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Abstract

We study the problem how to draw a planar graph crossing-free such that every vertex
is incident to an angle greater than π. In general a plane straight-line drawing cannot
guarantee this property. We present algorithms which construct such drawings with
either tangent-continuous biarcs or quadratic Bézier curves (parabolic arcs), even if the
positions of the vertices are predefined by a given plane straight-line drawing of the
graph. Moreover, the graph can be drawn with circular arcs if the vertices can be placed
arbitrarily. The topic is related to non-crossing drawings of multigraphs and vertex
labeling.

1. Introduction

Throughout this paper, let G = (V,E) be a simple planar graph without loops, with
finite vertex set V and thus a finite set of edges E. We use the natural understanding
of a drawing of a graph. Vertices are represented as points in the plane and edges as
continuous and (at least piecewise) differentiable curves connecting the points of adjacent
vertices. A drawing is called non-crossing or plane, if the drawn edges do not intersect
in their interior. If we consider only topological properties, that is, the order of the
edges and consequently of the faces, we refer to this as combinatorial embedding. Given
a (combinatorial) embedding of a graph G, the faces of G are defined as usual.

For a drawing F(G) of G we denote the placement of a vertex v ∈ V by F(v), and the
drawing of an edge e ∈ E by F(e). Note that we consider embedded edges to be open,
i.e., to not contain their endpoints. For simplicity, and as there is no risk of confusion,
in the figures we will denote embedded vertices just by v instead of F(v).

The tangent of an edge F(e) at a vertex F(v) is the limit of the tangents to F(e)
when approaching F(v) along F(e). The tangent ray of F(e) at F(v) is the open ray
along the tangent to F(e) at F(v) from F(v) towards F(e). A drawing gives us a cyclic
order of incident edges around each vertex. The angle between two consecutive edges
incident to a vertex F(v) is defined as the angle between the corresponding tangent rays
at F(v) that does not contain the tangent ray of any other incident edge. We say that

IResearch supported by the Austrian FWF Joint Research Project ’Industrial Geometry’ S9205-N12.

Preprint submitted to Elsevier July 28, 2010



this angle is incident to F(v) (and vice versa). In the case of a degree two vertex there
are two such angles between the two incident edges. If a vertex has degree at most one,
we say that it is incident to one angle (having value 2π).

Definition 1 (Pointedness). A vertex in a drawing F(G) is called pointed if it is
incident to an angle greater than π (see Figure 1). We say that a vertex is pointed to a
face if its large angle lies in this face. If all vertices in a drawing are pointed we call the
drawing pointed.

v2

v1

Figure 1: Drawing with a non-pointed vertex v1 and a pointed vertex v2.

For the special case of straight-line drawings, this definition is identical to the classic
definition of pointedness, a term which stems from the field of pseudo-triangulations. A
pseudo-triangle is a simple polygon with exactly three vertices with interior angle smaller
than π. A pseudo-triangulation is a plane straight-line graph where every interior face is a
pseudo-triangle and the outer face is convex. Pseudo-triangulations have rich applications
and are an important geometric data structure, see for example [16, 17, 20], and [18] for
a survey.

A graph is called generically rigid, if its straight-line realization on a generic point set
induces a rigid framework (edges represent fixed length rods and vertices represent joints).
In two dimensions, there exists an easy combinatorial characterization of generically rigid
graphs that become non-rigid after removing an arbitrary edge [11]. These graphs are
called Laman graphs. Due to Streinu [21], a graph of a pointed pseudo-triangulation is a
Laman graph. Conversely, as observed by Haas et al. [8], every planar Laman graph can
be realized as pointed pseudo-triangulation. As a consequence, subsets of plane Laman
graphs are exactly the graphs that admit a pointed non-crossing straight-line drawing.
A simple example of a planar graph that has no pointed drawing without crossings is the
complete graph with four vertices.

We consider various incarnations of the problem how to draw a planar graph pointed,
using different kinds of edge shapes. With smooth curves or polygonal chains, the task
of constructing a pointed drawing of a given planar graph is trivial. As natural, but
still quite simple edge shapes, we study circular arcs, tangent continuous biarcs, and
quadratic Bézier curves. Let us briefly review the definition and basic properties of these
curves. A tangent continuous biarc consists of two circular arcs that are concatenated
in a way that together they form a C1 continuous curve. A quadratic Bézier curve b
spanned by three points p1, pm and p2 is defined by the equation

b(t) = (1− t)2p1 + 2(1− t)pm + t2p2, t ∈ [0, 1].
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It lies completely inside the triangle p1pmp2 (which is also called control polygon of b),
has p1 and p2 as endpoints, and is tangent to p1pm at p1 and to p2pm at p2.

