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Abstract

The geodesic between two points a and b in the interior of a simple
polygon P is the shortest polygonal path inside P that connects a to b.
It is thus the natural generalization of straight line segments on uncon-
strained point sets to polygonal environments. In this paper we use this
extension to generalize the concept of the order type of a set of points
in the Euclidean plane to geodesic order types. In particular, we show
that, for any set S of points and an ordered subset B ⊆ S of at least four
points, one can always construct a polygon P such that the points of B
define the geodesic hull of S w.r.t. P , in the specified order. Moreover,
we show that an abstract order type derived from the dual of the Pappus
arrangement can be realized as a geodesic order type.

1 Introduction
Order types are one of the most fundamental combinatorial descriptions of sets
of points in the plane. For each triple of points the order type encodes its
orientation and thus reflects most of the combinatorial properties of the given
set. We are interested in how much the order type of a point set changes when
the points lie inside a simple polygon, and the orientation of point triples is given
with respect to the geodesic paths connecting them. As depicted in Figure 1,
this orientation can change depending on the polygon. In this paper we develop
a generalization of point set order types to the concept of geodesic order types.

In set theory, order types impose an equivalence relation between ordered
sets. Two sets have the same order type if there is a bijection between them
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Figure 1: The radial order of shortest paths to points around a point p can be
different in unconstrained and geodesic settings.

that is order preserving [11, pp. 50–51]. Goodman and Pollack [6] extend this
concept to finite, multidimensional sets. They define that two d-dimensional
point sets S1 and S2 have the same point set order type when there exists a
bijection σ between the sets such that each (d + 1)-tuple in S1 has the same
orientation (i.e., the side of the hyperplane defined by p1 . . . pd on which the
point pd+1 lies) as its corresponding tuple in S2. It is also common to consider
two point sets to be of the same order type if all orientations are inverted in
the second set. In the plane, this means that for two sets of the same order
type, the ordered point triple u, v and w has the same orientation (clockwise
or counterclockwise) as σ(u), σ(v), σ(w). The infinitely many different point
sets of a given cardinality can therefore be partitioned into a finite collection
of order types. The orientations of all triples of the point set determine for
any two given line segments whether they cross. Therefore, the order type
defines most of the combinatorial properties of a point set.1 For example, its
convex hull, planarity of a given geometric graph (e.g., a triangulation), its
rectilinear crossing number, etc. only depend on the order type. One might
wonder whether every (consistent) assignment of orientations to triples of an
abstract set allows a realization as a point set in the Euclidean plane. This is
in general not true, not even if the assignment fulfills axiomatic requirements.
See Knuth’s monograph [12] for a detailed and self-contained discussion of this
topic.

Generalizing classic geometric results to geodesic environments is a well-
studied topic. For example, Toussaint [16] generalized the concept of convex
hulls of point sets to geodesic environments. Other topics like Voronoi Dia-
grams [2], Ham-sandwich Cuts [3], Linear Programming [4], etc. have also been
covered. However, to the best of our knowledge, the concept of geodesic order
types has not been studied in the literature. Hence, it constitutes a natural and
general extension to the above results.

The classic order type is often used to identify extremal settings for com-
binatorial problems on point sets. For example, finding sets which minimize
the number of crossings in a complete geometric graph, or maximize the num-
ber of elements of a certain class of graphs (spanning trees, matchings, etc.)

1It is common to regard the properties defined by orientations of triples as the combinatorial
ones. There are further settings on point sets that can be seen as being combinatorial as well,
e.g., asking whether the fourth point of a quadruple lies inside the circle defined by the first
three ones (see [12]). Also, the circular sequence of a point set is a richer way of describing
the combinatorics of point sets, totally implying the order type [9].
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are typical applications. In a similar spirit, the geodesic order type might be
used to investigate extremal properties in geodesic environments. Examples
might be problems on pseudo-triangulations (the side chains of a pseudo-triangle
are geodesics), guarding problems inside polygonal boundaries (there, shortest
paths are geodesics), and related problems; see, e.g., [15] for a recent survey on
pseudo-triangulations.

