R. The endpoints of edges
of R (the 0-dimensional components of O(R)) are called vertices of R. The set of
vertices of R is denoted with vert(R).

Figure 1: Outer boundary of polygonal regions.

A polygonal region may be disconnected, and also may contain holes. Therefore
it is sometimes advantageous to be able to refer only to the outer boundary of the
polygonal region.



Definition 2.4 (Outer Boundary) The outer boundary of a polygonal region, R,
consists of the points of O(R) which can be connected to infinity with a curve that
intersects R in no other point.

Figure 1 shows different polygonal regions (gray) and their outer boundaries
(bold). Vertices that are on the outer boundary are white, others black. In Fig-
ure 1(a) each vertex of the polygonal region is on the outer boundary, as we can
draw a curve from each point to infinity. In Figure 1(b) the polygonal region is split
into two parts, one of them having a hole. The outer boundary of the polygonal
region is formed by vertices of both parts. But as it is not possible to draw a curve
from the vertices of the hole to infinity without intersecting with the polygonal
region, the vertices of the hole do not belong to the outer boundary. The polygonal
region in Figure 1(c) consists also of two parts. But now one part is within the hole
of the other one. The displayed connection to infinity (dashed curve) is intersecting
with the polygonal region and therefore not allowed.

Note that an edge with only one vertex on the outer boundary need not belong
to the outer boundary. The area, enclosed by the outer boundary of a polygonal
region, is not necessarily the interior of this polygonal region (think of holes). But
the interior is always enclosed by the outer boundary.

Definition 2.5 ((Simple) Polygon) A (simple) polygon, P, is a polygonal re-
gton, homeomorphic to a disk.

Note that the convex hull of a point set, S, is a convex polygon. In particular,
conv(S) is the smallest convex polygon covering S. Therefore the vertices of the
convex hull of S are denoted by vert(conv(S)).

Definition 2.6 (Cell Complex) Let R be a polygonal region. A cell complex,
C(R), in R is a polygonal partition of R, such that two cells (faces) of C(R) either
do not intersect or their intersection consists of edges or vertices (faces of lower
dimension) of C(R) which both faces have in common.

To avoid discussion of special cases we assume general position, i.e., no three
collinear vertices, of the vertex sets used in this thesis. Further, we consider only
simply connected polygonal regions as domains for cell complexes, throughout this
thesis. Nevertheless, subsets of cell complexes may form polygonal regions with
internal holes. The more general case of domains that may contain holes will be
subject of further investigation in the future.

Definition 2.7 (Triangulation) Let R be a polygonal region. A triangulation,
T(R), in R is a cell complex in R with exclusively triangular faces.

Normally triangulations are defined on finite point sets like: A triangulation,
T(S), of a finite set S of points in E? is a maximal planar straight-line graph that



uses exactly the points of S as its vertices. [21]. With Definition 2.7, a triangula-
tion, T'(S), of a finite set S of points is simply a triangulation, T'(R), in a polygonal
region R, where R equals the convex hull of S and T'(R) uses exactly the points
of S as vertices. The reason why we are using a different definition for triangu-
lations (and later for pseudo-triangulations) is that we need much more general
underlying domains than the convex hull, for instance, an arbitrary simple polygon
with possible holes in the interior that forms the boundary for a finite set of points.

2.2 Planar pseudo-triangulations in a nutshell

A relaxation of triangulations are the so-called pseudo-triangulations that consist
of pseudo-triangles. In this section we want to give a short introduction to this
topic to get the reader acquainted, as pseudo-triangulations are an important tool
for flipping surfaces to optimality, as we will see later on.

Pseudo-triangles are structures similar to triangles, i.e.: the convex hull of a
pseudo-triangle is a triangle. Unlike triangles, pseudo-triangles may exist having
more than three vertices. To define pseudo-triangles we need a few attributes of
polygons that will be specified now.

Definition 2.8 (Corner / Non-corner) A corner of a polygonal region, R, is a
vertex of R with no internal angle larger than w. All other vertices of R are called
non-corners of R.

Remarks Suppose that the polygonal region, R, has a hole that itself can be
treated as a simple polygon, H. Then the non-corners of H are corners of R.

Definition 2.9 (Side Chain) A chain of edges of a (simple) polygon, P, between
two consecutive corners of P is called a side chain of P.

Note that the vertices of a side chain (without its end points) are exclusively
non-corners. Of course, a side chain might consist of a single edge.

Definition 2.10 (Geodesic) The shortest curve in a polygonal region, R, that
connects two vertices, a and b, of R, is called the geodesic between a and b.

Definition 2.11 (Pseudo-Triangle) A simple polygon with exactly three corners
15 called a pseudo-triangle.

Note that a triangle is also a pseudo-triangle. As already mentioned before,
the convex hull, conv(V), of a pseudo-triangle, V, is a triangle whose vertices are
exactly the corners of V. Furthermore, the geodesic between two corners of V
defines a side chain of V and therefore lies entirely on V’s boundary [3].

Definition 2.12 (Pseudo-k-Gon) A simple polygon with exactly k corners is
called a pseudo-k-gon. In particular, a simple polygon with 4 corners and 4 side
chains is also called a pseudo-quadrilateral.
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Definition 2.13 (Pseudo-Triangulation) Let R be a polygonal region. A pseu-
do-triangulation, PT(R), in R, is a cell complex in R whose cells are exclusively
pseudo-triangles.

Like for triangulations, a pseudo-triangulation of a finite point set S is the pseu-
do-triangulation, P7T (R), in the polygonal region, R, where R equals conv(S) and
PT(R) uses exactly the points of S as vertices. Because triangles are also pseudo-
triangles, triangulations are also pseudo-triangulations.

It is easy to see that faces of (full) triangulations have only one edge in common.
However, the faces of pseudo-triangulations may intersect at two edges. It is well
known that they cannot intersect in more than two edges.

Definition 2.14 (Double Adjacency) Two pseudo-triangles, V1, Vs, of a pseu-
do-triangulation are in double adjacency if they have two edges in common.

Observation 1 In the case of a double adjacency, the union of the two pseudo-
triangles is again a pseudo-triangle, [3].

Definition 2.15 (Pointed / Non-pointed) A vertezr, v, of a pseudo-triangula-
tion s called pointed if all its incident edges lie within an angle smaller than .
Otherwise, v is called non-pointed.

In other words: v is pointed if and only if exactly one incident angle (angle
between two consecutive incident edges of v) is larger than 7.

Definition 2.16 (Pointed Pseudo-Triangulation) A pseudo-triangulation,
where each vertex is pointed, is called a pointed pseudo-triangulation.

Note that all corners of a polygonal region, R, are always pointed. The more
pointed vertices there are in P7T (R), the less edges and faces it has. Furthermore,
the edge rank, the difference between |[vert(PT )| and the number of pointed vertices
of PT(R), is a minimum (zero) if PT(R) is a pointed pseudo-triangulation. As in
this case also the number of edges of PT (R) is a minimum, pointed pseudo-triangu-
lations are sometimes also referred to as minimum pseudo-triangulations. Be careful
to not confuse minimum pseudo-triangulations with minimum weight (pseudo)-tri-
angulations.

Definition 2.17 (Complete / Incomplete Vertex) Consider a subset, B, of
pseudo-triangles of a pseudo-triangulation. Let v be a vertex of a member of B.
The vertez, v, 1s called complete in B, if v is corner in each of its incident pseudo-
triangles of B. Otherwise, v is called incomplete in B.

Note that B may be the entire pseudo-triangulation as well as a subset of dis-
connected pseudo-triangles. If we talk about completeness in entire pseudo-trian-
gulations, we just say that a vertex is complete or incomplete, without specifying
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the ”subset”. Further, note that the concepts of pointedness and completeness are
rather similar. In the majority of cases pointed vertices are incomplete and complete
vertices are non-pointed. The only difference occurs at vertices that are convex on
the boundary of the pseudo-triangulation. Though such vertices are pointed they
are also complete.

Observation 2 Let v be a verter of a pseudo-triangulation in a polygonal region
R. If v is non-pointed then v is also complete. If v is pointed and not a corner of
R then v is incomplete. If v is a corner of R then v is pointed and complete.

Observation 3 Consider a subset, B, of pseudo-triangles of a pseudo-triangula-
tion, PT. Let v be a verter of a member of B. If v is complete in PT, v is also
complete in B. If v is incomplete in B, v is also incomplete in PT .

Definition 2.18 (Induced Polygonal Region of PT) Consider a pseudo-tri-
angulation PT with edge set E. Fach polygonal region that can be formed by exclu-
swely using edges of E is called an induced polygonal region of PT.

If we are talking about induced pseudo-triangles in this thesis, we mostly mean
induced pseudo-triangles of P77 with at least one edge of PT interior to them. Of
course, also the pseudo-triangles that are forming P7 are induced pseudo-triangles
of PT, but we will refer to them just as pseudo-triangles of PT.

2.3 Planar flipping

A so-called flip is an operation of constant combinatorial complexity, used to trans-
form (pseudo-)triangulations into other ones [2, 10, 14, 18, 22].

(a) ...crossing (b) ...non-crossing (c) ...non-flipable

Figure 2: Edge-exchanging flip types and non-flipable edge, [3].

The standard edge flip on triangulations is the so-called Lawson flip [17]. It takes
two triangles, Ay and Ay, whose union is a convex quadrilateral and exchanges its
diagonals. To generalize flipping to pseudo-triangulations, a different flip-definition
is necessary, because the direct connections of the opposite corners of the union of
two pseudo-triangles do not always exist in the union. The following definition (see
for example [3]) uses a geodesic interpretation to make the Lawson flip suitable for
pseudo-triangulations; see Figure 2(a) and (b) for examples.
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Definition 2.19 (Edge-Exchanging Flip) Consider two pseudo-triangles, V,
and Vs, of a pseudo-triangulation that are adjacent at edge e. Let g be the geodesic
in V1 UV, that connects the two corners, ¢, and co, of V1 and V4 that are opposite
to e. Moreover, g has to emanate from ¢, and co within the angle spanned by the
two incident edges of V1 respectively V. An edge-exchanging flip replaces e by the
part, €, of g interior to Vi U Vy. If e and €' have one end-point in common, then
the edge-exchanging flip is of non-crossing type, otherwise it is of crossing type.

Remarks As the result of an edge-exchanging flip is (a part of) the geodesic
between the two opposite corners of the flipped edge, an edge-exchanging flip is
reversible. This means, if edge €' results from applying an edge-exchanging flip to
edge e, immediately flipping edge €’ results in edge e again. Of course, flipping edge
e’ can produce other results, if there were other flips applied to the pseudo-trian-
gulation in the meantime.

Lemma 1 An edge-exchanging flip does not alter the pointedness of any vertex.

Proof. The edge €' (as well as e) is part of a geodesic between two corners of the
pseudo-quadrilateral V; U V5. As a geodesic uses only non-corners of Vi U V5 as
additional vertices and connects them tangential, the pointedness of each vertex of
V1 U Vs remains unchanged. O

Lemma 2 The common vertex v of a non-crossing edge-exchanging flip from e to
€' has to be pointed. The simultaneous existence of both edges, e and €', makes v
non-pointed.

Proof. The vertex v has to be a non-corner of the pseudo-quadrilateral, because
it is part of both geodesics and thus is pointed. Now suppose that e and €' exist
simultaneously and v is still pointed. The two edges of (the boundary of) the
pseudo-quadrilateral incident to v are part of a side chain between 2 corners, ¢; and
co. The corner ¢; is connected to a different corner by a geodesic that has e as a
part. The same applies for ¢; and €. As v has to have its angle larger than 7 interior
to the pseudo-quadrilateral, we will need a 5 corner. That is a contradiction, as a
pseudo-quadrilateral has 4 corners, by Definition 2.12. O

An edge-exchanging (or short exchanging) flip replaces one edge with another
unique one and results in two valid pseudo-triangles. It is well known (see for
example [3]) that in a pointed pseudo-triangulation each internal edge is flipable by
an exchanging flip.

But observe that in the case of double-adjacent pseudo-triangles, V; and Vj,
there exists an ambiguous geodesic interpretation for an edge-exchanging flip, shown
in Figure 3. Figure 3(a) shows the correct edge-exchanging flip while Figure 3(b)
exemplifies a misinterpretation of the geodesics rule, where the geodesic nevertheless
lies inside V; U V.



Figure 3: Ambiguous geodesics interpretation, [3].

Concerning triangulations, it is easy to see that if Ay U A, is a non-convex
quadrilateral, the edge e that is separating AA; and /\, is not flipable by an edge-
exchanging (Lawson) flip, see Figure 2(c). In this case the non-corner of the non-
convex quadrilateral is non-pointed. Interestingly, the non-convex quadrilateral,
without edge e, forms a pseudo-triangle in this case.

If we exclusively operate on triangulations, we are not allowed to simply remove
e. The cell that would remain after this operation, would not be a triangle. There-
fore we would leave the class of triangulations. In contrast, removing e is a valid,
combinatorial constant-size operation on pseudo-triangulations. This operation also
has a geodesic interpretation that was used in [3] to introduce a novel type of edge
flip, namely the edge-removing flip.

Definition 2.20 (Edge-Removing Flip, [3]) Consider Vi, V5 and e as in Def-
inition 2.19. The operation that removes e (without substitution) and results in a
pseudo-triangle V1 U Vs is called edge-removing flip.

Lemma 3 An edge-removing flip alters the pointedness of exactly one vertex of the
pseudo-triangulation from non-pointed to pointed, [3].

Lemma 4 Let PT be a pseudo-triangulation of a polygonal region R. If an edge
flip does not alter the pointedness of any vertex of PT, also the completeness of all
vertices remains unchanged. An edge flip that alters the pointedness of a vertex of
PT from non-pointed to pointed alters the completeness of this vertex from complete
to incomplete.