We also issue the “extent of pointedness”. For example, can we guarantee a free
angular space around each vertex bigger than a given fixed angle larger than π? For this
stronger pointedness criterion we define the term ε-pointedness.

Definition 2 (ε-Pointedness). Let ε > 0 be a real number. A vertex in the drawing
F(G) is called ε-pointed, if it is incident to an angle greater than 2π − ε. We call a
drawing ε-pointed if every vertex is ε-pointed.

Further, we propose a stronger version of the pointed drawing problem: Given a plane
straight-line drawing Fs(G). Can we construct a plane pointed drawing with a certain
family of edge shapes without changing the placement of the vertices? We call a drawing
with this property a pointed redrawing. The advantage of a pointed redrawing algorithm
is clear, we can profit form the given drawing and keep its advantages (e.g., all vertices
are placed on an integer grid or fulfill other optimality criteria).

Results
In Section 2, we consider the problem of pointed redrawings. We show that every

plane straight-line drawing Fs(G) can be redrawn pointed and plane with Bézier curves
as well as with tangent continuous biarcs. We also disprove that this is always possible
by using circular arcs as edges.

Section 3 then deals with pointed drawings of (abstract) planar graphs. We prove
that every planar graph can be drawn ε-pointed with Bézier curves, for arbitrary small
ε > 0. We show that by using biarcs as edges, every planar graph can be drawn such that
for all vertices v, all incident edges share a common tangent ray at v. This is maybe one
of the most beautiful results in this paper from an aesthetic point of view. We further
prove that every planar graph can be drawn pointed and plane with circular arcs as
edges. For pointed drawings with biarcs, Bézier curves, or polygonal chains of length
two, we give an explicit tight bound for the number of edges that cannot be drawn as
straight-line segments.

We summarize the results presented in this paper in Table 1. Note that all obtained
drawings can easily be constructed, with the exception of the method described in the
proof of Theorem 3.2, which has to compute a disk packing of the planar graph in a
preprocessing step.

edge shape problem instance obtained result

circular arcs pointed drawing possible, Theorem 3.5
pointed redrawing not possible, Theorem 2.3

tangent continuous biarcs ε-pointed drawing possible, Theorem 3.2
pointed redrawing possible, Theorem 2.2

quadratic Bézier curves ε-pointed drawing possible, Theorem 3.1
pointed redrawing possible, Theorem 2.1

Table 1: Results presented in this paper.
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Related Work and Applications
Traditionally, graph drawing is mainly concerned with using the simplest class of

curves for the edges: straight-line segments. According to Fáry’s theorem [7], every
(simple) planar graph has a plane straight-line drawing in the Euclidean plane. There
is a vast literature dealing with the question of efficiently finding plane straight-line
drawings that fulfill certain (optimality) criteria (see [2, 13] for an overview). Improving
work of De Fraysseix, Pach and Pollack [6], Schnyder [19] proved that every planar graph
with n vertices has a plane straight-line drawing where the vertices lie on a grid of size
n − 2 × n − 2. The famous Koebe-Andreev-Thurston circle packing theorem [1, 10, 22]
states that every planar graph can be embedded with straight-line edges in a way such
that its vertices correspond to interior disjoint disks, which touch if and only if the
corresponding vertices are connected with an edge, see also [15, 4].

If we relax the condition that the given planar graph has to be simple, Fáry’s theorem
does not hold. The reason is that straight-line drawings are not well defined for loops,
or multiple edges between two vertices. However, one can ask how to draw planar
multigraphs with loops crossing-free, allowing more complex edge shapes. A natural
approach is to use circular arcs. Drawing multiple edges as circular arcs is no problem,
as an edge in a straight-line drawing can be perturbed to any number of close-by circular
arcs. Loops, however, require more space. The only circular arc between a vertex and
itself is a full circle through this vertex. Thus, the vertex has to be incident to an angle of
at least π, which then is sufficient for any number of loops at this vertex. This naturally
leads to the question of pointed drawings of simple graphs without loops. Thus, as a
consequence of Theorem 3.5 we obtain:

Corollary 1.1. Every planar multigraph admits a planar drawing with circular arcs on
the O(n)×O(n2) grid.

