
Playing Nine Men’s Morris with the Humanoid Robot Nao

Sven Bock, Roland Klöbl, Thomas Hackl, Oswin Aichholzer and Gerald Steinbauer

Abstract— Playing games is an important aspect in human
life in order to develop skills or in terms of entertainment.
Games also play a major role in research such as Artificial
Intelligence and Robotics. In this paper we present an approach
to enable the humanoid robot Nao to play a board game against
a human opponent. We discuss the challenges that arise by
the task of playing a board game with a humanoid robot,
provide solutions for the Nao, and, introduce our proof-of-
concept implementation for the board game Nine Men’s Morris.
Finally, we will present a first experimental evaluation of the
approach. The main contribution of this paper is the integration
of various techniques into one real robot system, enabling it to
manage a complex task such as playing a board game.

I. INTRODUCTION

Games play an important role ever since the beginning of

mankind. Apart from their obvious purpose of entertainment

games usually touch other interesting aspects like exploring

strategies and comparing skills with each other. Games

have already been introduced within education in order to

ease learning processes or developing certain skills. Playing

games also plays an important role in Artificial Intelligence

(AI) and Robotics. When it comes to Artificial Intelligence

the major task concerning playing games is to find efficient

algorithms to solve a game, whereas in the field of Robotics

usually the physical act of playing and the interaction with

the environment is the major issue.

A main goal of our research is to fruitfully combine

diverse fields such as game theory, advanced search ap-

proaches, computer vision and mobile manipulation. In ear-

lier work [1] we already developed an artificial robot oppo-

nent that successfully played the board game Pylos against

humans. In the current paper we present an implementation

for the humanoid robot Nao in order to allow a more

appealing and more general game play between humans and

robots. The approach presented in this paper is able to master

the challenges of playing a board game with the Nao like 3D

perception and mobile navigation for a currently simplified

setup. In the paper we present a prototype implementation

for the game Nine Men’s Morris. This first proof-of-concept

implementation integrates various techniques into a real robot

system in order to manage playing a board game with a

humanoid robot. Such an integration is hardly seen and is

the key contribution of this paper.

II. GAME SETUP

Nine Men’s Morris is a two player strategy board game. In

Europe it is very popular under the name Mill(s). As a robot

we use a standard Aldebaran Nao with actuated fingers.

The authors are with the Institute for Software Technology, Graz Univer-
sity of Technology, Graz, Austria. {thackl,oaich,steinbauer}@ist.tugraz.at

23

21 3

10 119

17 18

24 20
8 16 4

22 21

15 14

7 6 5

19

12

13

Fig. 1: Game Board and Situation from Nine Men’s Morris.

The numbers represent the abstract strategic positions.

In a nutshell, both players own nine tokens which are

placed on 24 spots on the board. Fig. 1 shows the board

and a typical game situation. The tokens of the two players

are distinguished by their color. Tokens may only be placed

at corners and intersections on the board. There is at most

one token per spot allowed. The game has 3 phases, placing

the tokens, moving the tokens to neighboring spots on the

lines, and jumping (i.e., moving a token to any free spot).

If a player gets three tokens of his/her color in a straight

row, he/she can remove one token from the opponent. The

objective of the game is to leave the opponent with fewer

than three tokens, or in a position where no more legal moves

are possible. Especially the three different phases of the game

require quite different strategies and make it a challenge to

determine the best move.

Colored Tokens

Humanoid Robot Player

Game Board with Net

AR Marker

Table

Fig. 2: Game Setup from Nine Men’s Morris.

In order to play the game with the Nao, we build up

the physical game setup shown in Fig. 2. The setup is a

compromise between limitations imposed by the robot, e.g.

range of the arms, and an attractive setup for a human player,

e.g. appearance and haptics. In order to allow a maximum

reach of the arms the game board with a size of 34 cm

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

58

× 34 cm is placed on a table with a height of 22.7 cm.

An elevated AR marker is placed in the center of the board

to compensate the accuracy for the missing gyroscope in

the horizontal plane. In order to allow a reliable grasping,

the tokens are cubes up to a side length of 3 cm, made

of modelling clay. Moreover, the tokens are colored clearly

differently in red and yellow for a clear identification by the

vision system, even in poor lighting conditions.

III. GAME PLAYING

Fig. 3 shows an overview of the architecture we used to

play a a board game with the Nao.