Proof. As edges of R are incident to only one pseudo-triangle, edge flips are not
applicable to them. By Observation 2 pointedness and completeness are analogous



concepts for vertices of P77 that are not corners of R. Further, vertices of P7T that
are corners of R are always pointed and complete. O

With the edge-exchanging and the edge-removing flip, each internal edge of an
arbitrary pseudo-triangulation is flipable. Further the edge-removing flip, and its
inverse, the edge-inserting flip, enables us to shift between pseudo-triangulations of
different edge rank. Moreover, based on the new flip type, in [3] another operation
was specified that enables us to delete certain vertices from a pseudo-triangulation
in a well-defined way that guarantees a pseudo-triangulation as result.

Figure 4: Vertex-removing flip, [3].

Consider a vertex, v, of a pseudo-triangulation, P77, with two incident edges, e;
and eq, see Figure 4 (eq, ey are bold). The vertex v and its incident edges partition
an induced pseudo-triangle, V, of P7T into two other pseudo-triangles of P7 that
are in double-adjacency (at e; and es). We can remove v by applying an edge-
removing flip to both its incident edges simultaneously. This leaves V as empty
pseudo-triangle. Therefore a valid pseudo-triangulation remains. Alternatively,
we could apply the ambiguous geodesics interpretation (Figure 3) to e; and es in
succession. Thereby we would produce the same result.

Definition 2.21 (Vertex-Removing Flip, [3]) The operation which deletes a
vertex of degree 2 of a pseudo-triangulation along with its two incident edges and
thereby joins two double-adjacent pseudo-triangles to one, is called a vertex-remov-
ing flip.

Definition 2.22 (Flipping Pair) Let ¢’ be the edge that results from edge e in an
edge-exchanging flip. Then we call the edges e and €' a flipping pair.

Definition 2.23 (Potential Flipping Pair) Assume that the edges e and €' exist
at the same time in a pseudo-triangulation and that it is possible to delete either
edge with an edge-removing flip. Then we call e and €' a potential flipping pair if
they would be a flipping pair if either e or €' would not exist.

Remarks It is only possible to remove one of this edges. After deleting one edge
it is not possible to delete the other. Otherwise they would not form a flipping
pair if one is absent. Moreover, in that case, they would form a flipping pair of a
non-crossing edge-exchanging flip and thus would have one vertex in common.

10



Observation 4 The common vertez, v, of a potential flipping pair, e, €', (Defini-
tion 2.23) is non-pointed before, and pointed after removing one edge, e or €', with
an edge-removing flip.

Proof. As e and €’ exist at the same time, they can only be a flipping pair for a
non-crossing edge-exchanging flip if one of them has been removed. By Lemma 2,
the common vertex of a non-crossing edge-exchanging flip is pointed, and the si-
multaneous existence of e and e’ makes v non-pointed. O

Definition 2.24 (Inner Tangents) Let R be a polygonal region. A line segment,
[, between two vertices of R and in the interior of R is called an inner tangent for
R if | is part of some pointed pseudo-triangulation in R.

Lemma 5 Let C be a convex polygon interior to a pseudo-triangle V. There exist
exactly 6 inner tangents for the polygonal region R =V \ C. There exist combina-
tions of exactly 3 inner tangents that form a pointed pseudo-triangulation in R.

Proof. All non-corners of R (non-corners of V and corners of C) are pointed.
To maintain pointedness, the only allowed edges are geodesics inside R from each
corner of V that are tangents to C'. As each corner sees a left and a right side of C'
there exist exactly 2 inner tangents from a corner of V to a vertex of C'. Since V
has 3 corners and C is not the empty set, this gives 6 possible edges.

The number of necessary and sufficient edges to obtain a pointed pseudo-trian-
gulation is reduced from 6 to 3 because at each time 2 of the 6 edges are flipping
pairs (Definition 2.22) and therefore are mutually exclusive: A flipping pair is either
crossing or has one vertex in common. In the former case it is obvious that the two
edges are mutual exclusive. In the latter case the existence of both edges violates
the pointedness of their common vertex, by Observation 4.

Three inner tangents partition R into three cells and the boundary of V into
three ”pieces”, the side chains of V. Furthermore, three inner tangents split the
boundary of C' into three concave chains (viewed from inside R). Along with the
three inner tangents themselves, this makes 9 side chains parted by 9 corners alto-
gether. As we got three cells, each of them can have three side chains and three
corners. As every vertex of R is pointed, this describes a pointed pseudo-triangu-
lation with three pseudo-triangles. O

The following lemma has been established and proved by M.Pocchiola and
G.Vegter in [18]. The formalism has been slightly adapted, since their paper
deals with disjoint convex obstacles. The pseudo-triangulations they construct are
pointed, although not explicitly termed as such.

Lemma 6 (Lemma 3 from [18]) The number of tangents in a pointed pseudo-
triangulation of a collection of n disjoint conver objects is 3n — 3.
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Using Lemmata 5 and 6 we can provide the exact number of inner tangents nec-
essary for a pointed pseudo-triangulation within a pseudo-triangle with an arbitrary
number of disjoint convex holes.

Lemma 7 The number of inner tangents in a pointed pseudo-triangulation of a
collection of n disjoint convex polygons surrounded by a pseudo-triangle is 3n.

Proof. From Lemma 6 we know that we need 3n — 3 tangents (or edges) for a
pointed pseudo-triangulation of n disjoint convex objects. This pseudo-triangula-
tion contains the edges of the convex hull, CH, of all objects. Thus, we gain a
single convex object C'H inside a pseudo-triangle V. By Lemma 5 it takes another
3 tangents to pseudo-triangulate the polygonal region V \ CH in a pointed way.
Therefore 3n — 3 + 3 = 3n tangents are needed.

Note that there exist a lot of different pointed pseudo-triangulations for V and
its internal disjoint convex polygons. (Even some, where no single edge of CH is
included.) As two pointed pseudo-triangulations can be transformed into each other
by applying O(nlog®n) edge-exchanging flips [3], every possible pointed pseudo-
triangulation can be created by flipping edges of the above obtained pointed pseudo-
triangulation. As edge-exchanging flips do not change the number of edges, the
number of inner tangents stays the same. O

2.4 Surfaces for pseudo-triangulations

In [3] it is proved that pseudo-triangulations have realizations as polyhedral surfaces
in three-space and showed how to construct them. Further an attribute is intro-
duced for pseudo-triangulations called projectivity, a surface interpretation of flips
is presented, and it is proved that flipping to optimality is always possible within
the class of pseudo-triangulations. As this thesis is mainly based on [3], this section
is more or less a synopsis from that work. Nevertheless, there are slight differences
to adapt to the formalism and layout of this thesis.

Definition 2.25 (Polyhedral Surface) A polyhedral surface is the graph of a
continuous and piecewise-linear function whose domain is a polygonal region.

Definition 2.26 (Convex, Reflex and Planar Edge) Let e be an edge in a
polyhedral surface. The edge e is called convex if there exists a line segment that
intersects e at exactly one interior point and everywhere else lies below the surface.
The edge e is called reflex if there exists a line segment that intersects e at ezractly
one interior point and everywhere else lies above the surface. If e is neither conver
nor reflex then we call e planar.

Theorem 1 (Surface Theorem, [3]) Let R be a polygonal region, and let PT
be any pseudo-triangulation within R. Let h be a vector assigning a height to each
complete vertex of PT. For each choice of h, there exists a unique polyhedral surface
F(PT,h) above the domain R, that respects h and whose edges project vertically to
(a subset of ) the edges of PT .
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This theorem holds for arbitrary polygonal regions, including such with holes.
This will turn to be a fundamental property for Section 6. Further the theorem
admits surfaces whose edges project only to a subset of the edges of the underlying
pseudo-triangulation. This happens because planar edges do not project vertically.

Though there exist various different surfaces for a given pseudo-triangulation,
depending on the choice of the height vector h, there exist "special” pseudo-trian-
gulations that have no surface realization whose edges project back to exactly the
original edges. To classify such pseudo-triangulations, [3] introduces the concept of
projectivity for pseudo-triangulations, respectively cell complexes in general.

Definition 2.27 (Projectivity) A cell complex C is called projective if there ex-
1sts some polyhedral surface whose set of edges projects exactly to the set of edges
of C. Otherwise, we call C non-projective.

This property highly depends on the geometric embedding of the pseudo-tri-
angulation. An ”epsilon small” change of the planar vertex set can change the
property. This is an undesired effect, as we want to stay as independent as pos-
sible from the geometric realization. Therefore we introduce an advanced version
of projectivity, called combinatorial projectivity. There will be some properties
later that also will be combinatorially defined for the same reason, see the Defini-
tions 2.32, 2.33, 2.34. Combinatorial in this context means that the property does
not change if the underlying vertex set is perturbed by an arbitrarily small € > 0.

Definition 2.28 (S¢) The verter set Se is an e-perturbation of S if the vertices of
Se are the vertices of S perturbed by some arbitrary small € > 0 such that the order

types ([4], [5], [11], [16]) of Sc and S are equal.

According to the e-perturbed vertex set S. we want to define an e-perturbed
pseudo-triangulation that rules out any special geometric realizations, like the one
shown in Figure 5.

Definition 2.29 (PT.) Let PT be a pseudo-triangulation with vertex set S. Fur-
ther, let S. be an e-perturbation of S. The pseudo-triangulation PT . that is combi-
natorial equivalent to PT and has S¢ as its vertex set is called an e-perturbation of

PT.

Definition 2.30 (Combinatorial Projectivity) Consider R and PT as in The-
orem 1. Further, let S be the set of vertices of PT . Then PT 1is called combinatorial
projective, if there exists some e-perturbation Se of S, such that PT. is projective.
Otherwise, we call PT combinatorial non-projective.

Observe the trivial fact that projectivity implies combinatorial projectivity and
combinatorial non-projectivity implies non-projectivity.

Figure 5 exemplifies the difference between projectivity and combinatorial pro-
jectivity. The bold edge of the pseudo-triangulation P7 in Figure 5(a) is planar
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in each surface F(PT,h), regardless of the height vector h. This is because the
intersection of the prolongations (dotted edges) lies exactly on another edge. There-
fore only the pseudo-triangulation in Figure 5(b) is projective, because one vertex
(the lower right one) was moved by an arbitrary small e. However, both pseudo-
triangulations are combinatorial projective. For combinatorial non-projective ex-
amples see Figures 10(a+b) on page 21 or Figures 14(a+b) on page 34.

(a) from [3] ...non-projective (b) ...projective

(a) and (b) ...combinatorial projective

Figure 5: The difference between the concepts of projectivity and combina-
torial projectivity.

Though we have banned geometric influence from the 2-dimensional vertex set
by using PT., it is possible that the surface F(PT,h) fails to be strictly convex
or reflex for some edges of PT,.. This happens if either P7T, is (combinatorial)
non-projective or the height vector, h, is degenerate. To foreclose the latter case,
[3] introduces another term.

Definition 2.31 (Generic Height Vector) A height vector, h, is called generic,
if h witnesses the (combinatorial) projectivity of PT ..

Now the only reason for a surface, F(PT.), whose set of edges is not project-
ing exactly to the edges of PT, is that P7T is combinatorial non-projective, for
example (but not limited to) the case of a double-adjacency in P7T. Before stat-
ing a definition from [3] that was designed to decide (combinatorial) projectivity
by only examining the (2-dimensional) pseudo-triangulation, we want to introduce
some new definitions and observations that discuss the connectivity between 3-
space properties of or within the surface and the combinatorial projectivity of the
underlying pseudo-triangulation.

Definition 2.32 (Combinatorial Coplanarity) A subset of pseudo-triangles of
a pseudo-triangulation PT 1is called combinatorial coplanar if their corresponding
facets all lie in a common plane, for all height vectors h, and all e-perturbations of

PT.

Remarks Note that Definition 2.30 and Definition 2.32 are not equivalent. Fig-
ures 10(a+b) on page 21 show pseudo-triangulations that are combinatorial non-
projective and contain combinatorial coplanarities (gray pseudo-triangles). But
Figure 10(c) contains combinatorial coplanarities, in spite of being combinatorial
projective.
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Observation 5 Pseudo-triangles that have 3 vertices in common are combinatorial
coplanar.

Note that here it is important that we have no collinear points! Observe further
that the converse of this statement is not true. In the examples in Figures 14(a+Db)
on page 34 no pseudo-triangle has 3 vertices in common with any other pseudo-
triangle. Anyhow, the gray set of pseudo-triangles in Figure 14(b) is combinatorial
coplanar. In Figure 14(a) even the whole pseudo-triangulation is combinatorial
coplanar

Definition 2.33 (Combinatorial Planar Edge) An edge e of the pseudo-trian-
gulation PT s called combinatorial planar if e is incident to 2 pseudo-triangles that
are combinatorial coplanar. Edge e is called combinatorial non-planar, otherwise.

Definition 2.34 (Combinatorial Planar Vertex) A verter of a pseudo-trian-
gulation PT is called combinatorial planar if all its incident edges in PT are com-
binatorial planar.

It is trivial to see that all edges incident to a combinatorial planar vertex are
combinatorial planar edges. But observe that there may exist combinatorial planar
edges that are not incident to any combinatorial planar vertex.

Observation 6 The set of all pseudo-triangles incident to a vertex v of a pseudo-
triangulation is combinatorial coplanar iff v is combinatorial planar.

Observation 7 The existence of a combinatorial planar vertex or a combinatorial
planar edge implies that the pseudo-triangulation is combinatorial non-projective.

