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Abstract
In this work we study the existence of plane spanning trees in simple drawings of the complete
bipartite graph Km,n. We show that every simple drawing of K2,n and K3,n, n ≥ 1, as well as
every outer drawing of Km,n for any m,n ≥ 1, contains plane spanning trees. Moreover, for all
these cases we show the existence of special plane spanning trees, which we call shooting stars.
Shooting stars are spanning trees that contain the star of a vertex, i.e., all its incident edges.

1 Introduction

In a drawing of a graph in the Euclidean plane the vertices are drawn as distinct points and
the edges are drawn as continuous arcs connecting its two end points. Depending on which
properties of the graph are to be considered, there might be additional requirements on how
the graph is drawn. Typically the drawing of an edge has to be non-self-crossing and must
not pass through any point representing a vertex other than its two end points. In addition,
in a simple drawing of a graph any pair of edges crosses at most once, either in their interior
or at a common end point, no tangencies are allowed and no three edges pass through a
single crossing. These drawings are also called good drawings [1, 3] or (simple) topological
graphs [5, 6].

The probably most restricted version of drawings are straight-line drawings, also called
geometric graphs, where an edge is drawn as straight-line segment connecting its two end
points. Thus, the placement of the vertices in the plane entirely determines the full drawing.

Both classes of drawings are of special interest if we want to minimize the number of
crossings in a drawing of a given graph. If such a drawing does not contain any crossing at
all then it is called plane. In this work we are interested in plane spanning subdrawings of a
given drawing, that is, drawings without crossings that contain all the vertices of the given
drawing and a subset of its edges.

The existence of plane subdrawings of simple drawings of the complete graph Kn has
received quite a lot of attention. For example, Ruiz-Vargas [9] showed that every simple
drawing of Kn contains Ω(n1/2−ε) pairwise disjoint edges for any ε > 0, by this improving
over many previous bounds [6, 7, 10]. Fulek and Ruiz-Vargas [4] proved that given a simple
drawing of Kn, a plane cycle C in the drawing, and any vertex v that is not part of C, at
least two edges connecting v to C do not intersect C. Hence every simple drawing of Kn

contains a plane sub-drawing with at least 2n− 3 edges. Rafla [8] conjectured that every
simple drawing of Kn contains a plane Hamiltonian cycle, a statement that is known to be
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true for several classes of simple drawings (e.g., 2-page book drawings, monotone drawings,
cylindrical drawings), but is still open in the general case. Pach et al. [6] proved that every
simple drawing of Kn contains a plane drawing of any fixed tree with at most c log1/6 n

vertices.
In this paper we concentrate on the existence of plane spanning trees in simple drawings.

Obviously, any simple (or straight-line) drawing of the complete graph Kn contains some
plane spanning trees: choose any vertex v and all the edges incident to v. As these edges
cannot cross we obtain a plane spanning star.

For the complete bipartite graph Km,n, the situation is less obvious. As a warm up
exercise, let us first consider straight-line drawings of Km,n. Let V1 and V2 be the sides of the
bipartition of the vertex set of Km,n. Chose any vertex v0 ∈ V1 and draw the star consisting
of all edges v0v with v ∈ V2. This star induces a partition of the plane into wedges centered
at v0, where one wedge might have an opening angle larger than π. Draw a virtual angular
bisector within each wedge and connect the vertices of V1 which lie in each half of a wedge
to the corresponding end point v 6= v0 of the star edge. This results in a plane spanning tree
with root v0 and height 2 that includes all the edges incident to v0. In the following, we
call such a (not necessarily rectilinear) plane spanning tree a shooting star (rooted at v0).

For simple drawings, we are not aware of a similarly easy construction. Actually, it is
still an open problem whether every simple drawing of Km,n contains a plane spanning tree.
In this paper we solve that problem for the cases of K2,n and K3,n (see Section 2), as well
as for outer drawings of Km,n (see Section 3, where also a definition of these drawings can
be found). In all those cases, we show the existence of a shooting star rooted at any of the
vertices of one side of the bipartition (the smaller one in case of K2,n and K3,n and the one
lying on the outer boundary in the case of outer drawings).

2 Plane Spanning Trees in Simple Drawings of K2,n and K3,n

In this section we prove that every simple drawing of K2,n and K3,n contains plane spanning
trees of a certain structure. In order to do so, we introduce some notions and provide some
auxiliary results.