Another potential application for constructing pointed drawings of graphs comes from
drawing vertex labels. If the edges incident to a vertex point in all directions, it might
be hard to place a label close to its vertex. Thus it is good to have some angular space
without incident edges.

2. Pointed Redrawings

We start with the redrawing problem setting. Throughout this section we consider a
plane straight-line drawing as input of our problem instance. Let this drawing be Fs(G).

Theorem 2.1. For every plane straight-line drawing Fs(G) of a simple planar graph G
there exists a pointed plane drawing Fq(G) with quadratic Bézier curves as edges such
that Fq(v) = Fs(v) for all v ∈ V . Moreover, for every v ∈ V the cyclic order of the edges
incident to v in Fs(G) is the same as in Fq(G).

Proof. Without loss of generality assume that in Fs(G) no two vertices have identi-
cal x-coordinates or y-coordinates. Assume further, that the vertices are sorted by y-
coordinates in increasing order.

We construct Fq(G) by iteratively replacing the straight-line edges of Fs(G) with
quadratic Bézier curves. We first replace the edges incident to the bottom most vertex
v1, then the edges incident to v2, and so on. During the construction we maintain the
following two invariants:
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(1) For every vertex vi, the tangent rays of all already redrawn edges lie in the open
halfplane H−i below the horizontal line through Fq(vi).

(2) Every intermediate drawing is plane.

When replacing the edges incident to a vertex vi, all edges incident to a vertex vj ,
with j < i, have already been redrawn by our algorithm (as all vertices below vi have
already been processed). Let Ei = e1, . . . , ek be the edges which have not been replaced
yet, sorted by absolute slope, such that e1 has the smallest absolute slope. We redraw
these edges in increasing order.

Let e = vivj , j > i be the current edge we want to process (see Figure 2). Due to
invariant (1) and the processing order of the edges incident to vi we can choose a point
pm in H−i such that the triangle t = Fq(vi)pmFq(vj) does not contain any vertex or
part of an edge of the current drawing in its interior. By convention we place pm to
the right of Fq(vi) if e has positive slope, otherwise to the left. We use the triangle t
as a control polygon for a quadratic Bézier curve b with endpoints Fq(vi) and Fq(vj),
which we take as replacement for the straight-line edge Fs(e). Note that b is tangent to
Fq(vi)pm at Fq(vi), and thus invariant (1) still holds for vi. As b lies completely inside t,
and t\{Fq(vj)} lies completely inside H−j , invariant (1) for vj and invariant (2) remain
fulfilled as well.

H−
i

vi

vj

pm

t

Figure 2: Constructing a plane pointed drawing where the edges are quadratic Bézier curves (interme-
diate step).

Having redrawn all edges in this way, we obtain a drawing whose pointedness follows
directly from invariant (1), and that is plane due to invariant (2).

It is possible to augment the drawing Fs(G) to a triangulation by adding edges and
deleting the corresponding arcs in the final drawing. For a triangulation with fixed bound-
ary face the order of the edges around a vertex is unique up to a global reflection [25].
Hence, this order has to be preserved in Fq(G).

The technique used in the proof of Theorem 2.1 can be modified to show a similar
statement for (tangent continuous) biarcs due to the following observation.

Lemma 2.1. Consider a triangle spanned by three points p1, pm and p2. There exists a
tangent continuous biarc connecting p1 with p2 that lies inside the triangle. Furthermore,
the biarc is tangent to p1pm at one end and tangent to p2pm at the other end.

5



Proof. Assume that the segment p1pm is shorter than p2pm. We place a point p̃ on the
segment p2pm such that the length of pmp̃ is equal to the length of p1pm (see Figure 3).

p1

p2

pm

l1l2

p̃

Figure 3: Drawing an edge as a tangent continuous biarc in a triangle.

Let l1 be the line perpendicular to p1pm through p1 and let l2 be the line perpendicular
to p2pm through p̃. The quadrilateral spanned by the intersection point of l1 and l2, p1,
pm, and p̃ is a kite. Thus, there exists a circular arc passing through p1 and p̃ with center
l1 ∩ l2. Because l1 is perpendicular to p1pm, and l2 is perpendicular to p2pm, the arc is
tangent to p1pm at p1, and to p2pm at p̃. Let this arc be the first part of our biarc. The
second part is given by the straight-line segment p̃p2 (a degenerate circular arc). The
biarc is tangent continuous because the circular arcs are tangent in the meeting point
p̃.