As the (combinatorial) projectivity is a property of the 2-dimensional pseudo-
triangulation, we do not want to generate a surface to decide it, not only because
of the possibility of degenerate height vector. Therefore [3] introduces the concept
of stability that was meant to decide projectivity by only examining (subsets of)
the pseudo-triangulation.

Definition 2.35 (Stability, [3]) Let PT be a pseudo-triangulation in a simple
polygon P and let S be the vertex set of PT (with vert(P)CS). Then PT is called
stable if no subset of incomplete vertices of S can be eliminated, along with their
incident edges such that:

(1) a valid pseudo-triangulation PT' remains, and
(2) the status of each vertex of PT' is the same as in PT.

In other words: P7T is stable if no induced pseudo-triangle, V, of PT exists

such that every non-corner of V and each vertex inside V is incomplete. Observe
that double-adjacencies are ruled out in a stable pseudo-triangulation. Moreover,
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also pointed pseudo-triangulations on polygons P, where 0(P) is a pseudo-triangle,
are not stable.

To decide combinatorial projectivity by deciding stability a theorem was stated
in [3] that connected both concepts in the way that a pseudo-triangulation is combi-
natorial projective if and only if it is stable. This turned out to be wrong, as shown
in the counter example in Figure 14(b) on page 34 that is stable but combinatorial
non-projective. Figure 10(b) on page 21 shows another counter example, where
the pseudo-triangulation is also stable but combinatorial non-projective. Never-
theless, for at least some examples concluding from non-stable to combinatorial
non-projective is correct, see Figures 14(a) and 10(a).

This leads to the core task of this thesis, namely to find out when exactly stable
pseudo-triangulations are combinatorial non-projective, to classify those cases and
to discover a way to fix the stability concept. This turned out to be more complex
than thought and thus the rest of this thesis, after this section, deals with this
problem. Therefore, for now, we do not go into detail, as the remaining surface
introduction does not use this concept and therefore stays correct.

To be able to transform surfaces into others, [3] provides surface interpretations
of the planar flips introduced in Section 2.3.

Definition 2.36 (Surface Flip) Let PT be some combinatorial projective pseu-
do-triangulation in a polygonal region R and let PT' be the unique pseudo-triangu-
lation obtained from PT by applying a single admaissible flip. Further assign height
vectors h and h' to PT and PT" such that h is generic and coincides with h' for
all vertices being complete in both structures. By Theorem 1, there exist 2 unique
surfaces F(PT,h) and F'(PT',h'). An operation that transforms F(PT,h) into
F'(PT',h') is called a surface flip.

Surface flips cause local and constant-size changes in a combinatorial sense.
But geometrically they can cause global changes, as a single flip can change vertex
heights of many vertices.

Our main task, when flipping in surfaces, is to reach the mazimal locally convex
surface which, by Definition 2.42, does not contain any reflex edges. Therefore we
are only interested in surface flips applied to reflex edges. Thus we define:

Definition 2.37 (Improving Surface Flip) A surface flip applied to a reflex
edge in a surface is called an improving surface flip.

Both, the edge-exchanging (Definition 2.19) and the edge-removing flip (Defini-
tion 2.20) have an interpretation as improving surface flips. According to Defini-
tion 2.36, [3] defines a converifying flip and the planarizing flip.

Definition 2.38 (Convexifying Flip) An improving surface flip that corre-
sponds to an edge-exchanging flip in the plane, is called convexifying flip.
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Figure 6: Two convexifying flips, [3].

Figure 7: A planarizing flip, [3].

A convexifying flip exchanges a reflex edge with a convex one, hence the name.
See Figure 6 for examples. The properties for the edge-exchanging flip, Lem-
mata 1 and 2, also hold for convexifying flips.

Definition 2.39 (Planarizing Flip) An improving surface flip that corresponds
to an edge-removing flip in the plane, is called planarizing flip.

The planarizing flip removes one reflex edge from the surface. For an example
of the geometric change, see Figure 7. Thereby two facets, previously adjacent at
the flipped reflex edge, are joined to one single facet that flattens out. Also the
planarizing flip keeps the property, Lemma 3, from its analogon.

A convexifying or planarizing flip may result in a pseudo-triangulation that
is not combinatorial projective any more. As in [3] combinatorial projective is
identical to stable, what turned out to be incorrect, the trivial flip is designed in [3]
to eliminate the edges and vertices from the surface that stem from the subset of
incomplete vertices that causes the non-stability, see Definition 2.35.

Nevertheless, the trivial flip turned out to be very useful, see Section 6. Thus
we introduce a slightly adapted version of the trivial flip definition:
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Definition 2.40 (Trivial Flip) Let PT be some pseudo-triangulation. Let S, be
the subset of all combinatorial planar vertices of PT. Eliminating each vertexv € S,
by applying a sequence of vertex-degree-reducing edge-exchanging and edge-removing
flips, followed by a degree-2 vertex-removing flip to v, is called a trivial flip.

A trivial flip can be applied after each (improving) surface flip to delete all
combinatorial planar vertices within the new surface. All edge flips in the sequence
of a trivial flip are applied to combinatorial planar edges and either delete one
edge (edge-removing) or exchange one edge with another combinatorial planar edge
(edge-exchanging).

Lemma 8 During a trivial flip, edge-exchanging flips create only combinatorial
planar edges.

Proof. All facets incident to a combinatorial planar vertex v lie in a common
plane by Observation 6. Inside this set, B, of combinatorial coplanar pseudo-
triangles all edges are combinatorial planar by Definition 2.33. A degree reducing
edge-exchanging flip replaces an edge incident to v with one that stays within B.
Thus this edge is also combinatorial planar. O

—

Figure 8: Example where each combinatorial planar edge is incident to some
combinatorial planar vertex.

Remarks Even if each combinatorial planar edge in the surface is incident to at
least one combinatorial planar vertex, combinatorial planar edges may remain after
a trivial flip. See Figure 8 for an example.

As already mentioned earlier, one task in flipping in surfaces is to reach con-
vexity, which equals the lower convex hull, if the underlying polygonal domain is a
convex polygon. In [3] an optimization problem was stated, which was solved with
the optimality theorem and a second theorem which are restated as one theorem
below:

Definition 2.41 (Locally Convex Function) Let P be a polygon in the plane.
A real-valued function f with domain P is called locally convex if f is convex on
each line segment internal to P.
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Optimization Problem:
Let S be a set of wertices within some simple polygon, P, with
vert(P) C S. Let h be a vector assigning some real value to each vertex

in S. Given P, S and h, find the mazimal locally convex function f*
on the domain P which fulfills f*(v;) < h; for each v; € S.

Theorem 2 (Optimality Theorem, [3]) Let S be a set of vertices within some
simple polygon, P, with vert(P) C S and let h be a height vector for S. Let f*
be the unique mazximal locally convex function on P that is bounded from above by h.
(1) The graph F* of f* projects to a pseudo-triangulation in the generic
case.
(2) F* can be constructed from any triangular surface F on P for S and
h, by applying any improving surface flip (and trivial flip) sequence
of sufficient, but finite, length.

To simplify matters we state an additional definition for the graph of the maxi-
mal locally convex function:

Definition 2.42 (Maximal Locally Convex Surface) We call the graph F* of
f* from Theorem 2 the maximal locally conver surface, respectively optimal surface
for short.

(b) local optima (c)

(d) ... global optimum

Figure 9: Local and global optima, [3].

Observe that it is not always possible to reach the maximal locally convex surface
within the class of triangulations, see Figure 9. The numbers at the vertices denote
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their heights and reflex edges are bold. Flipping one of the two reflex edges in the
initial surface in Figure 9(a) leads to either the triangular surface in Figure 9(b) or
Figure 9(c). As in both examples the remaining reflex edge is not flipable without
leaving the class of triangulations, these are local optima. The global optimum F*,
shown in Figure 9(d), is a pseudo-triangulation.

Finally we want to combine two characteristics of surfaces that stem from the
optimality theorem and were mentioned in [3] in Section 7.1 ”flipping to optimality”,
to a lemma.

Lemma 9 (Section 7.1 in [3]) In the optimal surface there exists no internal

pointed verter. FEach internal pointed vertex of a surface has at least one incident
reflex edge.
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3 3-Reducibility

3.1 The problem

Up to now double adjacencies were characterized by two pseudo-triangles sharing
two edges (Definition 2.14). These edges are combinatorial planar because the two
facets reside in the same plane. But the reason for this circumstance is that pseudo-
triangles sharing two edges automatically share three vertices' which define a plane
where both facets must reside. Interestingly, it is possible to pseudo-triangulate
a point set in such a way that two pseudo-triangles share three vertices without
sharing 2 edges. Certainly also in this case the two facets share the same plane and
therefore the separating edge (if one exists) is combinatorial planar.

See Figure 10 for an example: Bold edges are combinatorial planar and gray
pseudo-triangles are combinatorial coplanar. Though all three examples show two
combinatorial coplanar facets, they differ in the number of combinatorial planar
edges. Figure 10(a) shows a classical double adjacency whereas Figures 10(b)+(c)
show ”deformed” examples.

(a) (c)

Figure 10: (a) shows a ”normal” double adjacency. (b) and (c) show deformed
double adjacencies where in (b) exists one combinatorial planar edge, e, and
in (c) none.

Considering the stable definition for pseudo-triangulations we observe, though
such a deformed double adjacency (Figure 10(b)+(c)) is stable, it is combinatorial
non-projective, if there exists a separating edge, e (Figure 10(b)). That violates
the statement that a pseudo-triangulation P7T, with vertex set S, can be made
projective by perturbing S by some arbitrarily small ¢, if it is stable [3]. Further-
more, a trivial flip will not remove e without substitution. We also observe, that
the projection of a surface F of PT does no longer belong to the class of pseudo-
triangulations for any (generic) height vector. On this account we have to take a
closer look to this kind of edges in pseudo-triangulations that are hidden in the
projections of their surfaces.

'Let us stress the fact again, that there are no collinear vertices!
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3.2 3-Reducibility

First of all it is important to acquire a criterion that allows us to locate all combina-
torial planar edges within a given pseudo-triangulation. Consider a pseudo-triangu-
lation PT. See Figure 11 for three examples. According to the Surface Theorem [3]
the height of an incomplete vertex, v, of PT depends on the heights of the corners
of its unique corresponding pseudo-triangle of P77 where v is a non-corner. If one
of these corners, ¢, is incomplete, its height again depends on the heights of three
vertices. Thus the height of v is depending on the heights of at most five other
vertices after the first step, and so on. Figure 11(a) illustrates an example where
the height of v depends on 5 other vertices (square dots) whereas in the examples
in Figure 11(b) and (c) the height of v depends on 4 resp. 3 other vertices.

(a) (b) (c)

Figure 11: Examples of pseudo-triangulations where the height of an incom-
plete vertex v depends on the height of 5 (figure (a)), 4 (figure (b)) or 3 (figure
(c)) other vertices (square dots).

Definition 3.1 (Height Defining Vertex) Let B be a subset of pseudo-triangles
of a pseudo-triangulation PT. Let v be a verter of some member of B. We call v
height defining (for B) if v is complete in B.

Observation 8 Consider B and PT as in Definition 3.1. A vertex of conv(|J B) is
complete in B and a vertex that is incomplete in B has to reside within conv(|J B).

Proof. A vertex that is corner of the boundary of |JB is complete in B, by
Observation 2. As conv(|JB) is a boundary of J B on which each vertex is a
corner, every vertex on conv(|JB) is complete in B. From this it follows that
vertices of members of B that are incomplete in B, cannot be on conv(|JB) and
thus have to reside within conv(|J B). 0

Note that, by applying Observation 3, vertices that are complete in P7T, are
height defining vertices for each subset of pseudo-triangles of P7, where they are a
vertex of at least one pseudo-triangle. On the other hand, height defining vertices
for some subset of pseudo-triangles of P77 are not necessarily complete in PT .
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Definition 3.2 ((Height) Back-Tracing) Consider the subset B as in Defini-
tion 3.1. Let v be height defining for B, but incomplete in PT . Adding to B the
unique pseudo-triangle V., where v is non-corner is called a (height) back-tracing
step for v.

In BUV,, the vertex v is not complete any more. Therefore v is no longer height
defining. Moreover, the corners of V,, ¢, ¢o, c3, are not necessarily height defining
for BU V,. In particular, corner c; is not height defining if ¢; already belonged to
B and was not height defining there.

Remarks The interested reader may have noticed that we can alternatively look
at the pointedness of a vertex that is complete in the actual subset of pseudo-
triangles, to decide whether it can be back-traced or not. Nevertheless, the concept
of completeness is sufficient and using another concept may cause confusion.

Definition 3.3 (3-Reducibility) Consider a subset By of pseudo-triangles of PT .
Let B(By) be the collection of all subsets B C PT such that there exists a sequence
of height back-tracing steps that transforms By into B. That is

B(By) = {B | B can be generated from By by back-tracing}.
We call By 3-reducible if B(Bgy) contains a member with exactly 3 height defining
vertices.

Remarks Also applying no back-tracing step is a valid sequence of back-tracing
steps. This means that By itself is member of B(By). This implicates that a subset
with only 3 height defining vertices is obviously 3-reducible.

By the Surface Theorem, the height of each incomplete vertex v of PT is de-
scribed by a linear equation containing the heights of v and the corners cy, cs, c3
of its unique pseudo-triangle V,. We symbolically abbreviate this relation as
v = f(c1, c2,C3).

Using this notation we are able to rewrite the Definitions 3.1, 3.2 and 3.3 to
linear systems of equations. Look back at the examples from Figure 11 to get a
hint of how to do that.