��������	��

A	�B�C�D�E�F�����E

���	����E�����

��B�D	����

�
E�
�
�
�
�

�
�
�
�
�
�
����B�D	�����������

�������	��

���E������E

����	� ��!"���	���

���E������E�#�$�

%�����&�������

'�&��������

�
�
��
�
�
�	
�
�

F
�
�
�
�
�
�
�

���	���F�������

!
�
�
�
�
��
(

)�	���%��E��

F������"������

*���+��������	��

Fig. 3: System Overview. Solid connections depict flow of

data. Dashed connections represents flow of commands.

In the following sections we will describe the individual

modules in more detail. For the implementation we use the

Robot Operating System (ROS) and NaoQi robot interface.

A. Perception

The main sensors to perceive the environment, besides the

odometry, are the two cameras in the head. Unfortunately,

stereo vision is not possible because the cameras do not

have an overlapping region. The perception recognizes an

AR marker and other features in the image that are used

for localization. The result of the perception is an abstract

discrete game state that consists of 24 strategic positions

(see Fig. 1). Additionally there is an ideal and a real position

saved for each token. Ideal positions correspond the strategic

positions in torso coordinates (for placing) on the real game

board, while real positions hold the information, where

tokens are really located (for grapsing).

Marker and Coordinate Frames: Due to the close

distance of the robot to the board only a part of it is visible

at the time. This complicates the localization of the robot.

As a result we use an AR marker of 70 mm side length

in the center of the board. The transformation between the

marker and the robot’s camera is determined using the AR

toolkit1 and the ROS wrapper ar pose2. The marker is 12 mm

elevated from the board to reduce occlusion problems when

1http://www.hitl.washington.edu/artoolkit/
2http://www.ros.org/wiki/ar pose

tokens are close to the marker. The transformation is used to

localize the robot and is fused into the world model together

with other sensor information.

Visual Odometry: The robot Nao neither has a gyroscope

for the upright z-axis nor does it provide reliable odometry

due to slip during walking. In order to minimize the angular

error we use visual odometry. This supports the estimation

of rotations by calculating the horizontal angle difference

of images. During the estimation, the z-axis of the torso is

vertical to reduce the rotation to one angle. First a key point

detector is applied to find interesting points in each image.

Afterwards SURF descriptors [2] are computed of both

images. This descriptor has been used because it combined

the robustness and speed that is required to solve this task.

Then matches between both images are computed using a

”radiusMatch”-function that finds matches for descriptors in

a given distance. The offset of the matches in pixel in the

horizontal x-axis is used to determine the rotation of the

robot.

Calibration and Blob Detection: The colors of the tokens

are initialized at startup using the median of the colors at the

area around the strategic positions 15 (first player’s color)

and 13 (second player’s color). Using blob detection and

morphological operations, a binary image of token candidates

is generated.

Token Classification: The task of the classification is to

validate the detected color blobs, to assign valid tokens to

strategic positions and to compute the real 3d positions of the

tokens. This is done by rectifying and rotating the binarized

image to fit defined masks. These masks are polygonal areas

around the ideal positions on the game board (see Fig. 4b).

They are used to determine if a token was validly placed

and to assign it to the corresponding strategic position. The

four point correspondences, required for the rectification, are

chosen around the focus point of the camera in the system

of the game board. After the pixel positions of all points in

the camera image are computed, the image can be rectified

using a perspective transform according to [3].

The result of the rectification procedure is visualized in

Fig. 4b.

Conflicts on the board are detected if more than one token

of any color lies in one mask. Fig. 5a depicts such a situation.

Such conflicts occur, if tokens are placed carelessly or the

robot fails to place a token correctly. In such cases there

exists no clear mapping to the abstract game state. Therefore,

the real 3d positions of tokens are saved and the high-level

control is informed about conflicts on the board. A strategy

to repair conflicts is described in Section III-D.

B. World Model

The world model stores sensor data, the board occupation,

and token positions. Furthermore, it fuses different sensor

data to achieve an improved localization and broadcasts all

necessary transformations, e.g. torso to board. The transfor-

mation obtained from the AR marker detection is used as

absolute localization of the torso w.r.t. the game board. If

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

59

(a) Camera image,
where the focus point
is surrounded by 4
rectangular points

(b) Rectified image with
masks and detected tokens.