Theorem 2.2. For every plane straight-line drawing Fs(G) of a simple planar graph G
there exists a pointed plane drawing Fb(G) with tangent continuous biarcs as edges such
that Fb(v) = Fs(v) for all v ∈ V . Moreover, for every v ∈ V the cyclic order of the edges
incident to v in Fs(G) is the same as in Fb(G).

Proof. We re-use the construction from the proof of Theorem 2.1. Whenever we have
chosen an appropriate empty triangle for an edge replacement, we place a tangent con-
tinuous biarc in it (as described in Lemma 2.1).

We conclude this section with a negative result on pointed redrawings.

Theorem 2.3. There exist planar graphs G = (V,E) with plane straight-line drawings
Fs(G), for which there are no pointed plane drawings Fc(G) with circular arcs as edges
such that Fc(v) = Fs(v) for all v ∈ V .

Proof. Consider the graph G shown in Figure 4(a). Vertex vc is placed at the origin,
vertex vt at (0, 2), vertex vl at (−0.2, 1), and vertex vr at (0.2, 1). The positions of
the remaining vertices are obtained by rotating these vertices by ±120 degrees. Since
G is 3-connected and planar, its combinatorial embedding is fixed for any non-crossing
drawing [25]. This implies that in any such drawing the edge between vc and vt has to pass
through the narrow passage between vl and vr. Since we are restricted to circular arcs,
the arc connecting vt and vc has to lie in the shaded region depicted in Figure 4(b). This
region is the intersection of the disk touching vt, vl, vc with the disk touching vt, vr, vc.
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vc

vl vr

vt

α

β

(a) (b)

Figure 4: Example of a straight-line drawing that can not be redrawn pointed with circular arcs.

The region lies inside a wedge of angle α = 45.3 degrees. Thus, the tangents of two arcs
from vc to the convex hull are separated by an angle of at most β = 165.3 degrees. But
in order to make the vertex vc pointed, one of these angles would have to be larger than
π.

Larger examples can be constructed easily. As long as a straight-line drawing similar
to Figure 4(a) is contained inside another drawing, a pointed redrawing with circular arcs
is impossible. Moreover, with a construction similar to the one shown in Figure 4(a),
but with many “spokes” (instead of just three), one can force the largest possible angle
free of incident edges at the central vertex to be arbitrary small.

3. Pointed Drawings

3.1. Pointed Drawings with Bézier curves and Biarcs
In the last section the placement of the points was determined by a given plane

straight-line drawing. If the location of the vertices can be chosen arbitrarily, we get the
following easy consequence of Theorem 2.1.

Theorem 3.1. For any ε > 0 and any planar graph G, there exists a plane drawing
Fq(G) with quadratic Bézier curves where all vertices are ε-pointed.

Proof. Consider an arbitrary straight-line drawing Fs(G). In the proof of Theorem 2.1
we showed a construction for a pointed drawing F ′q(G), in which for every vertex v
and for every edge e incident to v, the tangent ray of F ′q(e) at F ′q(v) lies below the
horizontal line through F ′q(v). By compressing the x-axis (i.e., scaling by a factor less
than 1), the large angle at every vertex in the resulting drawing increases towards 2π.
This modification produces no crossings. Moreover, every quadratic Bézier curve is
transformed to a quadratic Bézier curve (with respect to the compressed control polygon).
Thus, sufficiently compressing F ′q(G) results in the desired ε-pointed drawing Fq(G).
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By similar arguments, it is possible to obtain an ε-pointed drawing Fb(G) with biarcs.
In this case the argumentation is more involved, because compressing a biarc in one direc-
tion does not result in another biarc. However, we can modify the proof of Theorem 2.1 in
the following way: Recall that we used as invariant, that for every vertex vi, the tangent
rays of all already redrawn edges lie in the open halfplane H−i below the horizontal line
through Fs(vi). To obtain a stronger result, we consider vertical double-wedges centered
at the embedded vertices with wedge angle ε, and redefine the region H−i to be the wedge
below the horizontal line through the embedded vertex. We compress the x-axis until
all edges of the compressed straight-line drawing lie strictly within the double-wedges
of their endpoints, and apply the previous approach with the changed invariant to this
compressed drawing.

A disadvantage of this construction is that the biarcs tend to consist of a circular
arc with small radius and a circular arc with infinite radius. Thus, these drawings are
unlikely to be aesthetically pleasant. For this reason, we present a completely different
approach, which also fulfills an even stronger criterion of pointedness. This criterion,
namely that all arcs incident to a vertex share a common tangent at this vertex, implies
ε-pointedness for any ε > 0.