In Figure 11 we start with a single vertex v. B is empty, so v is complete in B.
Thus v is height defining for B, abbreviated as v = f(v). The first back-tracing step
now replaces v = f(v) with v = f(a, b, c) and additionally adds a = f(a), b = f(b)
and ¢ = f(c). For the linear system this represents the replacement of 1 degree
of freedom with 3 new ones, namely a, b, c. The second step results in a different
number of degrees of freedom for the 3 different examples. For simplification let us
name the corners of the corresponding pseudo-triangle V. of ¢ with ¢, ¢o, c3. Then
the equation ¢ = f(cy, 2, c3) will replace ¢ = f(c) in the linear system in the next
back-tracing step. For Figure 11(a) additionally the relations ¢; = f(c¢1), c2 = f(c2)
and c3 = f(c3) will be added. This means that one degree of freedom, ¢, has been
replaced by 3 new ones, ci, ¢, c3, what makes 5 altogether. In Figure 11(b) one
corner, lets say ¢y, is identical to v. As there already exists an equation for v in the
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linear system, only co = f(cy) and ¢3 = f(c3) will be added. Thus there remains a
linear system with 4 degrees of freedom. And in Figure 11(c) also a second corner,
c9, equals a vertex, b, that is already part of the linear system which results in only
3 degrees of freedom in total, since we get only c3 = f(c3) in addition.

Let us describe more formally the commonalities of the previously stated defi-
nitions and linear systems of equations.

Definition 3.4 (LS(B)) Let B be a subset of PT as in Definition 3.1. LS(B)
1s called the corresponding linear system of B if it contains the height dependency
equations:
v = f(e1,¢9,¢3) ... for each v being incomplete in B with unique V,
v=f(v) ... for each v being complete in B

Observation 9 Consider B and LS(B) as in Definition 3.4. Then we can state:

(1) The number of height defining vertices for B (see Definition 3.1)
equals the degrees of freedom of LS(B).

(2) Height back-tracing of a vertex v of B (see Definition 3.2) is equiva-
lent to replacing v = f(v) withv = f(c1, 2, c3) in LS(B) and adding
c; = f(¢;) to LS(B) if ¢; is complete in B.

(8) If By is 3-reducible (see Definition 3.3), B(By) contains a member
B such that LS(B) has ezactly 3 degrees of freedom.

Using linear systems of equations for an algorithm to decide 3-reducibility would
require to remember lots of sets of equations. To simplify matters we define a
marked vertex set I(B) as a representation for the linear system L£LS(B). The goal
is to be able to decide 3-reducibility by only remembering these marked vertex
sets, without storing any linear system or pseudo-triangulation subset during the
algorithm. I(B) will contain certain vertices for B and a flag for each vertex.

Definition 3.5 (Marked Vertex Set I(B)) Consider B and LS(B) as in Defi-
nition 3.4. The so-called "marked vertex set for B”, I(B), contains each vertex that
is corner for at least one pseudo-triangle in B. In addition, each vertex in I(B) is
"marked” if it is not height defining for B and remains “unmarked” otherwise.

By this definition, vertices that are a corner in no pseudo-triangle of B do not
belong to I(B). The following lemma (and its proof) shows that I(B) nevertheless
is a data structure providing sufficient information to decide 3-reducibility of a
subset B.

Lemma 10 Consider B and LS(B) as in Definition 3.4, and I(B) as in Defi-

nition 8.5. Then the number of unmarked vertices in I(B) equals the number of
degrees of freedom of LS(B).
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Proof. By Observation 9, the number of degrees of freedom of LS(B) equals the
number of height defining vertices for B. It remains to be shown that vertices of
pseudo-triangles of B that are not in I(B) cannot be height defining for B. Such
a vertex cannot be corner for any pseudo-triangle of B, by Definition 3.5, and thus
belongs to a unique pseudo-triangle where it is non-corner. Therefore it is not height
defining for B (or any subset of pseudo-triangles of B). O

It remains to define how to execute a back-tracing step using I(B). A vertex
v € I(B) can be back-traced if v is unmarked in I(B) and incomplete in P7T. The
back-tracing step is executed by marking v and adding the corners of V, to I(B)
(unmarked) if not already in I(B). Observe that in the back-tracing step only
corners are added to I(B).

Before stating a decision algorithm for 3-reducibility, we give two short exam-
ples in Figure 12. Incomplete vertices are labeled with numbers, complete ones with
capitals. Vertices that are marked in I(B) are underlined in the vertex set represen-
tation. The two examples run on identical pseudo-triangulations but with different
initial subsets By, showed as gray pseudo-triangles. For better understanding of the
relation between £S(B) and I(B), the state of LS(B) is displayed for each step,
as well.

Both examples start with an initial subset By containing 2 pseudo-triangles. In
the first one (Figure 12(a)) I(By) contains only one height defining vertex that is
incomplete in P7T . Therefore only one back-tracing step is possible — adding the
equation 2 = f(A, B, 3). This results in a vertex set I(Bj) containing 4 vertices that
are complete in P7. The corresponding linear system has 5 degrees of freedom,
indicated by the 5 vertices that are not underlined in 7(B;). Again we have a single
possibility for back-tracing — adding the equation 3 = f(B,C,1). We get a vertex
set, I(Bsy), containing the same 4 complete vertices as I(Bj). But this time there
also only exist 4 degrees of freedom and thus no further back-tracing is possible.
Therefore By is not 3-reducible since we created all possible B € B(B).

Also the second example starts with a single possibility of back-tracing. Observe,
that vertex 1 is not part of I(Byp), because it is no corner for By. Adding the equation
3 = f(B,C,1) results in a marked vertex set, I(B;), containing 3 vertices complete
in PT and 4 vertices that are height defining for B;. Back-tracing vertex 1, does not
add any additional vertex to the marked vertex set, but it makes vertex 1 marked
in I(By). Only 3 vertices remain unmarked in I(By). These are the 3 vertices of
B, that are complete in P7 and also height defining for By. Thus the initial By is
3-reducible.

The interested reader may have noticed that the approach of adding symbolical
height equations to £LS(B) differs from adding a pseudo-triangle V to B, in the
sense that adding V may also add additional non-corners not belonging to I(BUV).
Nevertheless, this does not change the degrees of freedom by Lemma 10. If such
vertices occur as degrees of freedom in later back-tracing steps, they can be back-
traced further with one additional step to three vertices that are already members
of the visited vertex set. For example, this happened in the last back-tracing step
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(a‘) ...Bo = {{A7271:C}5 {1721D}}

(b) ...Bp = {{A,Z,l,C}, {AyB:372}}

initial subset:
I(By) : {1,2,A,C,D}
A= f(A)
LS8(Bo): { C=f(C)
D = (D)
= 4 degrees of freedom
back-tracing: 2 = f(A, B, 3)
I(Bl) : {1,2,3,14,3,0,17}
A= f(A
M 5= f(3)

B=fB) ||
o= o) |L=I420)

D = f(D)
= 5 degrees of freedom
back-tracing: 3 = f(B,C,1)
I(BQ) : {l:z;&;AaB7caD}
A= f(A)
B = f(B)
C=f()
D = f(D)
= 4 degrees of freedom

2=f(2)
1= f(4,2,C)

LS(B;) :

1
;CS(BQ) N 2
3

I
s
—~~

— stop
— By is not 3-reducible

initial subset:
I(By) : {2,3,A,B,C}

A=74)13- 53)
es- {551 32160
= 4 degrees of freedom
back-tracing: 3 = f(B,C,1)
I(By):{1,2,3,A,B,C}
A=f(A)|1=/(1)
C=f(0) | 3=1(B,C,1)
= 4 degrees of freedom
back-tracing: 1 = f(4,2,C)
I(B;):{1,2,3,A,B,C}
A=f(A)|1=/(4,2,0)
C=1(0)|3=f(B,C1)

= 3 degrees of freedom

— stop
— By is 3-reducible

Figure 12: Two detailed examples for back-tracing.

in the second example in Figure 12, when back-tracing vertex 1.

3.3 Algorithm to decide 3-reducibility

The algorithm to decide 3-reducibility for a given subset of pseudo-triangles By of a
pseudo-triangulation P7 can be designed as a standard graph search on a directed
acyclic graph (D.AG).
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Algorithm: 3-reducibility

main routine:

TEST3RED(PT , By)
Iy = {v|v is corner of at least one member of By}
mark all v € Iy that are non-corner of a member of B
clear 7
return SEARCH(PT,I,,0)

sub-routines:

SEARCH(PT ,I,n)
ADD(I,n,T)
if NUMCOMPLETE(PT ,I) > 3 then
return FALSE
if NUMUNMARKED(/) < 4 then
return TRUE
is3red = FALSE
for all v € I do
if ( not marked(v,l/) ) & ( v incomplete in P7T ) then
I,,c.t = BACKTRACE( ,v,PT)
if not FIND(/,ept,n +1,7) then
is3red = SEARCH(PT , I eqt,n + 1)
if is3red then break
return is3red

BACKTRACE(Z,v,PT)
{Cl, Co, 63} = GETCORNER (v, PT)
for all c € {c1,c,c3} do
if c¢ I then
add ¢ to I unmarked
mark v in [
return [

help function legend:

NUMCOMPLETE(PT ,I) ... returns the number of vertices in [
that are complete in PT

NUMUNMARKED (/) ... returns the number of unmarked
vertices in [

ADD(I ,n,T) ... adds I to the collection Z for the
n-th step

FIND(/,n,T) ... returns TRUE if [ is found in Z for
the n-th step

GETCORNER(v,P7T) ... returns the three corners ci,co,c3 of

the unique pseudo-triangle V, in PT
-—- equivalent to v = f(cy,co,cC3)
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This pseudo-code exemplifies a depth-first search algorithm on the D.AG. The
graph is directed because each connection represents the addition of a pseudo-
triangle to the current set. Only subsets of pseudo-triangulations on the same level
of the DAG can be identical, as for identical subsets the same number of pseudo-
triangles has to be added to By. Since, for the same reason, no connections to nodes
on a previous level or the same level are possible, the graph is acyclic.

The root is the initial vertex set I, respectively the initial subset By of pseudo-
triangles, for which we want to decide 3-reducibility. Each node contains a vertex
set with less than 3 vertices that are complete in P7T. Further each node has more
than 3 unmarked vertices. A leaf contains a vertex set with either more than 3
complete vertices or only 3 marked vertices. The latter one then is the last visited
leaf because in that case the algorithm finishes with ” By is 3-reducible”.

Remarks A pseudo-triangulation subset B, that is 3-reducible has to reside in the
same plane within all possible surfaces. If By consists of a single pseudo-triangle
then By is obviously 3-reducible. Later, we will specify less trivial initial subsets
to gain more advantage of this observation, namely concerning the initial task we
want to fulfill — to decide the combinatorial projectivity of PT.
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4 Two Implications of 3-Reducibility

In the last chapter we have defined a powerful tool, the 3-reducibility attribute and
its decision algorithm. This chapter shows how to use this knowledge to decide the
combinatorial projectivity of a given pseudo-triangulation P7. It will be advanta-
geous to find small subsets of pseudo-triangles of P7 which are 3-reducible, rather
then deciding 3-reducibility for all possible subsets. These subsets have to be well
defined, however.

4.1 Sets with 3 height defining vertices

Consider subsets By and By, of pseudo-triangles of P77 such that By can be obtained
from repeatedly back-tracing By. We say that Bg witnesses the 3-reducibility of By
if there exist only three height defining vertices, ¢, o, c3, for Bg. In our examples
so far, each such Bg was enclosed by an induced pseudo-triangle of P7 that had
c1, Co, C3 as corners. It is worth to prove whether this is coincidence or not, because
it would allow to narrow the range of problem classes down to induced pseudo-
triangles of PT.

Lemma 11 Let By be a 3-reducible subset of pseudo-triangles of PT. Let Bg be a
subset (with only 8 height defining vertices, c1, ¢, c3) that witnesses the 3-reducibility
of By. Then By forms a connected point set which resides within conv({ci, c2,c3}).
Moreover, F(Bg) lies in the plane spanned by {c1, co, c3} and their heights.

Proof. The subset Bir was reached by successively adding the unique pseudo-
triangles V, to the actual subset B, for vertices v that are height defining for B
and incomplete in P7T. Each connected component of pseudo-triangles within Bg
has at least 3 height defining vertices that are not height defining for other connected
components. Thus there exist k-3 height defining vertices for Bg if Bgr contains
k connected components. As Bg has only 3 height defining vertices, Bg forms a
single connected component.

Now we reverse the back-tracing sequence and insert the incomplete vertex v,
that was back-traced the last. The height of v,, depends on the heights of ¢y, ¢y, c3.
Therefore the vertex has to reside on the same plane, by Theorem 1 and within
conv({c1, ca,c3}), by Observation 8. The next vertex, v, 1, depends on ¢y, ¢y, c3
and v,. Clearly, this vertex lies in the same plane again. Now there exist 4 possible
convex hulls, within v,,_; must reside, namely:

conv({cy, ¢, c3}), conv({vn, ca, c3}), conv({cy,vn,c3}), conv({cy, c2, v, }).
Since vy, lies within conv({c1, ¢, c3}), also the three additional convex hulls lie inside
conv({c1, c2, c3}), and therefore also v, 1. This proves the lemma by induction. O

Corollary 1 Consider a subset Br as in Lemma 11. Then Bg is combinatorial
coplanar.
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Theorem 3 Let By be an arbitrary subset of pseudo-triangles of PT. Then By is
combinatorial coplanar iff By is 3-reducible.

Proof. Let Bg witness the 3-reducibility of By. By Corollary 1, By is combinatorial
coplanar. As By C Bg, also By is combinatorial coplanar.