1.1 Preliminaries
A closed polygonal path P is called a simple polygon if no point of the plane
belongs to more than two edges of P , and the only points that belong to exactly
two edges are the vertices of P . A closed polygonal path Q is a weakly simple
polygon if every pair of points on its boundary separates Q into two polygonal
chains that have no proper crossings, and if the angles of a complete traversal
of the boundary of Q sum up to 2π [16]. Observe that a simple polygon is a
weakly simple polygon, but the reverse is not true. Unless stated otherwise, all
polygons are considered to be simple herein. We will follow the convention of
including both, the interior and the boundary of a polygon, when referring to
it. The boundary of polygon P will be denoted by ∂P .

The geodesic π(s, t, P ) between two points s, t ∈ P in a simple polygon
P is defined as the shortest path that connects s to t, among all the paths
that stay within P . If P is clear from the context, we simply write π(s, t).
It is well known from earlier work that there always exists a unique geodesic
between any two points [13], even if P is weakly simple. Moreover, this geodesic
is either a straight line segment or a polygonal chain whose vertices (other
than its endpoints) are reflex vertices of P . Thus, we sometimes denote the
geodesic as the sequence of these reflex vertices traversed in the geodesic (i.e.,
π(s, t) = 〈s = v0, v1, . . . , vk = t〉). When the geodesic π(s, t) is a segment, we
say that s sees t (and vice versa).

For any fixed polygon P , a region C ⊆ P is geodesically convex (also called
relative convex ) if for any two points p, q ∈ C, we have π(p, q, P ) ⊆ C. The
geodesic hull (relative convex hull) CHP (U) of a set U is defined as the smallest
(in terms of inclusion) geodesically convex region C that contains U . We will
denote by CH(U) the standard Euclidean convex hull. Whenever a point p ∈ U
is in the boundary of CHP (U), we say that p is an extreme point of U (with
respect to P ). The set of all such extreme points is called the extreme set of U ,
and is denoted by EP (U).

Although these definitions are valid for any subset U of P , in this paper we
will only use them for a finite set of points S = {p1, . . . , pn}. Further note that
the geodesic hull is a weakly simple polygon; see Figure 2. From now on we
assume that the points in the union of S with the set V of vertices of P are
in strong general position. That is, there are no three collinear points, and, for
any four distinct points p1, p2, p3, p4 ∈ S ∪ V , the line passing through p1 and
p2 is not parallel to the line passing through p3 and p4.
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Figure 2: Seven points inside a polygon P and their geodesic hull (marked in
gray). Observe that the boundary of the geodesic hull consists of the concate-
nation of the shortest paths connecting the extreme vertices of S, in circular
order. Further note that a vertex of the geodesic hull that stems from P can be
a convex and a reflex vertex of the geodesic hull at the same time (like vertex u)
or only a reflex vertex (like v).

1.2 Orientations and Geodesics
The concept of clockwise order of a triple of points (p, q, r) naturally extends to
geodesic environments. Let π(p, q) = 〈p = v0, . . . , vk = q〉 and π(p, r) = 〈p =
u0, . . . , uk′ = r〉 be the geodesics connecting p with q and r, respectively. Also,
let i > 0 be the smallest index such that vi 6= ui. We say that (p, q, r) are in
geodesic clockwise order if (vi−1, vi, ui) are in (Euclidean) clockwise order. It
is easy to see that, due to the strong general-position assumption, any triple is
oriented either clockwise or counterclockwise in the geodesic environment. We
adopt the common phrasing, and say that r is to the right of q (with respect
to p) whenever (p, q, r) are in geodesic clockwise order (or that r is to the left,
otherwise). By definition, if (p, q, r) are in geodesic clockwise order, then for
any a < i ≤ b, c, the triple (va, vb, uc) must also be in geodesic clockwise order.
Hence, this definition also accounts for the intuitive perception of “left” and
“right” when traversing the geodesics.

Note that “left” and “right” differ between the geodesic and the unconstrained
setting, since we can use reflex vertices of the surrounding polygon to “reorder”
unconstrained point triples. An illustration is shown in Figure 3; in this example,
the polygonal chain crosses two edges of the triangle and the supporting line of
the third one. In general, this operation is not local, and might alter the order
type of other triples (more details of this operation will be given in Section 3).

The orientation predicate can also be defined in terms of the geodesic hull
CHP ({p, q, r}). When traversing this hull counterclockwise, the points appear
in that order if and only if their geodesic orientation is counterclockwise.