Fig. 4: Image rectification. The green points are the 4 point

correspondences to the blue points to compute the projective

transformation. The points are selected around the focus

point of the camera a few mm above the board plane.

the marker is not detected, the robot’s odometry and visual

odometry are used to track the robot’s position.

At each start of a game turn, the robot has to reconsider

the complete board. It starts iterating through all strategic

positions, updating multiple of them at once, where the

majority of their mask is visible.

C. Mobile Manipulation

The task of placing and taking tokens can be seen as a

mobile manipulation. Because of the limited range of the

robot, we use the simplified setup presented in Section II.

For the grasping of tokens we assume the pre-defined pre-

grasp position shown in Figure 5b. It is defined by the x

and y position of the token (taking a token) or the target

position (putting a token) on the game board, a given height

of 3 cm above the board, and a given pitch of the forearm

of 25 ◦. These positions originate from the fact that the Nao

has an rotational wrist and fingers with one DOF. We solve

the grasping problem only for one board side and simply

transform the results to the three remaining sides, assuming

the robot always stands perpendicular to the board.

(a) Conflict situation. (b) Pre-grasp position for
tokens.

Fig. 5: Token perception and manipulation.

The assumption that the robot stands always on an even

surface and that both feet are always parallel allows us to

decompose the complex manipulation planning into three

simpler parts that can be handled separately. The three parts

comprise of (1) selection of a suitable robot position and

walking to it, (2) selection of a suitable torso posture, and

(3) planning the arm movement to the pre-grasp position.

Dealing with the complete kinematic model of the Nao

with 25 joints is very complex for the task. Using the above

decomposition, the problem reduces itself to two simple

kinematic problems. One problem is the inverse kinematics

of the torso posture with only 5 joints assuming the mirroring

of the joint angles between the two feet. The other problem

is the inverse kinematics for the pre-grasp position starting

in the shoulder joint featuring 5 joints as well.

The planning for the mobile manipulation comprises an

off-line and an on-line stage. The off-line stage iterates over

a grid with robot positions and a set of torso postures. It

marks a grid cell with 1 if there is the possibility to grasp

a token at a given position from the cell center and with

0 otherwise. The result of this calculation for the left arm

depicted in Fig. 6b. We have to calculate and store the grid

only once for the grasp position {xgp = 0, ygp = 0} and one

board side as we can later translate it to the actual grasping

position and rotate it for the other board sides. Moreover, we

simply mirror the resulting grid to get the results for both

hands. A function solvableIK (x, y, h, φ, xpg , ypg) checks

if the pre-grasp position {xpg , ypg} is reachable for a given

robot position {x, y} and a given torso posture {h, φ}. The

variables h and φ denote the height of the center of the torso

and the pitch of the torso, respectively.

(a) Game
board
obstacle
grid.

(b) Entire
workspace
for the left
arm

(c)
Combined
workspace

(d)
Distance
transform

Fig. 6: The figures show the grid evolving steps. Invalid

positions are colored in black. All figures are shown from

an overhead perspective. Fig. 6a depicts the obstacle mask

representing the table.The white areas are possible because

the robot may bend its knees under the table. Fig. 6b shows

the entire workspace of the robot. Fig. 6c depicts the overlay

of workspace and obstacle mask. Fig. 6d shows the distance

transform performed on the overlay. The white the pixel is

shown in this grayscale image, the farther away are all invalid

torso positions. The green cross depicts the desired pre-grasp

position. The robot stays orthogonal to the table.

The on-line stage is shown in Algorithm 1. The algorithm

uses a desired grasp position, the grasp position and obstacle

grid, and the information which hand to use as input. It

guides the robot to a position and posture that allows the

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

60

robot to grasp a token at the desired position. First the

algorithm selects the board side that minimizes the requested

walking. Then the grasp and obstacle grids are transformed to

the requested grasp position and the selected board side. The

intersection of these two grids provides robot positions from

which the desired grasp can be reached without colliding

with the table. An example for such a grid is shown in

Fig. 6c. The target robot position is selected from a distance

transformation of the combined grid. The distances reflect the

smallest distance to a neighboring cell where the robot is not

able to grasp the token. Fig. 6d depicts this transformation.

Selecting the maximum yields a high possibility that the

robot is still able to grasp even if the robot does not reach

the position exactly due to shortcomings in the navigation.