Theorem 3.2. Every planar graph G = (V,E) has a plane pointed drawing Fb(G) with
tangent-continuous biarcs as edges such that Fb(G) is pointed. Moreover, for every vertex
v all edges incident to v share a common tangent at Fb(v) in Fb(G). The directions of
these tangents can be independently specified for each vertex, with the exception of finitely
many directions.

Proof. According to the Koebe-Andreev-Thurston circle packing theorem [1, 10, 22],
every planar graph admits a disk packing, where each disk belongs to a vertex (which
is the center of the disk), and two disks touch if and only if the corresponding vertices
share an edge.

We start with such a disk packing of the graph G (see [4, 12, 5] for algorithmic aspects
of such packings). To get our drawing Fb(V ) of the vertices, we place every vertex vi
arbitrarily on the boundary of its disk Di, avoiding touching points of the disks.

vi

vj

tij

ti

tj

pij

Dj

Di

Cj
Ci

Figure 5: Construction of a tangent-continuous biarc from two touching disks Di, Dj .

8



Now consider an edge vivj ∈ E. For the embedded vertex Fb(vi) let ti be the tangent
through Fb(vi) to its disk Di. Furthermore, let pij be the touching point of the two
adjacent disks Di and Dj and let tij be the tangent to Di and Dj through pij (see
Figure 5). We draw a circular arc Ci from Fb(vi) to pij inside Di, the center of Ci being
the crossing of ti and tij . Similarly, we draw an arc Cj from Fb(vj) to pij inside Dj ,
with center tj ∩ tij . Both arcs meet in pij with the same tangent (orthogonal to tij).
Therefore, the concatenation of Ci and Cj gives a tangent-continuous biarc. We use CiCj
as drawing for vivj and apply this construction for all edges in E.

Di

vi ti

pi,k1

pi,k2

pi,k3

Figure 6: The situation at a vertex vi that shows that the biarcs do not intersect.

It is left to show that the constructed drawing is non-crossing. Two biarcs could
cross only within a disk of the disk packing. Consider all circular arcs incident to the
embedded vertex Fb(vi) as depicted in Figure 6. All corresponding circles have their
centers on ti and are passing through Fb(vi), which lies on ti as well. Thus, any two of
these circles intersect only in Fb(vi), and the constructed drawing is plane.

All biarcs incident to an embedded vertex Fb(vi) have a common tangent orthogonal
to ti. We can determine this tangent by placing the vertex vi on Ci appropriately,
avoiding the finitely many touching points of Di.

The above proof leaves some freedom to place the vertices on the boundaries of the
corresponding disks. If in the drawing Fs(G) no two disk centers have the same x-
coordinate, we can place each vertex on the bottommost point of the boundary of its
disk. By this, all biarcs have positive curvature and we have no “S-shaped” biarcs (see
Figure 7).

Another possibility is to place each vertex vi ∈ V farthest away from any touching
point of its disk Di. In this way we can guarantee the radius of any circular arc inside
Di to be at least Ri · tan π

2ki
, where Ri is the radius of Di, and ki ≥ 2 is the degree of

vi. Unfortunately, in general, we have no control over the radii Ri in the disk packing.

3.2. Pointed Drawings with Circular Arcs
We assume in this section that no two vertices will get the same y-coordinate in the

drawing. We aim at constructing drawings that contain only the following special types
of circular arcs.
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Figure 7: A pointed drawing with biarcs as edges, constructed from a disk packing.

Definition 3 (upper horizontally tangent arc, uht-arc). Let p1 and p2 be two points,
where p1 has the larger y-coordinate. We call a circular arc between p1 and p2 upper
horizontally tangent if it passes through p1 and p2, and has a horizontal tangent at p1.

Definition 4 (upper horizontally tangent triangle, uht-triangle). We call a draw-
ing of a triangle upper horizontally tangent if all of its edges are drawn as uht-arcs.

Note that for any two points the uht-arc is uniquely defined. Hence, for every point triple
the uht-triangle is unique. The following lemmata show that under certain assumptions
the uht-triangles behave nicely.

Lemma 3.1. Consider the uht-arc µ between p1 and p2. Let h1 be the horizontal line
through p1. Then the angle at p1 between h1 and µ is twice as large as the angle at p1

between p1p2 and h1.

Proof. The situation stated in the lemma is depicted in Figure 8. Let α be the angle at
p1 between h1 and p1p2. This angle is the alternate angle to the angle at p2 between
h2 and p2p1. Let pt be the intersection of the tangents of µ at p1 and p2. The triangle
p1p2pt is isosceles and hence the angle between p1p2 and p1pt is α as well. Thus, the
angle between µ and p1p2 equals 2α.