Now assume that By is not 3-reducible. This means that there exist at least 4
height defining vertices for By, and also for every subset, B;, of P7T that can be
obtained from repeatedly back-tracing By. Let B be the (unique) largest subset
obtained from By where every vertex complete in By, is also complete in P7. The
heights of the at least 4 height defining vertices for By are linearly dependent on at
least 4 vertices complete in P7 . Furthermore, the corresponding linear equations
are independent, as there would exist a 3-reducible B;, otherwise. Therefore h and
PT can always be chosen, such that at least 4 height defining vertices for B, are
not coplanar. O

Lemma 12 Consider By and {c1,ca,c3} as in Lemma 11. Then the boundary of
the union of the pseudo-triangles of B forms an induced pseudo-triangle, V, of PT
with corners cy, ¢, cs (and possible holes). Each non-corner of V is incomplete in

PT.

Proof. Let M be the union of the pseudo-triangles of Bg. By Lemma 11, M
resides within conv({c1, ¢z, cs}), and M forms a connected point set. Therefore, the
vertices ¢; and ¢; of {c1, ¢, c3} are connected by polygonal chains Z;; that lie on
the boundary of M.

Each vertex v on Z;; (except ¢; and ¢;) is incomplete in By, (otherwise it would be
height defining for Bg) and thus incomplete in P7T, by Observation 3. Additionally,
the unique pseudo-triangle where v is a non-corner has to be a member of Bg,
otherwise v would be complete in Bg. Recall that Z;; lies on the boundary of M
and this implies that Z;; is concave at v. We conclude that Z;; forms a side chain
between the two corners ¢; and ¢; of a pseudo-triangle. O

4.2 Characterizing combinatorial projectivity

By Theorem 3 we know that if we can find a 3-reducible subset Bj of pseudo-
triangles of P7T, we can conclude that there exist combinatorial coplanar pseudo-
triangles in P7. But we cannot decide the combinatorial projectivity of P7T, in
general; see Figure 13.

Combinatorial coplanarity arises iff a subset of at least two pseudo-triangles of
PT can be back-traced to a subset that has only 3 height defining vertices, even
if the former pseudo-triangles have no common edge. Examples are illustrated in
Figure 13, and for the special case of double adjacency, in Figure 10 (on page 21).

Note that the existence of combinatorial coplanar pseudo-triangles in P7T does
not necessarily imply that P7 is combinatorial non-projective. But we will see
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(a) (b)

Figure 13: Though the gray pseudo-triangles are combinatorial coplanar, both
pseudo-triangulations are combinatorial projective.

that if no combinatorial coplanarity exists within P7 then P7 is combinatorial
projective.

Fortunately, we know from Observation 7 that a pseudo-triangulation, P7, in a
polygonal region, R, is combinatorial non-projective if P77 contains combinatorial
planar edges. By Definition 2.33, each edge of R is combinatorial non-planar. Thus
we will concentrate on internal edges of P7 and their neighborhood. If an edge e
is combinatorial planar, then two combinatorial coplanar facets have e in common.
This means that the two facets and the edge e reside in a plane that is defined
by only three vertices. So the subset By consisting of the two pseudo-triangles of
PT adjacent at e can be repeatedly traced back to a subset with only three height
defining vertices. That is, By is 3-reducible.

Definition 4.1 (3-Reducible Edge) If two pseudo-triangles V1 and Vs are ad-
jacent at an edge e and By = {V1,Va} is 3-reducible, we call e a 3-reducible edge.

This is not a new definition for 3-reducibility. It rather is an abbreviation for a
construction rule for well defined pseudo-triangulation subsets:
”The subset of two pseudo-triangles

“3-reducible edge €7 < { adjacent at e is 3-reducible.”

Recall Figure 12 on page 26. In both examples, the initial subset consisted of two
adjacent pseudo-triangles. Therefore we can say Figure 12(a) illustrates checking
whether 12 is a 3-reducible edge and Figure 12(b) does the same for edge A2.

We can see from the examples that the combinatorial planar edge A2 is

3-reducible, whereas the combinatorial non-planar edge 12 is not.
Lemma 13 An edge e of PT is combinatorial planar if and only if e is 3-reducible.

Proof. This is a direct consequence of Theorem 3 and Definition 4.1. O

We now have a tool ready that allows us to characterize the combinatorial
projectivity of PT.

Theorem 4 A pseudo-triangulation PT is combinatorial non-projective if at least
one 3-reducible edge exists in PT . If no 3-reducible edge exists then PT is combi-
natorial projective.
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Proof. Assume that a 3-reducible edge e exists within P7. By Lemma 13, edge e
then is combinatorial planar, and by Observation 7 this implies that P7T is combi-
natorial non-projective.

Now assume that no 3-reducible edge exists within P7. In other words, all
edges of PT are combinatorial non-planar by Lemma 13. By Definition 2.33 this
means that for each edge of P7T the two incident pseudo-triangles are combinatorial
non-coplanar.

We still have to argue that there exists a geometrical realization for each com-
binatorial non-planar edge in a surface, without forcing another edge to be planar.
Remember that it is allowed to perturb the vertex set, see Definition 2.30. In addi-
tion observe that forcing planarity of an edge e, using a special height vector, means
that e is planar only for an exact combination of heights of at least four vertices.
By perturbing the height vector with an arbitrarily small € the edge e can be made
non-planar without making any other edge planar. O

Corollary 2 FEach 3-reducible edge of PT is enclosed by an induced pseudo-triangle
of PT that has exclusively incomplete vertices as non-corners.

Proof. Assume the pseudo-triangles V; and V5 are adjacent at the 3-reducible edge
e, and let the subset Bpg(e) witness the 3-reducibility of the subset
By(e) = {V1,Vy}. By Lemma 12, Bg(e) is enclosed by an induced pseudo-triangle,
V, of PT that has exclusively incomplete non-corners. As By(e) C Bg(e) holds,
also By(e) and thus e are enclosed by V. Though this applies only to all internal
edges, it is sufficient, because 3-reducible edges have two incident pseudo-triangles
by Definition 4.1. O

Corollary 3 FEdges spanned by two complete vertices are never 3-reducible.

Proof. Assume that the edge e, spanned by two complete vertices, ci,co, is
3-reducible, and the subset Bpg(e) witnesses the 3-reducibility of the subset
By(e) = {V1,Vy}. By Corollary 2, 3-reducible edges always reside in the inte-
rior of an induced pseudo-triangle, V, of PT. The corners of V plus ¢; and ¢, must
not exceed the number of three height defining vertices for Bg(e). As complete
vertices are height defining for each subset of pseudo-triangles that contains them,
only one additional height defining vertex is allowed for Bg(e) beside ¢; and c,.
It is easy to see that only one of ¢; and ¢y can be a corner of V. Therefore there
exist at least four height defining vertices for Bg(e), which is a contradiction to the
assumed 3-reducibility of By(e). O

Observation 10 In the interior of an induced pseudo-triangle, V, of PT that
encloses exclusively incomplete vertices, each edge is 3-reducible.
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Proof. Let Bgr be the set of pseudo-triangles within V. As V encloses only
incomplete vertices, V is pointed pseudo-triangulated. So there exist exactly 3
height defining vertices for Bg, namely the corners of V. Thus B witnesses the
3-reducibility of By(e) = {V;(e), Va(e)} for each edge e inside V, with V;(e), Va(e)
being the two pseudo-triangles adjacent at e. O

Observation 11 If all induced pseudo-triangles of a pseudo-triangulation, PT,
are empty (for example "real” pseudo-triangles of PT ) then PT is combinatorial
projective.
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5 Combinatorial Stability

Though the concept of 3-reducibility characterizes combinatorial non-projectivity, it
is not very manageable. The existing stability definition (Definition 2.35) provides
a simpler attribute for pseudo-triangulations that allows to directly conclude to
their combinatorial projectivity. Unfortunately, it does not cover all instances of
combinatorial non-projectivities. Therefore we need to extend it, if we want to use
it further on. Only looking at sets of incomplete vertices has been found insufficient
to decide projectivity (see Figure 14), and the additionally needed complete vertices
have to be carefully chosen.

(a)...non-stable [3] (b). ..stable [3]

(a) and (b) are combinatorial non-projective

Figure 14: Both examples show combinatorial non-projective pseudo-
triangulations. Example (a) from [3] is non-stable whereas (b) is stable.
Therefore (b) is a counter-example for deciding combinatorial projectivity
with the stability supposed in [3] (Definition 2.35).

Figure 14(b) illustrates a counter-example for the stability attribute supposed
in [3] (see, Definition 2.35). No incomplete vertex can be removed without changing
the pointedness of the complete vertex (black dot). Thus this pseudo-triangulation
would be called stable, but the conclusion to projectivity is incorrect. Compare
this with Figure 14(a), where the problematic complete vertex is missing. Here it
is possible to remove the set of all three incomplete vertices, maintaining a valid
pseudo-triangulation and the pointedness of remaining vertices.

What we will get later on, is a new stability condition that lets us conclude
to the existence of combinatorial coplanar facets and further on to the combina-
torial projectivity of pseudo-triangulations. With this goal in mind, we have to
take a closer look on complete vertices within pseudo-triangles and the different
geometrical configurations in which they can appear.

5.1 Finding the correct complete vertices

Consider a pseudo-triangulation P77 with edge set E. From Lemma 12 we know that
we can restrict ourselves to finding 3-reducibilities within induced pseudo-triangles,
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V, of PT, see Definition 2.18. Further all non-corners of V have to be incomplete
in PT.

Now let V contain a 3-reducible subset By of pseudo-triangles. Assume that
the corners of V are the 3 height defining vertices for the subset that witnesses
the 3-reducibility of By. This assumption makes sense as otherwise there would
exist another induced pseudo-triangle inside V that fulfills the requirements. As
complete vertices may exist within V, see Figure 14(b), they have to be "isolated”
somehow. This means that repeatedly back-tracing, starting with subset By, never
may add a pseudo-triangle that is incident to such complete vertices.

Observe that a vertex v inside V that is complete in P7T is always surrounded
by some polygonal cycle, for example by the side chains of V. Analyzing these
polygonal cycles we will see that they form a criterion that suffices to decide whether
v is ”isolated” or not.

Definition 5.1 (Encircled) Consider a pseudo-triangulation PT with edge set E.
Let V be an induced pseudo-triangle of PT . Further, let TP be a simple polygon
inside V, using only edges of E. A wvertex v is called encircled by TP if v lies in
the interior of TP and TP does not use any edge of V.

Definition 5.2 (Convex Encircled) Consider V and ZP as in Definition 5.1. A
verter v is called convex encircled by TP if v is encircled by TP and IP is conver.

Definition 5.3 (With Incompletes Encircled) Consider V and ZP as in Def-
inition 5.1. A wvertex v is called to be with incompletes encircled by TP if v is
encircled by TP and each vertex of TP is incomplete in PT .

Figure 15: A complete vertex, v, within a pseudo-triangle. Observe that v is
convex encircled with incompletes.

Later we will state a definition for a special encirculating polygon, and we will
see that asking for convex encirculation is sufficient. But in the meantime we have
to look at all possible kinds of encirculations of complete vertices in V.

Our intention is to decide, whether the area inside V but outside each polygonal
cycle that ”isolates” some complete vertex, contains 3-reducible subsets of pseudo-
triangles.
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Figure 15 shows a complete vertex, v (black dot), that is with incompletes convex
encircled by an internal polygon (bold edges). The pseudo-triangles of V\ZP (gray)
are combinatorial coplanar because the encircled complete vertex cannot ”influence”
the heights of vertices outside its convex ”prison”.

Lemma 14 Let Bgr be a subset of pseudo-triangles of a pseudo-triangulation PT,
which has exactly & height defining vertices. Further, let the polygonal region M
be the union of the members of Bgr. Consider the induced pseudo-triangle, V, of
PT that arises as outer boundary of M. Then each complete vertex of PT in the
interior of V is convex encircled with incompletes.

Proof. Assume that there exists some complete vertex, v, inside V (the lemma is
trivial, otherwise). The subset Bgr does not contain v as a vertex, because there
would exists > 4 height defining vertices for Bg, otherwise (the corners of V plus
v). Thus the polygonal region M has a hole, H, with v inside H.

If H has a reflex vertex, r, then r is a corner of M, and therefore r is a complete
vertex in Bg. So r is a fourth height defining vertex for the 3-reducibility witness
Br — a contradiction. We conclude that H is a valid (by Definition 5.1) convex
encirculation of v. Further, the hole H is with incompletes convex encircling v,
because By has only 3 height defining vertices, and complete vertices of P7T are
always height defining. O

(b) ...actually convex encircled

Figure 16: The complete vertex, v, in example (a) is with incompletes non-
convex encircled. Example (b) derives from (a) by flipping an edge. Here v
is convex encircled with incompletes.

Figure 16(a) illustrates an exemplification for complete vertices that are with
incompletes non-convex encircled. The complete vertex v (black dot) is only non-
convex encircled with incompletes by the inner polygon ZP (bold). The arrows
indicate the path of height dependence. The reflex vertex r on ZP can be back-
traced to v in one step, as v is corner of the unique pseudo-triangle where r is non-
corner. Further, r itself is corner of another two vertices’ unique pseudo-triangle,
and so on.
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Figure 16(b) derives from Figure 16(a) by flipping one edge inside the non-
convex incomplete ZP (bold dashed). Note that now v is convex encircled with
incompletes (bold) and thus ”isolated”. Therefore the subset of pseudo-triangles
(gray) between V and the (bold) convex polygon is 3-reducible.

Definition 5.4 (Component (of Polygons)) Let S be a vertez set and let P be a
set of polygons with vertices in S. Then Py, Py, € P belong to the same component of
P if they share at least 2 vertices of S. If X is a component of polygons, containing
the polygons P; ... P, then we consider X as the polygonal region Ule P;.