Once the robot finished its path it checks if the robot is

able to grasp the token from the actual position. If this is

not the case, again a target position is selected and a path is

calculated. Once the robot reached a position where it is able

to reach the pre-grasp position it selects the torso posture {h,

φ} that can reach the position and maximizes an objective

function (line 17). Usually, we use a higher value for α than

for β in order to prefer higher torso positions (better camera

view on the board) over a mostly upright position (more

stable posture).

Algorithm 1: reachPreGraspPosture

input: {xpg , ypg} ... desired pre-grasp position
RGP ... robot grasp position grid
GBO ... game board obstacle grid
hand ... which hand to use

side ← selectSide(xpg ,ypg ,hand)1

TRGP ← transGraspGrid(RGP ,side ,xpg ,ypg)2

TGBO ← transObstacleGrid(GBO ,side ,xpg ,ypg)3

CG ← TRGP ∩ TGBO4

DCG ← calcDistanceGrid(CG)5

{xr, yr} ← argmax{x,y}DCG[x, y]6

{x0, y0} ← getRobotPosition()7

p ← planPath(x0,y0,xr ,yr)8

executePath(p)9

{x1, y1} ← getRobotPosition()10

while CG[x1]][y1] = 0 do11

{xr, yr} ← argmax{x,y}DCG[x, y]12

p ← planPath(x1,y1,xr ,yr)13

executePath(p)14

{x1, y1} ← getRobotPosition()15

end16

{hr, φr} ←17

argmax{h,φ|solvableIK(x1,y1,h,φ,xgp,ygp)}α · h+ β|π − φ|

moveTorso(h,φ)18

moveArm(h,φ,xgp,ygp)19

D. High Level Control

The high-level control is represented by the state machine

shown in Figure 7. Transitions are triggered by events. The

state machine invokes behaviors according to its actual state.

The state machine comprises the following states:

• init initially localizes the robot, calibrates the color, and

asks the user for game information if a saved game is

continued.

• get game state acquires the current game state.

• get next move requests the next move from the

database, based on the current game state.

• execute moves executes the selected move.

• wait for player waits for the user finishing her move.

• finished either one of the players won or the user

aborted the game by touching the robot’s head.

• help an error occurred during execution. The robot waits

for a human to resolve the problem.

����

���������	����

������A���BC�

�A�DE����BC�	

F�����B��������

����

����	���

���

����

��������E��������	���B�
������C�������C�������	���B�
�����E	������C�������	���B�
��������B�����C�������	���B�

Fig. 7: Main state machine.

Achieving the different subtasks incorporates sending re-

quests to the planners as well as communication with the

game engine.

E. Behavior Execution

The framework provides a number of behaviors. Their

execution is invoked by the high-level control.

Higher Level Movement provides methods to easily

move to a given torso position, control the robot height, and

relax the whole robot.

Look At is used to look at strategic positions and to find

the marker. The marker is searched at the current position

and at the position the marker was last seen. If the marker is

still not found the robot begins to move its head in a circular

pattern to find the marker.

Color Calibration initializes the player colors at the start

of the game during the initialization phase. It uses head

motion and vision services.

Analyze Field is a behavior that scans the complete board.

It requests the positions to look at from the world model and

moves the head to the most interesting position. It activates

the vision to update the game state in the world model.

Place/Take/Move executes manipulations at a given token

position. These manipulations include walking to the posi-

tion, the place/take/move action, and a visual confirmation

with a possible repair.

Error Recovery is applied in case the confirmation of

a place/take/move action fails, i.e., the token is not at the

desired position. First the entire game state is updated again.

If the token is not located at the desired position after a place

action we can distinguish two cases. If the token is still on the

table but rolled to an already occupied position we receive

a conflict. Such a conflict can be resolved by moving the

actual token to its desired position. If we receive no conflict

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

61

there are two possible reasons. Either the token rolled to an

unoccupied position or the token rolled off the table. Both

cases can be detected by comparing the actual game state

with the previous one. For the former case we recognize an

additional token of the given color and simply move it to the

desired position. For the latter case the robot asks for human

assistance as it is not able to resolve this issue by itself.

F. Game Engine

The idea behind the game engine is to pre-process all

optimal moves off-line, so that during a game play of the

Nao only marginal computer resources are needed for gen-

erating the move itself. This is important since performing

the interaction with the environment requires most of the

resources of the Nao.