In the following lemma, we restrict the straight-line edges to have an absolute slope
less or equal 1. This implies that the angle between the tangent of an uht-arc at the lower
point and the horizontal line through this lower point is at most π/2. As a consequence,
the uht-arc is x-monotone and is contained in the (axis parallel) bounding rectangle
spanned by its endpoints.

Lemma 3.2. Consider three points p1, p2, p3, sorted by their x-coordinates. If

(i) the absolute slope of the line segments p1p2, p2p3 and p1p3 is smaller than 1, and
10



p1

p2pt

h1

h2α

α
α

µ

Figure 8: Construction used in the proof of Lemma 3.1.

(ii) p2 lies below the line through p1 and p3, or p2 has the highest y-coordinate,

then p1, p2, and p3 span a non-crossing uht-triangle that is oriented in the same way
as the straight-line triangle p1p2p3, that is, the clockwise order of the points around the
faces is the same.

Proof. For i, j ∈ {1, 2, 3}, i 6= j, we denote with yi be the y-coordinate of pi, with hi the
horizontal line passing through pi, and with aij the uht-arc between pi and pj .

We prove the lemma by case distinction. Without loss of generality we assume that
y1 < y3. Depending on the relative location of y2 we obtain three cases (see Figure 9).

p1 p2

p3

p1

p2

p3

p1

p2
p3

(case 1) (case 2) (case 3)

Figure 9: The three cases discussed in the proof of Lemma 3.2.

Case 1 (y2 < y1): a13 and a23 cannot intersect since they have a common tangent at p3

and do not lie on the same circle. The other pairs of arcs have bounding rectangles with
disjoint interior, and hence cannot intersect.
Case 2 (y1 < y2 < y3): Again, a13 and a23 do not intersect since they have a common
tangent at p3 and do not lie on the same circle. The arcs a12 and a23 have bounding
rectangles with disjoint interior, and therefore do not intersect either. Since p2 lies below
the line segment p1p3 (condition (ii)), p2 lies below the arc a13 and p1p3 has larger slope
than p1p2. Thus, and due to Lemma 3.1, the angle between the tangent of a13 and h1 is
larger than the angle between the tangent of a12 and h1, meaning that a12 is incident to
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p1 “below” a13. As the second endpoint of p2 of a12 lies below a13 as well, an intersec-
tion of a12 and a13 (to the right of p1) would imply a second such intersection. This is
impossible, because the two circles induced by a12 and a13 would intersect three times.
Case 3 (y3 < y2): The pairs a23/a12, and a23/a13 have bounding rectangles with dis-
joint interior and therefore do not intersect. For the remaining pair of arcs a12 and a13

we apply again Lemma 3.1 and observe that a12 is incident to p1 “above” a13. As the
second endpoint of p2 of a12 lies above a13 as well, it follows that an intersection of a12

and a13 (to the right of p1) would again imply that the two circles induced by a12 and
a13 intersect three times, which is impossible.

Since in all three cases the order of incident edges at each vertex is preserved, the
orientation of the uht-triangle is identical to the orientation of the straight-line triangle.

We continue by constructing a straight-line drawing that allows us to substitute its
triangles by uht-triangles. The basic idea goes back to de Fraysseix, Pach and Pollack [6].

Theorem 3.3 ([6]). A plane triangulated graph has a plane straight-line drawing on a
(2n− 4)× (n− 2) grid.

Let us briefly review the incremental construction used in [6], see Figure 10. The
vertices are inserted in a special (so-called canonical) order, such that the next vertex
pk+1 that is inserted can be drawn on the outer face of the graph Gk induced by the first
k vertices. Thereby as invariant it is maintained that the outer boundary of the graph
Gk (drawn so far) forms a chain of pieces of slope ±1, resting on a horizontal basis (Fig-
ure 10(a)). The next vertex pk+1 to be drawn is adjacent to a continuous subsequence
of vertices on the outer boundary. To make space for the new edges incident to pk+1,
the boundary of Gk is split into three pieces, which are separated from each other by
shifting them one unit apart (Figure 10(b)). The middle piece contains all neighbors of
pk+1 except the first and the last one. They show that shifting the whole graph Gk apart
(inside the shaded area) does not create any crossings.

We slightly modify this inductive procedure to prove the following theorem.