Lemma 15 Let V be an induced pseudo-triangle of PT all whose non-corners are
incomplete in PT . Assume that each complete vertex, v, of PT interior to V is
convez encircled by some polygon H(v). Then the subset, B, of pseudo-triangles that
forms the polygonal region V\H, has 3 height defining vertices, with H = |J H (v),
for v complete in PT.

Proof. We claim that each component of polygons, X, of H is a convex polygon. If
X equals some encirculation H(v) then X is convex by assumption. Otherwise, X
is the non-disjoint union of at least two convex encirculations. Assume the existence
of a reflex vertex, r, of X. Then r is a vertex of at least two convex encirculations.
Therefore no two consecutive edges incident to r span an angle > 7. Thus r is a
complete vertex of P7T that is not encircled — a contradiction.

We show next that each vertex of X is incomplete in the subset, B, of pseudo-
triangles forming V\H. As X is convex, each vertex w of X has its angle > 7 inside
VA\#H. As all complete vertices interior to V are convex encircled by assumption, w
has to be incomplete in P7. This implies that w is incomplete in B.

Finally, each non-corner, k, of V is incomplete in B as well, because k is in-
complete in PT by assumption. In summary, V\# has exactly 3 vertices being
complete in (respectively, height defining for) B, namely V’s corners. O

Remarks Note that each component of polygons X of H is convex with incom-
pletes encircling some vertices that are complete in PT.

Figure 17 shows an exemplification to the proof of Lemma 15. As these are
only simplified examples, not all edges of the underlying pseudo-triangulation are
shown. Black dots represent complete vertices, white dots incomplete ones. The
solid, dashed and dash-doted polygons indicate the different convex encirculations
of complete vertices.

If each encirculation of a complete vertex within some induced pseudo-triangle
is convex then each component of the union of all such convex encirculations is
convex. Further, each vertex of these components is incomplete.

Figure 17(a) illustrates an example where the two convex encirculations for v;
and vy join to one convex component. Figure 17(b) exemplifies the contradiction
construction where the component formed by the two convex encirculations of v;
and vy is not convex and therefore results (in this example) in two unencircled
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(a) (b) (c)

Figure 17: Two complete vertices (black dots), are complete encircling each
other and building a component of polygons.

complete vertices (r1, re). Figure 17(c) exemplifies how the (correct) component
for Figure 17(b) could look like.

Corollary 4 Consider V as in Lemma 15. Fach complete vertex inside V is with
incompletes convex encircled iff each such vertex is conver encircled.

Proof. Assume each complete vertex v inside V is convex encircled by some H (v).
By Lemma 15, the subset B of pseudo-triangles that forms V \ J H(v) has only
3 height defining vertices. As the 3 corners of V are height defining for B, no
additional vertex can be complete in B. Therefore each hole of the region V\|J H (v)
has to be convex with exclusively incomplete vertices on its boundary.

On the other hand, it is trivial that each with incompletes convex encircled
vertex is also convex encircled. O

Definition 5.5 (Smallest Convex Encirculation) Let S be a vertex set with
some pseudo-triangulation and let v € S be some complete vertex. Let P(v) be
the set of all convex polygons spanned by S that encircle v. Further we define for
a polygon P the function d(P) that counts the number of vertices of S that lie in
the interior of P. Then Ps(v) € P(v) is the smallest conver encirculation of v if
d(Ps(v)) < d(P;(v)), for each P;(v) € (P(v)\Ps(v)).

Definition 5.6 (Convex Inner Polygon, CZP) Consider V as in Lemma 15.
Let H(v) be the smallest conver encirculation of a vertex v that is complete in PT
and that lies inside V. Let H = |J H(v), for each vertezx v inside V that is complete
in PT. Then each component of H is called a convex inner polygon (of V).

Compare this definition for CZP’s with Lemma 15. Instead of an arbitrary
convex encircling polygon for each v, as in Lemma 15, lets take the CZP for each
v. Thereby we obtain the following corollary:

Corollary 5 Consider V as in Lemma 15. Let each complete vertex, v, inside V be
convex encircled. Then the subset, B, of pseudo-triangles that forms the polygonal
region V\|JCZP has exactly 3 height defining vertices, with | JCIP being the union
of all convez inner polygons of V.
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(a) (b) (c)

Figure 18: Using edges of V for forming an enclosing polygonal cycle (bold)
is not allowed.

Finally we want to argue, why using edges of the enclosing polygon, V, is forbid-
den for encirculations in Definition 5.1. Figure 18 shows three different examples of
what happens, when edges of V were used for encirculations of complete vertices.
Using some edge, like the bold edge in Figure 18(a), for a convex "hole”, as indi-
cated with the dotted edges, is not allowed, because the non-corners of V (square
vertices) must not become complete. Thus using such an edge leads to a non-convex
"hole” ;see Figure 18(b), which does exclude the existence of 3-reducible subsets of
pseudo-triangles inside V' \ | JCZP (see Lemmata 14 and 15 and Definition 5.6 resp.
Corollary 5).

Therefore the only way using an edge of V for a convex "hole”, partitions the
problem into two subproblems, see Figure 18(c), that can be handled separately.
Firstly, the convex "hole” itself. Secondly, the remaining, gray, induced pseudo-
triangle. An intuitive reason for prohibiting edges of V is that this will not lead to
"holes” inside V. It rather leads to cutting off a piece of V.

Figure 19: Using only vertices but no edge of V for forming an enclosing
polygonal cycle (bold) is allowed.

But remember, using only vertices of V is allowed for an encirculation of a
complete vertex. Compare Figure 19 with the three examples in Figure 18.

5.2 The updated stability property

Using the previously acquired knowledge, we are able to define a substructure of
pseudo-triangulations that contains 3-reducible subsets.

Definition 5.7 (Vicious Pseudo-Triangle) Let PT be a pseudo-triangulation.
An induced pseudo-triangle, V, of PT is called vicious if (1) there exists at least
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one vertex in the interior of V, (2) all non-corners of V are incomplete and (3) all
complete vertices internal to V are convex encircled.

Remarks The first requirement ensures that V is not a real (empty) pseudo-
triangle of P7. The second and the third requirement could be combined to a sin-
gle one: V \ |JCIP has to restrict PT to a pointed pseudo-triangulation. | JCZP
is the union of all CIP’s in the interior of V. Observe that V \ |JCZP forms an
induced punched pseudo-triangle (see Definition 6.2 on page 43).

The vicious pseudo-triangle is a structure that emerges directly from the pre-
vious sections. In Section 6 we will investigate this structures more intensive and
state a definition for maximal vicious pseudo-triangles called mazimal punched sets
(Definition 6.1).

Definition 5.8 (Combinatorial Stability) A pseudo-triangulation PT is called
combinatorial stable if no vicious pseudo-triangle of PT exists. PT is called com-
binatorial non-stable, otherwise.

Remarks This includes (the correct part of) the former stable definition, Defini-
tion 2.35, from [3]. If the interior of V (see Definition 5.7) consists of exclusively
incomplete vertices, they can be easily eliminated (along with their incident edges).
What remains is a valid pseudo-triangulation, since only objects in the interior of V
have been eliminated. Also the pointedness of all other vertices remains unchanged,
as all non-corners of V have been pointed before.

The (new) combinatorial stability can be decided by considering only the struc-
ture of the pseudo-triangulation. We do not have to know the surface for the pseu-
do-triangulation. It is not possible to directly conclude from combinatorial stability
to combinatorial projectivity. But soon we will be able to decide combinatorial pro-
jectivity using combinatorial stability and another simple condition that also derives
from the pseudo-triangulation. However, first we show that combinatorial stability
enables us to directly conclude to combinatorial coplanarity.

Theorem 5 A pseudo-triangulation, PT, contains a set of at least two combina-
torial coplanar pseudo-triangles iff PT is combinatorial non-stable.

Proof. Assume that P7 is combinatorial non-stable. By Definition 5.8, P7T then
induces a pseudo-triangle, V, that satisfies all conditions stated in Lemma 15. As V
is non-empty, there exists a subset, B, of pseudo-triangles of V, with only 3 height
defining vertices and | B|> 2. So, by Theorem 3, B is combinatorial coplanar.
Now assume that P7 contains a combinatorial coplanar subset, By, of at least
two pseudo-triangles. It follows that By is 3-reducible, by Theorem 3. Moreover,
by Lemma 12, the outer boundary, the pseudo-triangle V, of the witness Br of By
has only non-corners being incomplete in P7T. As Bpg lies inside V, V is non-empty.
Finally, by Lemma 14, each complete vertex of P7T inside V is convex encircled.
We conclude that V proves P7T to be combinatorial non-stable. O
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Lemma 16 If a pseudo-triangulation PT is combinatorial stable, then no 3-reduc-
ible edge exists within PT.

Proof. By Theorem 5, a combinatorial stable pseudo-triangulation, P7, con-
tains no combinatorial coplanar pseudo-triangles. Thus no 3-reducible subset of
pseudo-triangles of PT exists by Theorem 3, and this also excludes the existence of
3-reducible edges, see Definition 4.1. O

Lemma 17 Let V be an induced pseudo-triangle of PT that witnesses the combi-
natorial non-stability of PT. Then each edge, e, inside V that is not part of any
convex inner polygon, is a 3-reducible edge of PT .

Proof. Let H be the union of all CZP’s inside V. By Corollary 5, each subset
of pseudo-triangles of the polygonal region V\# is 3-reducible. Since e has to be
interior to V\H, e is incident to a 3-reducible set of two pseudo-triangles. Therefore
e is a 3-reducible edge, see Definition 4.1. O

Observation 12 Double-adjacencies, also the deformed type, are ruled out in a
combinatorial stable pseudo-triangulation, PT .

(a) ...classical double adjacency (b) ...deformed double adjacency

Figure 20: Double adjacencies are ruled out in combinatorial stable pseudo-
triangulations. (a) shows a classical double adjacency with two common
edges. (b) illustrates a deformed double adjacency with only one common
edge.

Proof. Assume that the two pseudo-triangles V; and V are in (deformed) double-
adjacency (sharing no, one, or two edges). As double-adjacent pseudo-triangles have
3 vertices in common, V; and V5 are combinatorial coplanar by Observation 5. By
Theorem 5, PT is combinatorial non-stable if it contains combinatorial coplanari-
ties. O

See Figure 20 for an illustration of Observation 12. Incomplete vertices are
white dots, complete vertices are black. The 3 vertices that are shared by the
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double-adjacent pseudo-triangles are labeled as a, b, and c¢. The dotted edges are
combinatorial planar respectively 3-reducible. Note that the union (bold) of the
two double-adjacent pseudo-triangles forms an induced pseudo-triangle that has
exclusively incomplete non-corners.

Theorem 6 (Projectivity Theorem) Let PT be a pseudo-triangulation. If PT
1s combinatorial stable, then PT is combinatorial projective. If PT is combinatorial
non-stable, then let {V1 ...V} be the set of all induced pseudo-triangles of PT that
witness its combinatorial non-stability. Then PT is combinatorial non-projective if
and only if there exists an edge e of PT inside some V € {V;...Vy} that lies in
the exterior of all CIP’s.

Proof. Using the previously acquired knowledge the proof follows almost immedi-
ately. By Theorem 4, P7T is combinatorial projective iff no 3-reducible edge exists.
If an edge e of PT inside some V € {V;...V,} exists, then, by Lemma 17, e is
3-reducible. Finally, Lemma 16 excludes the existence of 3-reducible edges if PT is
combinatorial stable. O

Finally, we want to update an observation from [3] that was formulated with
their stable-condition (Definition 2.35).

Observation 13 Every pointed pseudo-triangulation (with at least two pseudo-
triangles) in a polygonal region with only 8 corners is combinatorial coplanar.
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6 Appearance of Hidden Edges

So far we have provided an attribute for a pseudo-triangulation to decide its (combi-
natorial) projectivity, namely the combinatorial stability. Now we will analyze the
class of pseudo-triangulations where the former stability definition (Definition 2.35
from [3]) was insufficient. We will see that pseudo-triangulations may arise which are
not only combinatorial non-projective after an improving surface flip but also stay
combinatorial non-projective after the following trivial flip. This leaves a pseudo-
triangulation whose surface does not project back to a pseudo-triangulation any
more.

What we get, is a surface containing planar pseudo-triangles as facets that are
punched with convex non-planar holes, the so-called CZP’s from Definition 5.6. We
define:

Definition 6.1 (Maximal Punched Set) Let PT be a pseudo-triangulation. Let
M be the polygonal region V \ |JCIP, with | JCIP being the union of all convex
inner polygons of a given induced pseudo-triangle V of PT. Then M is called a
mazimal punched set if the restriction of PT to M, PT |u, is a mazimal set of
pseudo-triangles with only three height defining vertices.

Compared to Definition 5.7 (page 39) a maximal punched set is a maximal
vicious pseudo-triangle. Observe that a maximal punched set is a maximal combi-
natorial coplanar face set. The surface of such a face set projects back to a single
face that may contain holes and therefore fails to be a pseudo-triangle. Thus we
want to define a new class that is a relaxation of pseudo-triangulations and allows
pseudo-triangles with internal convex holes.

Definition 6.2 (Punched Pseudo-Triangle) A polygonal region with ezactly
three corners is called a punched pseudo-triangle.

Definition 6.3 (Punched Pseudo-Triangulation) Let R be a polygonal region.
A punched pseudo-triangulation, PT,(R), in R, is a cell complezx in R whose cells
are punched pseudo-triangles.

Comparing the definitions for punched pseudo-triangulations, pseudo-triangu-
lations (Definition 2.13) and triangulations (Definition 2.7) we see that triangu-
lations and pseudo-triangulations are also punched pseudo-triangulations, because
triangles and pseudo-triangles are punched pseudo-triangles. But observe that a
punched pseudo-triangle also permits interior convex holes.