To solve the game play we follow an approach that uses

an idea which is called dynamic programming in algorithm

theory. There, every game position which might show up in

a game is evaluated only once and stored together with its

evaluation value. This usually saves the exponential overhead

in an game tree approach. Of course this approach comes at

a price: a lot of memory or disk space is needed to store

the positions and their evaluation, the so-called state-space.

Thus, it is still not feasible for games like chess or go.

But fortunately Nine Men’s Morris has a rather huge game

tree complexity, but a limited state-space complexity, which

makes dynamic programming applicable.

For Nine Men’s Morris we generated all possible positions

which can show up during any game, of course taking

symmetry, rotation, and reflection (inner and outer cycles

can be exchanged) into account. This results in a data base

of over 19 billion positions, needing approx. 19.6 GB of disk

space. Using the dynamic programming approach described

above we evaluated all positions, and stored whether it is a

first player win, a second player win, or a draw. In case one

of the players can force a win, we also stored in how many

half moves she can guarantee that win.

The data base provides a simple interface for the other

components of the playing Nao. A query can be sent for

a position which is currently considered. The database can

check whether it is a valid position and, if true, provides

possible optimal moves with additional information. In this

way it is also easy to check whether a board which is

recognized only with a certain probability could in fact be the

result of a legal move of the opponent. Thus the actual board

can even be determined if the vision of the Nao delivers

several different candidates — a kind of consistency check.

IV. EXPERIMENTAL RESULTS

We implemented a prototype version of the playing Nao

using ROS and NaoQi. Because of the size of the game

database and the computational demands of the perception

we run these parts on an external PC and communicate

to the robot over Ethernet. The following tables show the

experimental results of performing small subtasks which are

essential for playing Nine Men’s Morris. Table I focuses on

the placement of tokens. This task is considered to be the

easiest one. However, in two cases the token was placed too

far away from its ideal position such that it was classified as

not correct. In one of these cases the repair strategy was able

to resolve the initial error. In all the other cases the robot was

able to successfully place the tokens on the correct positions

in one try.

Place & Repair ∑
%

Success Fail

Place
Success 28 0 28 93.33

Fail 1 1 2 6.67∑
29 1 30

% 96.67 3.33

TABLE I: Test: Token placement. In one case an initial

placement failure could be repaired using the repair strategy.

Table II illustrates the results concerning the grasping

actions. This task also requires a correct classification of the

token and self-localization. The robot is capable of grasping

a token in most cases. However, the grasp fails in some of

the cases at the first try. This happens, as the robot is not

always able to perform a reliable grasp because of the limited

hand. Although, following the repair, the success rate can be

significantly improved.

Recognition ∑
%

Success Fail

Grasping
Success 18 2 20 66.67

Fail 10 0 10 33.33∑
28 2 30

% 93.33 6.67

TABLE II: Test: Token grasping. In two cases an initial

recognition failure could be repaired using the repair strategy.

Table III shows the results for the classification of single

tokens and recognizing the entire game state. The table

features game scenarios with a low number of tokens as well

as scenarios with 9 tokens per player (see Fig. 8). It has to be

mentioned that these results were gained by just scanning the

game board scene without having any knowledge of previous

game states. Classification errors mainly occurred on the

opposite side (w.r.t. the robot) of the game board.

Number of tests 38 %

Number of classified tokens
Correct 359 98.63
Wrong 5 1.37

Game state without any misclassification
Correct 33 86.84
Wrong 5 13.16

TABLE III: Test: Get game state.

Table IV shows the results of walking to a different side

of the board while avoiding collisions. Due to the lack of

sensors providing on-line data while walking, the success

rate of this task highly depends on the robots accuracy while

executing motion commands. A re-localization while walk-

ing parallel to the board is not possible, as the shoulder of

the robot is blocking the view to the board. Furthermore the

marker is very small and difficult to detect under perspective

view. Without the marker the robot rarely found back to the

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

62

Fig. 8: Example game situation used in the evaluation.

board. Therefore we detect now the edges of the board to

give the robot a course estimation where it is. This estimation

allows us to approach to the board until, the robot finds the

marker again. This additional procedure greatly increased the

robustness of the walking procedure. In case the marker was

never lost, the robot approaches to the board in one complete

move which results in slight collisions due to the inaccuracy

of the odometry.

Walk ∑
%

Success Slight collisions Fail

Marker
Found 10 4 0 14 60.87
Lost 9 0 0 9 39.13∑

19 4 0 23

% 82.61 17.39 0

TABLE IV: Test: Walk around the board.