Theorem 3.4. A plane triangulated graph has a plane straight-line drawing on a grid
of size (4n− 9)× (2n− 4), with the following additional properties:

(a) No edge is vertical.
(b) No edge is horizontal.
(c) In each triangular face, the vertex with the middle x-coordinate is either the vertex

with the highest y-coordinate, or it lies below the opposite edge.

Proof. The newly created triangles in the incremental construction described above al-
ways fulfill property (c), which can be checked directly, and no horizontal edges are
created (property (b)). The only horizontal edge is the bottom base edge. This horizon-
tal edge can easily be avoided by starting the construction with a non-horizontal base
triangle in the first step.

To prevent vertical edges, one can split the middle part into two pieces and set them
apart by two more units (Figure 10(c)). (Two units are necessary to ensure that the left
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Gk

pk+1

Gk

Gk

(a)

(b)

(c)

pk+1

pk+1

Figure 10: (a–b) The incremental step in the straight-line drawing algorithm of de Fraysseix, Pach and
Pollack [6], and (c) the modification that prevents vertical edges.

and right part are separated in total by an even offset; this guarantees that the position
of pk+1, which is defined by the requirement that its leftmost and rightmost incident
edges have slope +1 and −1 respectively, gets integer coordinates.)

Adding a vertex preserves the order of the old y-coordinates and the order of the
edges incident to a vertex. As a consequence, properties (b) and (c) can be guaranteed
to hold for previously added vertices after shifting. Property (a) is preserved because
shifting decreases the absolute slope of an already inserted edge.

The dimensions of the grid increase by 4 × 2 units for each new vertex. The initial
drawing of the graph G3 with the first three vertices needs a 3× 2 grid.

We continue with the main result of this section.

Theorem 3.5. Every planar graph G has a plane pointed drawing with circular arcs as
edges.

Proof. We assume that the graph G is a triangulation (otherwise we add edges such
that G becomes a triangulation and delete these edges in the end). Given an n-vertex
plane triangulated graph, the algorithm of Theorem 3.4 constructs drawings in which for
every edge its absolute slope is less than 2n. By scaling the x-axis by a factor of 2n,
we obtain a drawing in which all edges have slopes in the range between −1 and +1.
In this scaled drawing, all triangles fulfill the conditions of Lemma 3.2. We substitute
every straight-line edge by its corresponding uht-arc. Note that by this substitution,
the order of the edges around a vertex is preserved, and every straight-line triangle is
replaced by its corresponding uht-triangle. Thus, and due to Lemma 3.2, the obtained
circular drawing is crossing-free (Edges on the upper hull are non-crossing as they have
bounding-rectangles with disjoint interior).
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Around every vertex there is a number of edges that emanate in the horizontal direc-
tion, plus a number of additional edges that point upward. The latter type of edges have
distinct tangent directions. Thus one can slightly bend every edge upward and achieve
a pointed drawing with circular arcs.

Due to Theorem 3.4, pointed drawings constructed as above lie on an O(n)×O(n2)
grid. An example of such a drawing is shown in Figure 11.

Figure 11: An example of a pointed drawing with circular arcs.

3.3. Pointed Drawings with Combinatorial Pseudo-Triangulations
A different way to find a pointed drawing utilizes the framework established by Haas

et al. [8] and Orden et al. [14]. Let us recall some terminology first.

A combinatorial pseudo-triangulation is a planar combinatorial embedding of an (ab-
stract) connected planar graph G with an assignment of the tags big/small to the angles
of G such that the following conditions are fulfilled.

(1) Every interior face has exactly three small angles.
(2) The outer face has only angles labeled big.
(3) Every vertex is incident to at most one angle labeled big. If it is incident to a big

angle, it is called pointed (in the face where is has its big angle).
(4) A vertex of degree at most 2 is incident to one angle labeled big.

Due to [8, Section 5.2], every combinatorial pseudo-triangulation can be embedded as
a pseudo-triangulation such that every angle with tag big is larger than π in the drawing,
and every angle with tag small is smaller than π in the drawing. Furthermore, the shape
of every face can be specified up to affine transformations.

Lemma 3.3. Every triangulation with n vertices can be turned into a combinatorial
pointed pseudo-triangulation by subdividing at most n − 3 edges, each with exactly one
additional vertex. Furthermore, for every given vertex not on the outer face, the face in
which it is pointed can be prescribed.