Observation 14 A mazimal punched set, M, of a pseudo-triangulation, PT, is
an induced punched pseudo-triangle of PT. The faces of PT |y define a pointed
pseudo-triangulation.
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A maximal punched set that consists of only one pseudo-triangle is obviously
combinatorial coplanar. By comparing maximal punched sets that consist of more
than one pseudo-triangle, with the definition for combinatorial stability (Defini-
tion 5.8), we can make the following observation:

Observation 15 FEach mazimal punched set, M, of a pseudo-triangulation PT
witnesses the combinatorial non-stability of PT, provided that PT |y contains at
least two pseudo-triangles.

Remarks Note that, alternatively to Definition 5.8, we could say that a pseudo-
triangulation, P7T, is combinatorial stable if no induced punched pseudo-triangle,
V, with at least one internal vertex exists where P7T |v defines a pointed pseudo-
triangulation.

previous hidden edge

(a) ... initial triangulation (b) ... punched pseudo-triangulation  (c) ... reappeared

Figure 21: Hidden edges can reappear after improving surface flips.

Definition 6.4 (Hidden Edges) Consider a pseudo-triangulation, PT, and a
mazximal punched set, M, thereof. An edge, e, of PT is called a hidden edge if
e is an inner tangent (Definition 2.24) of M.

Hidden edges of a pseudo-triangulation, P7T, remain after a trivial flip but are
missing in the projection of the surface of P7. Nevertheless, hidden edges are
necessary to maintain a valid pseudo-triangulation.

Observe that hidden edges reappear if a flip leads back to a combinatorial pro-
jective pseudo-triangulation. See Figure 21 for an example. Figure 21(a) shows
a starting triangulation where flipping (edge-removing resp. planarizing) the two
bold edges leads to a punched pseudo-triangulation, shown in Figure 21(b). Only
if this punched pseudo-triangulation contains the hidden (dashed) edge it is also a
valid pseudo-triangulation. Flipping the bold edge in Figure 21(b) leads to a (valid)
pseudo-triangulation where the former hidden edge is not hidden any more.

Observation 16 Hidden edges are combinatorial planar.
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Proof. By Definition 6.4, each hidden edge, e, is an inner tangent of a maximal
punched set, M, of some pseudo-triangulation, P7. It is easy to see that a single
pseudo-triangle prohibits inner tangents, thus P7T |5 has to contain at least two
pseudo-triangles. By Observation 15, M witnesses the combinatorial non-stability
of PT and by Lemma 17, e is 3-reducible. Finally, Lemma 13 proves that e is
combinatorial planar. O

Remarks Combinatorial planar, respectively 3-reducible, edges are not necessarily
hidden. For example, think of two pseudo-triangles in double adjacency. They
are partitioned by two edges that are combinatorial planar but not hidden. Only
combinatorial planar edges that remain after a trivial-flip are hidden. In other
words: Combinatorial planar edges between combinatorial non-planar vertices are

hidden.

Observation 17 A pseudo-triangulation, PT, is combinatorial non-projective if
at least one hidden edge exists in PT .

Proof. By Observation 16 and Lemma 13 each hidden edge is 3-reducible. The
combinatorial non-projectivity of P7 follows by Theorem 4. O

Recall that inner tangents (Definition 2.24) of maximal punched sets are possible
hidden edges. As we know the number of inner tangents within some maximal
punched set from the number of disjoint internal convex holes, we can provide
an upper bound on the number of hidden edges used in a pseudo-triangulation
compared to the total number of convex inner polygons.

Lemma 18 There exist at most 3 x |CZP| hidden edges, where |CIP| is the number
of convex inner polygons of the pseudo-triangulation.

Proof. First recall that hidden edges are inner tangents (by Definition 6.4) of some
maximal punched set. If all CZP’s are disjoint, 3 X |CZP| inner tangents are needed
to pseudo-triangulate the maximal punched sets in a pointed way, by Lemma 7.
The number of hidden edges is reduced if some CZP’s are touching (directly
connected to) other CZP’s and/or the outer boundary of the maximal punched set
they form. In this way it is possible to replace all inner tangents (resp. hidden
edges) with CZP’s, see Figure 13 on page 31. O

Generally there may also exist additional combinatorial planar edges within
some maximal punched set that are incident to at least one combinatorial planar
vertex (see Definition 2.34). A trivial flip removes all combinatorial planar vertices
along with (some of) their incident edges. Therefore we can say, though a trivial
flip does not always delete all combinatorial planar edges, it at least minimizes their
number.
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6.1 The deformation

Definition 6.5 (Deformation, (M, PT|n)) A pseudo-triangulation, PT, con-
tains a deformation, (M, PT |x), if there exists a mazimal punched set, M, of
PT that admits at least one inner tangent. Two deformations, (My, PT |n,) and
(Ms, PT\m,), of PT are equivalent if My = M.

Remarks A deformation is characterized by the maximal punched set M and the
restriction of PT to M. By Observation 14, PT|,, defines a pointed pseudo-triangu-
lation. Two maximal punched sets (see Definition 6.1), My = V1 \ (JCZP), of PT
and My = Vo \ (UCZP)s of PTo, are equal, if Vi = V5 and (| JCZP)1 = (UCZIP)s.

Observation 18 A pseudo-triangulation that contains a deformation is combina-
torial non-projective.

Figure 22: Example for a simple deformation. A maximal punched set (bold)
with three hidden edges (dashed).

If a pseudo-triangulation, P7, contains a deformation, the projection of its
surface F(PT) is a cell complex that is no pseudo-triangulation any more, but a
punched pseudo-triangulation. See Figure 22 for an example. The projection of the
surface of this pseudo-triangulation does not yield the hidden edges (dashed), and
the combinatorial coplanar pseudo-triangles (gray) form a punched pseudo-triangle.

A deformation may evolve by applying a sequence of improving surface flips
(and trivial flips) to an initial surface for a given (pseudo-)triangulation. As our
surface flips are defined for pseudo-triangulations only, this is an undesirable effect.
To reach the maximal locally convex surface, a continuous sequence of improving
surface flips has to be guaranteed.

Figure 23 displays the three different possible cases that may occur in one im-
proving surface flip. The starting (pseudo-)triangulation P7 is assumed to be
combinatorial projective. In case (a), an improving surface flip results in another
combinatorial projective pseudo-triangulation, P7". Thus the following trivial flip
does nothing (respectively is not necessary). The improving surface flip in case (b)

46



PT =5 PT = PT"
(a) comb. projective comb. projective
(b) comb. non-projective comb. projective
comb. non-projective comb. non-projective
(c) (3 deformation) (3 hidden edge)
ISF ... improving surface flip TF ... trivial flip

Figure 23: The three cases of an improving surface flip.

leads to a combinatorial non-projective pseudo-triangulation, P7". After the follow-
ing trivial flip, the final pseudo-triangulation P7" is again combinatorial projective.
Observe that the conclusion from the stability definition from [3] (Definition 2.35)
to combinatorial projectivity is correct for the cases (a) and (b).

The last case (c), is exactly the case where this stability definition fails to be
the correct condition for combinatorial projectivity. Now the improving surface flip
leads to a pseudo-triangulation P7" that is not only combinatorial non-projective
but also contains a deformation. Therefore, the following trivial flip can only min-
imize the number of combinatorial planar edges, but is not able to completely
eliminate them. The consequence is that within the resulting pseudo-triangula-
tion PT" so-called hidden edges (Definition 6.4) remain. And this leaves also PT"
combinatorial non-projective.

(b) ... PT @ ... PT"
Figure 24: Example of the 2 phases of a deformation creation.

Note that the existence of hidden edges implicates the existence of deformations,
whereas the existence of deformations does not necessarily imply the existence of
hidden edges. Figure 24 exemplifies this instance. Figure 24(a) shows a pseudo-tri-
angulation, where a deformation is prevented by the complete vertex v. Flipping
edge e we get the pseudo-triangulation, P7T" (compare with Figure 23), shown in
Figure 24(b), where v is now incomplete. The maximal punched set, displayed with
bold edges, restricts P’ to a pointed pseudo-triangulation, whose faces (gray) are
combinatorial coplanar. Observe that there exists no single hidden edge in P7".
Figure 24(c) shows the pseudo-triangulation, P7T", after the trivial flip that deletes
all combinatorial planar vertices (including v) and thereby minimizes the number of
combinatorial planar edges. The remaining combinatorial planar edges are hidden
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edges (dashed) that pointed pseudo-triangulate the maximal punched set (bold).
Note that there exist 6 possible hidden edges per CZP, by Lemma 5. Figure 24(c)
shows only one possible combination of hidden edges.

Examining the relationship of deformations with CZP’s, we can state another
observation:

Observation 19 Let PT be a pseudo-triangulation. If there exists no CLP in PT,
then PT contains no deformation, (M, PT|u).

Proof. By Definition 6.5, M must contain at least one inner tangent. If there
exists no CZP, then each maximal punched set M is a pseudo-triangle. But there
exists no inner tangent in the interior of a pseudo-triangle. a

The previously mentioned hidden edges (Definition 6.4) provide an ancillary
tool to handle the undesired case, when deformations arise. Using hidden edges,
the punched pseudo-triangulation turns into a pseudo-triangulation, and thus the
improving surface flips are again applicable.

6.2 Leaving deformations

To find a way out of a deformation, (M, PT|u), it is sufficient to look at the convex
inner polygons, | JCZP, that form the maximal punched set, M = V\|JCZP, along
with the induced pseudo-triangle, V. Nevertheless, we will also take a quick look at
V and also at the edges that form the pointed pseudo-triangulation, PT |, to show
that concentrating on the CZP’s is not only sufficient, but also the only reliable way
to leave a deformation.

Keep in mind that we now operate with a pseudo-triangulation that contains
at least one deformation and hidden edges after a trivial flip. In Figure 23, this
pseudo-triangulation is marked as P7".

Observation 20 The hidden edges cannot be flipped by improving surface flips.
Proof. Applying improving surface flips to hidden edges is prohibited by Defini-
tion 2.37. O
Remarks Note that flipping hidden edges (as it is allowed during trivial flips) is
only possible by edge-exchanging flips and results in other hidden edges.

Observation 21 Let (M, PT|u) be a deformation in a pseudo-triangulation PT,
where M is a mazimal punched set with outer boundary V. Destroying (M, PT|u)
by flipping a reflex edge of V is only possible by applying an edge-exchanging flip
and may result in other deformations.

Proof. The requirement of reflex edges is obvious for improving flips (Defini-
tion 2.37). It is also easy to see that an edge-removing flip will only lead to a bigger
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Figure 25: An edge-exchanging flip on the outer boundary of a maximal
punched set of a deformation may result in creating other deformations.

outer boundary, since edge-removing flips merge two pseudo-triangles to one. Fur-
ther, as an edge-exchanging flip changes V, it destroys M and thereby the actual
deformation. But, as exemplified in Figure 25, it may happen that this creates
other deformations. O

We showed that destroying a deformation by flipping hidden edges is not allowed,
and that flipping edges of the outer boundary of a maximal punched set forming
the deformation is not always possible. Even if it is possible, it is not guaranteed to
result in a deformation-free pseudo-triangulation (even if the destroyed deformation
was the only one). In Figure 25 the actual deformation is destroyed by flipping
edge e, of the outer boundary of the maximal punched set (shown bold), to edge
e’. The new edge €’ splits the old induced pseudo-triangle into two new ones, each
containing a CZP and forming an outer boundary of a new maximal set. Thus,
two new deformations were created by e’, as deformations are equivalent if their
maximal punched sets are the same (Definition 6.5).

As mentioned before, we will now show that it is always possible to destroy
the CZP’s in a pseudo-triangulation with deformations, thereby also destroying
the deformations themselves. We accomplish this in two steps: At first we show
that it is possible to destroy a single CZP by application of improving surface flips
(along with trivial flips). Next we prove that we can destroy all CIP’s with a finite
sequence of flips, even though it is possible that destroying a CZP results in other
ones.

Lemma 19 [t is always possible to destroy a convex inner polygon within a defor-
mation by application of (a finite number of) improving surface flips (and trivial

flips).

Proof. Assume that P7T is a pseudo-triangulation in some polygonal region R.
Further let CZP be a convex inner polygon within a deformation in P7. We prove
that CZP can be destroyed by application of a finite number of improving and
trivial surface flips. There exist two cases:

(1) Suppose that at least one edge of CZP is reflex. Then this edge can be
flipped which destroys the CZP.
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(2) Now assume that all edges of CZP are convex: As each vertex of CIP
has at least one incident reflex edge (see Lemma 9) and the exterior of CZP is
combinatorial coplanar, the reflex edges exist in the interior of CZP. As all vertices
of CZ'P are incomplete in PT|g\czp, flipping in the interior of CZP does not change
the heights of those vertices. On the other hand, all vertices of CZP are complete in
PT |czp, because CZP is convex. So flipping in the interior of CZP cannot change
their heights in any surface defined by CZP alone. Thus improving surface flips in
the interior of CZP can convexify the part of the surface for P7 that lies inside
CIP, F|czp, by the Optimality Theorem (Theorem 2). Convexifying the interior
of CITP leads to one of two possible results:

(a) The convexified surface F'|czp is planar: In this case a trivial flip removes
all vertices interior to CZP, in particular, all previously complete vertices. Thereby
CIP is destroyed.

(b) The convexified surface F|czp is strictly convex: Now CZP has to have reflex
edges and can be destroyed as in case (1).

Finally, the number of flips used is finite by Theorem 2. O

Theorem 7 Let PT be a pseudo-triangulation containing deformations. It is al-
ways possible to find a finite sequence of improving surface flips and trivial flips for
PT that leads back to a deformation-free pseudo-triangulation, PT", using hidden
edges for maintaining pseudo-triangular cell complexes during flipping.