V. RELATED RESEARCH

There are several other approaches for playing games

with humanoid robots. For instance the work of [4] presents

a humanoid robot that is able to play ping pong against

a human opponent. Their greatest challenges are the fast

accelerations of the arm and the balance of the robot.

A work that fits better to our task is developed by a

french company named HumaRobotics [5] who presented

an autonomously connect-4 playing Nao. Their result is

impressive because they need no marker, external PC and

recognize when a human player finished its turn to play their

game. However, they can see the whole gameboard which is

orientated upright. This results in minimal projective dis-

tortion, the board can be scanned continuously to recognize

human action and the board serves as a landmark with known

size and background. Additionally they do not grasp tokens

and they can observe the token while throwing it into the

board.

In 2011 [6] proposed an approach of the Nao grasping

tokens on a board. This approach is similar to our work

because they face the same problems as we do, like limited

processing power, inaccurate repositioning, reduced stiffness

on continuous operation, limited grasping ability, and self

occlusion of the target position. They use visual servoing to

move the thumb, which is essential for a successful grasp to

a target position above the object. They project the thumb

onto the table surface to estimate the hand position.

In [7] an approach of a real-time SLAM with a single

camera computed on a desktop PC is proposed. They focused

on natural long term features and a motion model to reduce

motion drift. They inspired our work for projections from

the image in the 3D scene and the visual odometry.

Recently in [8] the authors presented an integrated ap-

proach for the Nao that allows it to grasp general objects

like a cup. The approach combines object recognition based

on stereo vision, a grasp quality estimation, and an A*-based

motion planner. Although, the performance of this approach

is impressive it has the drawback that a special version of

the Nao with an integrated stereo setup is used.

VI. CONCLUSION AND FUTURE WORK

In this paper we present an approach for playing board

games with the humanoid robot Nao. A proof-of-concept

implementation addresses all challenges arising from playing

a game with a humanoid robot, such as perceiving the

game board, deciding the next winning move, and mobile

manipulation of the tokens. The approach is a combination

of a strong game engine and a robotics framework. The

main components of the architecture are a competitive game

engine, a reliable 3d scene recognition, and a simplified

manipulation approach. The major contribution of this paper

is the integration of various techniques in one real system

to allow it to solve a complex task. First experiments show

that the robot is able to autonomously play the game quite

stable. Moreover, first empirical figures are given for the

performance of the needed individual capabilities.

In future work we will aim at a native implementation that

runs completely on the robot. Furthermore, the individual

skills have to be improved. Mainly we think of a probabilistic

recognition approach for the tokens and the integration

of more advanced planning techniques to master dynamic

environments as well. Finally, we will extend our approach

to other games like chess. Especially this is a real challenge

because the tokens are not homogeneous anymore.

REFERENCES

[1] Oswin Aichholzer, Daniel Detassis, Thomas Hackl, Gerald Steinbauer,
and Johannes Thonhauser. Playing pylos with an autonomous robot. In
IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2507–2508, 2010.
[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.

Speeded-up robust features (surf). Comput. Vis. Image Underst.,
110(3):346–359, 2008.

[3] Richard Hartley and Andrew Zisserman. Multiple view geometry in
computer vision. pages 33–35. Cambridge University Press, 2003.

[4] Yichao Sun, Rong Xiong, Qiuguo Zhu, Jun Wu, and Jian Chu. Balance
motion generation for a humanoid robot playing table tennis. In
Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International

Conference on, pages 19 –25, 2011.
[5] HumaRobotics. Nao plays... connect 4, 2013. Online:

http://www.generationrobots.com; accessed June 26 2013.
[6] Thomas Höll and Axel Pinz. Vision-based grasping of objects from

a table using the humanoid robot nao. Austrian Robotics Workshop,
2011.

[7] Andrew J. Davison. Real-Time Simultaneous Localization and Mapping
with a Single Camera. In Proceedings. Ninth IEEE International

Conference on Computer Vision, pages 1403 – 1410 vol.2. IEEE, 2003.
[8] Judith Müller and Udo Frese and Thomas Röfer. Grab a Mug - Object

Detection and Grasp Motion Planning with the Nao Robot. In IEEE-

RAS International Conference on Humanoid Robots, 2012.

Proceedings of the Austrian Robotics Workshop 2014

22-23 May, 2014

Linz, Austria Regular

63