Proof. The combinatorial pointed pseudo-triangulation is constructed incrementally. At
the beginning, every angle of an interior face gets the tag small (indicated by a • in
the figures), and every angle at the outer face gets the tag big (indicated by a ◦ in the
figures). This assignment fulfills the four desired properties of a combinatorial pseudo-
triangulation, and none of the interior vertices is incident to a big angle tag. Now we
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add the big tags for the interior vertices on the prescribed faces one by one. Changing
a tag from small to big violates condition (1). This can be repaired by subdividing an
incident edge of the enlarged angle, and by giving the new vertex the tags small (on
the face where the deficit of small angles appears) and big (on the opposite face). The
procedure is depicted in Figure 12. Now all three conditions hold again and we continue.

Figure 12: How to turn a small angle tag (indicated by a •) into a big angle tag (indicated by a ◦) at
the leftmost vertex, while maintaining a proper assignment of angle tags.

What remains to show is that we can choose the edges to be subdivided in a way that
in total every edge is subdivided at most once. For every vertex we have two incident
edges we could choose, and every edge could be chosen at most twice. This implies that
for any subset V of vertices the number of candidate edges is at least |V |. Thus, the
setting precisely fulfills Hall’s condition of the marriage theorem (see e.g. [9, 3]). Thus,
there exists a distinct representative (edge) for each vertex, i.e., each edge is subdivided
at most once.

Theorem 3.6. Every planar graph G with n vertices has a plane pointed drawing with
either quadratic Bézier curves, tangent continuous biarcs, or 2-chains (polygonal chains
consisting of two line segments), which uses at most n−3 non straight-line edges. More-
over, for each inner vertex, one can arbitrarily choose a face in which it is pointed.

Proof. We assume that the graph G is a triangulation (otherwise we add edges such that
G becomes a triangulation and delete these edges in the end), also determining the outer
face. As a first step, we turn G into a combinatorial pointed pseudo-triangulation as done
in Lemma 3.3, selecting the faces that get the big angle tags appropriately. We apply the
algorithm of [8] to realize the combinatorial pseudo-triangulation. Recall that using this
algorithm, we are allowed to specify the shape of the faces up to affine transformations.
Thus we can ensure that in every interior face, every vertex incident to a reflex angle
can see (or is incident to) all other vertices in the face. We depict the possible face
shapes in Figure 13. Any affine transformation does not destroy the “visibility criteria”
– otherwise the orientation of a point triple reverses, which is only possible if we reverse
all orientations.

What we have obtained so far is a pointed drawing, where at most n − 3 edges are
drawn as 2-chains, which proves the theorem for the case of polygonal chains.

For the case of Bézier curves or biarcs, we consider for each 2-chain p1, pm, p2 (with
pm being the vertex of degree two) the triangle ∆ = p1pmp2. ∆ lies in a pseudo-triangle
in which pm has a small angle, and in which at least one of the points p1 and p2 is
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Figure 13: Affine shapes of faces used for the drawing and possible control triangles for curve replacement
inside these faces.

pointed (the one whose direction of pointedness caused the insertion of pm). Due to
the affine shape of the faces, all triangles which are spanned by 2-chains have pairwise
disjoint interior. Moreover, as we do not have 3-chains, every edge is part of at most one
of these triangles, and every degree two vertex is part of exactly one such triangle. We
use these triangles as control polygons as shown in Figure 13 to replace the 2-chains by
Bézier curves or biarcs (similar as in Lemma 2.1).

In general it is not possible to draw a planar graph pointed using a larger number of
(non-crossing) straight-line edges, since every maximal pointed straight-line graph has
2n − 3 edges [21], and due to Euler’s formula a triangulation can have up to 3n − 6
edges. In this sense, Theorem 3.6 is optimal. Note that the underlying theory behind
the algorithm of [8] is an (asymmetric) version of Tutte’s famous barycentric embedding
method [23, 24].

We demonstrate the construction used in the proof of Theorem 3.6 by an example.
Let G be the graph depicted in Figure 14(a). We want to obtain a pointed drawing where
every interior vertex is pointed in the central triangle. The appropriate combinatorial
pseudo-triangulation (created with the methods of the proof of Lemma 3.3, the grey
dashed edges are added to obtain a triangulation) is shown in Figure 14(b).
The realization of the combinatorial pseudo-triangulation is depicted in Figure 15(a).
Replacing the 2-chains by Bézier curves, we obtain Figure 15(b).
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(a) (b)

Figure 14: Construction of a combinatorial pseudo-triangulation as example.

(a) (b)

Figure 15: Pointed drawing with 2-chains (a) and biarcs (b) of the graph of Figure 14.
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