Proof. Let (M, PT|u) be a fixed deformation of P7T. Let V be the outer boundary
of M. We show: improving flipping that destroys (M, PT ) is possible, without
changing P7T in the exterior of V.

By Lemma 19, it is possible to destroy a single convex inner polygon with a
finite number of improving surface flips (including trivial flips).

Doing so it is possible to create additional CZP’s in the (former) interior of the
destroyed CZP. In this case, the additional CZP’s encircle at least one complete
vertex less than the destroyed CZP did, because a CZP is a smallest convex encircu-
lation (Definition 5.5). Thus either at least one complete vertex is now unencircled
or at least one complete vertex turned incomplete (or was removed). In the first
case, the deformation that contained the destroyed CZP, has been destroyed, by
Definition 6.1 and Definition 6.5. In the second case, we can delete the additionally
created CZP’s with a finite sequence of flips (Lemma 19). As we ”loose” at least
one complete vertex for each destroyed CZP, only a finite number of additional
CZIP’s can be created and thus the number of applied improving surface flips and
trivial flips stays finite.

The creation of an additional CZP is also possible in the (former) exterior of
the destroyed CZP. In this case, the new and ”bigger” CZP may encircle each
complete vertex that was encircled by the destroyed CZP. Fortunately, this new
CIP can only be created by using hidden edges as edges of the new CZP and/or by
merging with other CZP’s. When merging with other CZP’s, the number of CZP’s
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is reduced by at least 1, as no other CIP’s emerge in exchange. When using hidden
edges to save the CZP, some hidden edges become edges of the boundary of this
CIP and therefore are not hidden any more. As no additional hidden edges arise
this way, the number of hidden edges is also reduced by at least 1. Thus in both
cases the number of flips again is finite, as both hidden edges and CZP’s only exist
in a finite number. O

6.3 Bypassing deformations

We just found a way to handle deformations of pseudo-triangulations using hidden
edges. But hidden edges are only ancillary edges that do not really exist in the
projection of a surface. Thus using hidden edges is no elegant approach. It would
be better if we will not have to use them, thereby never reaching a pseudo-triangu-
lation containing deformations. If we could show that we can always avoid creating
deformations, we could guarantee flipping sequences to the optimal surface using
only improving and trivial surface flips.

To accomplish this, it is sufficient to show that we can find a flipping sequence to
avoid a particular deformation we were right about to create. To find a way around
a deformation, we have to first identify the edges that create the deformation and
then find other reflex edges beside the undesired ones.

Suppose flipping the reflex edge e results in a deformation and in the case of an
edge-exchanging flip in the edge €’. Of what types are e and €'?

Lemma 20 Flipping e to €' creates a deformation (M, PT |u) if € is an edge of
M or the removal of e leads to a pointed pseudo-triangulation PT |-

Figure 26: The different edge categories for creating a deformation.

Proof. Since the deformation did not exist before the flip, either the new edge €’
has to be part of it or the flipped edge e was preventing it. The partitioning into
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these cases (see Figure 26 for examples) follows directly from Definition 6.5 (and
Definition 6.1). O

Figure 26 shows examples of flips that can create a deformation. Figure 26(a)
exemplifies the creation of the maximal punched set M. If the edge es has already
been removed this can be achieved by either flipping edge e; to e} (if e has already
been flipped to €),) or by flipping edge ey to €} (if e; has already been flipped to
e]). The edge e3 keeps the vertex v; complete, thus an edge-removing flip of e
would also create a deformation (if edges e; and e; have already been flipped to
e} and é€}). Figure 26(b) shows another version for creating a deformation with an
edge-removing flip. Flipping either edge e, or edge ey, turns the vertex v, from
complete to incomplete, and thus the restriction of the pseudo-triangulation to the
maximal punched set is a pointed pseudo-triangulation.

Lemma 21 Suppose that flipping edge e creates a deformation, (M, PT|n). Then
not flipping at most three edges, namely e and at most two other edges, forever
prevents (M, PT|u).

Figure 27: Three edges keep a vertex complete.

Proof. By Lemma 20, we can divide the proof into two parts:

(1) Assume e flips to edge e’ of M. If €’ crosses e, then M is obviously prevented
forever if e will not be flipped. If ¢ has one endpoint, v, in common with e, then
v is non-corner of M. The simultaneous existence of e and € makes v non-pointed
by Lemma 2 and therefore PT |, can never be a pointed pseudo-triangulation. By
Definition 6.5, this prevents (M, PT|y) forever. Observe, that the common vertex
v cannot be a corner of M, because in this case the deformation already would have
existed before.

(2) Assume e was preventing PT|y from being pointed. This means, the edge-
removing flip applied to e makes one non-pointed vertex, v, pointed. The vertex v
is either a vertex of M or in the interior of M. If v is a vertex of M, then v is kept
non-pointed by either e alone or a potential flipping pair (Definition 2.23) e and ¢’
Therefore not flipping e and possibly e’ prevents the deformation forever.

If v lies in the interior of M, then exactly three edges, e, ¢’ and ¢€”, suffice to
keep v non-pointed, see Figure 27 for an example. The edges e’ and e” are the
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previous respectively next edge of e incident to v. This means that there lie no
additional edges between €' and e respectively between e and e” but there may
exist an arbitrary number of edges between e” and e’. The angle between e’ and
e, within which the edge e lies, has to be greater than m, because v would not be
pointed without e, otherwise. Thus the opposite angle between e’ and e is smaller
than 7. Furthermore, also the angles between e and €', and e and €” have to be
smaller than 7, as v is non-pointed with e. Therefore not flipping any of the three
edges, e, ¢’ and €”, prevents (M, PT|y) forever. O

Lemma 22 If flipping edge e creates a deformation, there must exist other reflex
edges beside e that are flipable without creating any deformation.

Proof. We assume that the deformation (M, PT |y) and the associated CZP’s
arise after flipping edge e. By Lemma 20, the edge e either flips to an edge €’ that is
an edge of M or e is removed by the flip and PT| becomes a pointed pseudo-tri-
angulation. As M counsists of an induced pseudo-triangle V and various CZP’s (see
Definition 6.1) we get three different cases: (1) the construction of V, (2) making
PT|a a pointed pseudo-triangulation and (3) the construction of a CZP.

Case (1) and (2): In both cases each CZP interior to V already exists. We claim
that at least one CZP has a reflex edge on its boundary or in its interior, before
the flip. Assume the contrary. Then, for each CZP, the surface above CZP and its
adjacent faces of P7T is convex. On the other hand, as a deformation arises after
the flip, the CZ’P’s were either surrounded by a pseudo-quadrilateral (case (1)) or V
already existed with an additional 4™ height defining vertex in its interior (case (2)).
Either way, the height of a single additional height defining vertex cannot force all
edges of CZP to be convex.

So there exists a reflex edge (a) in the interior of CZP or (b) on the boundary
of CZP. In case (a), we try to flip this edge. If this causes no new deformation (in
the interior of CIP) we are done. Otherwise, we solve the problem recursively. In
case (b), flipping the boundary edge of CIP is save: All vertices inside CIP are
complete, as incomplete vertices have to be incident to reflex edges, and case (a)
would have occurred. Flipping an edge of CZP destroys it and at least one complete
vertex within the former CZP becomes an additional height defining vertex within
V.

Case (3): The deformation is constructed by closing a CZP. A CZP has at least
3 vertices. Each of them is incomplete, and at least one vertex, v, has to lie in the
interior of V and is not incident to edge e.

Flipping any reflex edge incident to v (which has to exist by Lemma 9) is either
save or it causes a new deformation. But this cannot happen by closing another
CIP, as there exists at least one additional height defining vertex within V (more
specifically, within the CZP to-be). Therefore such a new deformation can only be
created if the flip closes a new induced pseudo-triangle within V (that contains at
least one CZP). But this subproblem can be solved recursively as in case (1). O
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Corollary 6 If the edge e is the only remaining reflex edge, it is not possible that
flipping e will create a deformation.

Proof. This follows directly from Lemma 22. There always exist safely flipable
reflex edges, if flipping e would create a deformation. Therefore a deformation
cannot arise, if e is the only reflex edge left. a

Theorem 8 It is always possible to find a sequence of improving surface flips (in-
cluding the trivial flip), to reach the optimal surface without ever creating a defor-
mation.

Proof. This is a immediate consequence of Lemma 22. O
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7 Summary

7.1 Application of theory

As mentioned in the introduction (page 1), from preliminary work of this thesis a
computer program to calculate and represent a surface from a pseudo-triangulation
exists. Further this program allows flipping by clicking to reach the optimal surface
(see Definition 2.42). As it was not clear how to treat planar edges of the surface,
the program did not flip to the optimum with an arbitrary flipping sequence.

Using the newly achieved insight we were able to update the program. We
adapted the trivial flip (see Definition 2.40) with respect to the new theory and used
the hidden edges (see Definition 6.4) to maintain pseudo-triangular cell complexes.
Using the updated program we constructed some examples of surfaces that are
displayed in the appendix (page 57ff).

In Appendix A we will exemplify a complete sequence of ”flipping to optimality”,
in Figures 28..31. We start with a triangulation (first row of images in Figure 28)
and apply improving surface flips (Definition 2.37), until the optimal surface is
reached (see Theorem 2 on this). A step in the flipping sequence is made up of an
improving surface flip followed by a trivial flip. There are three columns for each
step; column (a) displays the 2D-view (the pseudo-triangulation) and the columns
(b) and (c) display the surface in 3D-view from different angles. After 15 flips the
maximal locally convex surface is reached (last row in Figure 31).

Appendix B exemplifies another surface. During the represented sequence of
improving flips, there emerge deformations (Definition 6.5) in this surface. As in
Appendix A we show three different views of the surface per step. But this time we
do not display the complete sequence (each step). We only show the most important
respectively interesting steps. The initial triangulation is shown in the first row of
Figure 32. After 6 improving surface flips the first deformation arises, see the second
row of Figure 32. Another ("smaller”) deformation arises after the 9" flip, shown
in the last row of Figure 32. The first two rows in Figure 33 show the destruction
of the ”smaller” deformation after the 12" flip, and then the surface after the 16
flip. Finally the last two rows in Figure 33 represent the last deformation after the
21! flip and the optimal surface that has been reached after a total of 24 improving
surface flips.

7.2 Conclusion

The goal of this work was to ”repair” the stability condition for pseudo-triangu-
lations from [3]. We investigated the mechanisms of coplanarity and introduced a
new concept, the 3-reducibility. We demonstrated how to use the 3-reducibility to
detect combinatorial coplanar face sets. We described the interrelationship between
3-reducibility and combinatorial projectivity and stated a new condition for pseu-
do-triangulations, the combinatorial stability. Using 3-reducibility we were able to
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prove that the combinatorial projectivity of a pseudo-triangulation can be decided
with the new combinatorial stability condition.

Further, we exemplified that, starting with arbitrary triangular surfaces, im-
provident flipping may lead to surfaces which do not project to pseudo-triangular
cell complexes. According to this circumstance we proved that there always exist
sequences of improving (and trivial) flips that avoid leaving the class of pseudo-tri-
angulations when flipping to optimality.

7.3 Future Work

We introduced the new concept of combinatorial stability for pseudo-triangulations.
Nevertheless, it remains to find an efficient algorithm to decide combinatorial sta-
bility respectively combinatorial projectivity of pseudo-triangulations.

In [3] flipping algorithms are provided to prove a quadratic upper bound for the
length of flipping sequences to optimality for convex underlying domains as well as
vertex empty simple polygons as underlying domain. Those algorithms might be
adapted to bypass deformations. Moreover, the effect of the existence of punched
pseudo-triangulations on the flip distance to optimality should be investigated. Also
the flip distance to optimality of arbitrary polygonal regions is still unknown, see [3].

In this thesis, a new type of cell complex, the punched pseudo-triangulation, has
been introduced. Punched pseudo-triangulations are relaxations of pseudo-triangu-
lations, but in contrast to pseudo-triangulations, flipping is not defined for punched
pseudo-triangulations up to now. When executing an edge-exchanging flip, as de-
fined for pseudo-triangulations, within two punched pseudo-triangles, the new edge,
defined by a geodesic, may cross holes of the punched pseudo-triangles. Thereby
a flip within two punched pseudo-triangles may result into several new (punched)
pseudo-triangles, depending on the number of holes crossed by the geodesic. We
plan to elaborate on how to perform this flip in a unique way.

Punched pseudo-triangles are polygonal regions with exactly three corners. The
possibility of holes in such regions has certain relations to the fact that pseudo-
simplices in three-space may contain tunnels, see [6]. We believe that a thor-
ough study of pseudo-triangulations will shed additional light into the class of
”triangulation-relaxing” cell complexes.
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A Flip Sequence to Optimum

(a) ... 2D (b) ... 3D, view 1 (c) ... 3D, view 2

Figure 28: Improving surface flip sequence to optimum, 01/04.
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(a) ... 2D . 3D, view 1 . 3D, view 2

X N
=5 A
=5 A
= 2 A

Figure 29: Improving surface flip sequence to optimum, 02/04.

o8



(a) .. . 3D, view 1 . 3D, view 2

X TN
=X A
2= A
2%

Figure 30: Improving surface flip sequence to optimum, 03/04.
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(a) ... 2D . 3D, view 1 . 3D, view 2

2L
B %
2SR
N A

Figure 31: Improving surface flip sequence to optimum, 04/04.
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B Surface Examples with Deformation

. 3D, view 1 (c) ... 3D, view 2

@%ﬂi
[
o

Figure 32: Example surface with deformation during flipping to optimum,
01/02.
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. 3D, view 1 (c) ... 3D, view 2

s o
- [T
LV~
==

Figure 33: Example surface with deformation during flipping to optimum,
02/02.
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