1.3 Contribution
The triple orientation in geodesic environments extends the one in Euclidean
environments. Since the latter defines the order type of a point set, we obtain a
generalization of point set order types to geodesic order types. It is easy to see
that the order type of a fixed point set S can change with different enclosing
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Figure 3: Reordering a triangle using a polygonal chain. The triple (a, b, c) is
in (Euclidean) counterclockwise order. However, upon introducing the polygon
(right figure) the same triple is now in (geodesic) clockwise order.

polygons. In particular, some points that appear in the (Euclidean) convex
hull may not be present in the geodesic hull and, vice versa, some non-extreme
points of S may appear on the geodesic hull.

In this paper, we study the ways in which the set of extreme points of a given
set S can change with the shape of the polygon. We show that any subset B of
four or more points of S can become the extreme set of S (i.e., there exists a
polygon P such that EP (S) = B). Moreover, we can make them appear in any
predefined order along the boundary of the geodesic hull. We also characterize
when this property is fulfilled for sets of size 3. Finally, we show in Section 3
that the abstract order types that can be realized as geodesic order types are a
proper superset of the abstract order types realizable as Euclidean order types.
Specifically, we show that the non-realizable abstract order type derived from
Pappus’ Theorem via duality can be realized as a point set inside a polygon.

Our approach can also be seen as the class of inverse problems to the classic
questions for geodesic environments, where the polygon is usually part of the
input.

2 Geodesic Hull versus Convex Hull
In this section, we study how much the geodesic hull of a given point set can
alter from the Euclidean convex hull. We partition S into two sets of blue and
red points (B and R, respectively). A set B is said to be separable from R if
there exists a polygon with at most |B| convex vertices (i.e., a pseudo-|B|-gon)
that contains all points of R and no point of B in its interior. From now on, we
assume that the set S is fixed. Thus we omit writing “from R” and simply refer
to B as a separable point set. The following theorem draws a nice connection
between the separability of point sets and their geodesic hull.

Theorem 1. For any separable point set B and any permutation σ of B, there
exists a polygon P such that EP (S) = B and the clockwise ordering of B on the
boundary of CHP (S) is exactly σ.

Proof. Let k = |B| and P be a separating polygon of B. If P has strictly less
than k convex vertices, we introduce more by replacing any edge e by two edges,
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Figure 4: Illustration of the proof of Theorem 1: with a one-to-one correspon-
dence between the convex vertices c1, . . . , c7 of P and the points s1, . . . , s7 of
B, we can obtain a weakly simple polygon P ′ such that EP ′(S) = {s1, . . . , s7}
(left), which then can be transformed to a polygon (right).

adding a convex vertex arbitrary close to the center point of e. Thus, we assume
that P has k convex vertices c1, . . . , ck.

Let s1, . . . , sk be an arbitrary ordering of the vertices of B. For all i ≤ k, we
connect point si ∈ B to ci by a polygonal chain. Observe that we can always do
this in a way that no two chains cross. Now let P ′ be the union of P and the
polygonal chains; see Figure 4 (left). The union of geodesics connecting si with
si+1 (and sk with s1) exactly corresponds to the boundary of P ′. Moreover,
all points of R are in the interior of P ′. Notice that P ′ is not a polygon,
but a weakly simple polygon. As illustrated in Figure 4 (right), we obtain a
polygon from P ′ by transforming polygonal paths into narrow passages of width
at most ε (for a sufficiently small ε, and such that no blue point sees any other
blue point).

We now study the separability of a point set as a function of its size. Sur-
prisingly, the separability of the set B does not strongly depend on the set R.

Theorem 2. Any set B with cardinality |B| ≥ 5 is separable with a polygon
with at most 2|B| − 2 vertices.

In order to prove the above theorem, we first consider some simpler cases
and then show how to deal with larger point sets.

Lemma 1. Any set B of five points is separable.