For a given simple drawing of Kn with vertex set V and two fixed vertices g 6= r ∈ V , we
define a relation →gr on the remaining vertices V \{g, r}, where a→gr b if and only if the
arc ra properly crosses gb. In the following, we simply write a→ b if the two vertices g and
r are clear from the context.

I Lemma 2.1. The relation → is asymmetric and acyclic, that is, there are no vertices
v1, v2, . . . , vk (k ∈ N) with v1 → v2 → . . .→ vk → v1.

Proof. We give a proof by induction on k.
Induction basis: The case k = 1 is trivial. The case k = 2 follows from the fact that
there is at most one proper crossing in every 4-tuple in a simple drawing – if ra crosses
gb then rb cannot cross ga. For the case k = 3 assume there are three vertices a, b, c with
a→ b→ c→ a. Let 4 denote the area bounded by the edges ga, gb, ra and not containing
the vertex r, as illustrated in Figure 1. We distinguish the following two cases:
Case 1: c 6∈ 4. Since c→ a holds, the arc rc crosses ga, and therefore the boundary of 4.

Since r 6∈ 4 and since rc cannot cross ra, rc must also cross gb. Thus we have c → b,
which is a contradiction to b→ c.

Case 2: c ∈ 4. Since a → b, the arc rb cannot cross ga. Moreover, since rb can neither
cross ra nor gb, it is therefore completely outside of 4. Since gc is completely contained
in 4, rb and gc cannot cross, and therefore, b 6→ c. Contradiction.
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Figure 1 An illustration of the two cases of base case k = 3 from Lemma 2.1. The area 4 is
colored light green.

Since c can neither be inside nor outside 4, the statement is proven.

Induction step: Suppose – towards a contradiction – that there exist v1, . . . , vk with k ≥ 4
and v1 → v2 → . . . → vk → v1. We write a = v1, b = v2, w = vk−1, and z = vk. Let 4
denote the area bounded by the edges ga,gb, and ra that does not contain the vertex r. We
distinguish the following two cases:
Case 1: z 6∈ 4. We continue analogously to Case 1 of base case k = 2. Since z → a holds,

rz crosses ga, and therefore the boundary of 4. Since r 6∈ 4 and since rz cannot cross
ra, rz must also cross gb. Thus we have z → b.

Case 2: z ∈ 4. Since w → z holds, rw crosses gz at some point inside 4. Since r 6∈ 4
and since rw cannot cross ra, it must cross ga or gb (or both). Thus we have w → a or
w → b.

In both cases, we can find v′1, . . . , v
′
l for some l < k with v′1 → . . . → v′l → v′1, which is a

contradiction. This completes the proof of the lemma. J

I Theorem 2.2. Let D be a simple drawing of the complete bipartite graph K2,n with sides
of the bipartition {g, r} and P . Then, for every k ∈ {0, . . . , n}, D contains a plane spanning
tree with k edges incident to g and n− k + 1 edges incident to r.

Proof. According to Lemma 2.1, we can find a labeling v1, . . . , vn of the vertices in P such
that vi →gr vj only holds if i < j. Let S1 be the star with center g and children {v1, . . . , vk}
and let S2 be the star with center r and children {vk, . . . , vn}. By definition of relation →gr,
the edges of S1 and S2 do not cross, and hence we have a plane spanning tree. J

I Corollary 2.3. Let D be a simple drawing of the complete bipartite graph K2,n with sides
of the bipartition {g, r} and P . Then for each c ∈ {g, r}, D contains a shooting star rooted
at c.

Proof. Consider again the proof of Theorem 2.2. With the according labeling of P , no edge
rvi can cross the edge gv1. Hence, the plane spanning tree consisting of all the edges incident
to r together with the edge gv1 gives the desired shooting star rooted at r. Similarly, the
tree with all edges incident to g and the edge rvn is a shooting star rooted at g. J

We also have an analogous result, showing shooting stars also exist for simple drawings
of K3,n. Due to lack of space, we only state the theorem. Its proof is deferred to the foll
version of this paper.

EuroCG’19



59:4 Shooting Stars in Simple Drawings of Km,n

I Theorem 2.4. Let D be a simple drawing of the complete bipartite graph K3,n with sides
of the bipartition {g, r, b} and P . Then for each c ∈ {g, r, b}, D contains a shooting star
rooted at c.

3 Shooting Stars in Outer Drawings of Km,n

In this section we will study the problem of finding plane spanning trees in a special kind of
simple drawings of bipartite graphs, namely outer drawings. The concept of outer drawings
was recently introduced in [2]. They are defined as follows:

I Definition 3.1. A simple drawing of a Km,n in which all the m vertices of one side of the
bipartition lie on the outer boundary of the drawing is called outer drawing.

We denote by P the side of the bipartition whose vertices must lie on the outer boundary
of the drawing. The other side of the bipartition is denoted by S. Note that points of S may
also lie on the outer boundary but don’t have to.

We now proceed to prove that there is a plane spanning tree in every outer drawing of a
Km,n with m,n ∈ N.

I Theorem 3.2. Let D be an outer drawing of the complete bipartite graph Km,n with sides
of the bipartition P and S where the vertices of P lie on the outer boundary. Let p be an
arbitrary vertex in P . Then D contains a shooting star rooted at p.

Proof. First, we label the vertices in P . We start in p1 := p and go clockwise along the
outer boundary and denote the vertices of P by p2 to pm following the order in which they
occur. Let T1 be the sub graph that is induced by all edges incident to p1. Notice that T1 is
a plane tree. We will add edges to T1 until it becomes a spanning tree. We do so inductively
by first adding an edge incident to p2, then an edge incident to p3 and so on until we add an
edge incident to the vertex pm. We denote by Ti the tree that we get by adding to Ti−1 the
selected edge incident to pi for 2 ≤ i ≤ m. We will show that it is possible to add edges such
that Ti is always plane. After adding the last edge the statement then follows.

In the first step, for T2, we need to find an edge that is incident to p2 and does not cross
any edge incident to p. We know from Theorem 2.2 that there is at least one such edge. We
add that edge to T1 and get a plane tree T2. For Ti we need to find an edge that is incident
to pi and does not cross any of the edges of Ti−1. We denote by ei−1 the edge in Ti−1 that
is incident to pi−1 and by si−1 the vertex in S that ei−1 is incident to. We also denote the
edge that is incident to si−1 and p by ep. See Figure 2 for an illustration. The part of the
boundary that goes from p clockwise until pi−1 together with the edges ei−1 and ep encloses
a region that we call R1. The vertices p2 to pi−1 all lie on that part of the boundary, because
of the way we labeled them. We call the rest of the area inside the outer boundary R2.
I Claim 1. All edges in Ti−1 that are not incident to p lie completely inside R1.

Proof. Since the boundary of R1 consists of edges in Ti−1 and the outer boundary, all edges
of Ti−1 that lie partly inside R2 have to lie completely inside it. The edges in Ti−1 that are
not incident to p are incident with the vertices p2 to pi−1. As they have to lie on the part
of the outer boundary that is also part of the boundary of R1, the edges incident to these
vertices have to lie partly inside R1. Thus these edges have to lie completely inside R1. J

Let us now consider the region R2. The sub graph induced by p, pi, and all vertices of S
that lie in R2 is a K2,n′ with n′ ∈ N. By Theorem 2.2 there is an edge incident to pi that
does not cross any edges incident to p. This edge can neither cross the outer boundary nor
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Figure 2 The edges ep and ei−1 together with the outer boundary form two regions.

ep and it can only cross ei−1 once. Since the edge has both end points in R2, it follows that
the edge has to lie completely in R2. From Claim 1 it follows that it does not cross any of
the edges of Ti−1 that are not incident with p. As it doesn’t cross any edges incident with p
either, it follows that it doesn’t cross any of the edges of Ti−1. Thus, we can add that edge
and obtain a plane tree Ti. We continue to do so until we added an edge for every vertex
in P . The plane spanning tree Tm is a shooting star. J

4 Conclusion

We have shown that particular cases of simple drawings of the complete bipartite graph Km,n,
namely all simple drawings of K2,n and K3,n, n ≥ 1, as well as all outer drawings of Km,n

for any n,m ≥ 1, contain plane spanning trees that are shooting stars. As we showed in the
introduction, a similar result applies to straight-line drawings of Km,n. In the full version
of this paper we show that our results also extend to other classes of drawings of complete
bipartite graphs. It is still an interesting open question whether every simple drawing of
Km,n has a shooting star, or at least a plane spanning tree.
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