Proof. It is well-known that any set of five points contains a convex quadrilateral
abcd that does not contain the fifth point e. The supporting lines of the edges
ab and cd cross due to the strong general position assumption (analogously for
the supporting lines of bc and da). These pairs of supporting lines define two
wedges that contain abcd, and at least one of them does not contain the fifth
point e (since their only region of intersection is the quadrilateral). W.l.o.g., let
this be the wedge defined by the supporting lines of ab and cd and let m be the
crossing point of its two supporting lines. Further, assume that m lies on the
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ray from a through b and that the supporting line of ab separates e from c and d;
see Figure 5 (left). We build two narrow polygonal spikes that contain the blue
points and end sufficiently far away from the point set. Each spike has a positive
aperture angle at its unbounded end and a sufficiently small aperture such that
it does not contain any red point. The first spike starts on the line through c
and d in a way that it contains c, d, and m. At m, the spike bends towards b
and a (with a slightly positive aperture angle). The second spike contains e, has
its bisector parallel to the supporting line of ab, and is directed in the opposite
direction of the first spike; see again Figure 5 (left). Let l and l′ be two lines
which are parallel to the supporting line of ab and slightly outside the convex
hull of S (one line on each side). Since, by construction, the bisectors of the (last
parts of the) two spikes are parallel to l and l′, the pair of rays emanating from
the end of each spike intersect l and l′. These intersection points become the end
points of the spikes. Thus, they form a convex quadrilateral containing all the
points of S, implying that the resulting polygon is a separating pseudo-5-gon;
see Figure 5 (right).

a b

c

d

m

e

l

l′

Figure 5: A set of five points is always separable. A narrow, bent spike can
be built around the empty convex quadrilateral of the set. A second spike is
chosen parallel to the first one and in opposite direction. Sufficiently far away,
the spike end points span a quadrilateral around the whole set.

Note that we can use the same construction when B consists of four points in
convex position. In such a case, we do not need the second spike (containing e),
and only place one convex vertex of the pseudo-4-gon on the supporting line of
ab in the opposite direction of the spike. If the three convex points on the convex
hull of the pseudo-4-gon are chosen sufficiently far away from the points of B,
the pseudo-4-gon will always cover the red point set. This implies Corollary 1.

Corollary 1. Any set B of four points in convex position is separable.

Remark. The separating polygon used in the above construction is likely
to have a “bad aspect ratio”, in the sense that its horizontal dilation is far
larger than the one of the convex hull of the point set. While examples can
be constructed where this cannot be avoided, we note that for subsets B of
cardinality ≥ 6, we might obtain more elegant separating polygons using a
different construction. In essence, that approach removes pairs of points of B
with thin wedges and uses a large enclosing triangle; see Figure 6 for an example.
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The complete construction requires some case analysis on the order type of the
point set, and is thus omitted.

r
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p′
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r
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p
p′ qq′

Figure 6: One case for a construction to obtain a more “nicely” shaped polygon
for |B| = 6.

Lemma 2. For any set B separable by a polygon P and a point q 6∈ S, the set
B ∪ {q} is separable by a polygon P ′ having at most two more vertices than P .

q

c

q > π

cv1q π(v1, c)

Figure 7: Proof of Lemma 2. Regardless of whether q is in ∂P , q sees c or a
reflex vertex v1, we can separate B ∪ {p}. In all of the above cases, at most one
convex vertex is added to P (as well as two edges).

Proof. Let P be the polygon that separates B. Clearly, if q 6∈ P , the same
polygon separates B ∪{q}. If q ∈ ∂P , it is easy to do a small perturbation to P
such that q is not contained in P anymore; see Figure 7 (left).

Thus, we assume that q is in the interior of P . Let c be any convex vertex
of P . If q sees c, we remove q from P by adding a small spike emanating
from c towards q; see Figure 7 (middle). In this operation we replace a single
convex vertex with two. Since we also increased the size of the set by one, the
separability invariant still holds.

It remains to consider the case in which q does not see c. Then, the geodesic
connecting q and c is of the form 〈q = v0, v1, . . . , vk = c〉 for some k ≥ 2. By
definition, q sees v1 and the interior angle ∠pv1v2 is larger than π (otherwise
we could connect q towards v2 directly). In this case we replace a reflex vertex
with two vertices, but only one of them will be convex; see Figure 7 (right).
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The class of polygons constructed in the proof of Lemma 1 will never have
more than 8 vertices. Moreover, by Lemma 2, each additional point of B will add
at most 2 additional vertices to the separating polygon. In particular, we will
always have a separating polygon P whose number of edges is at most 2|B| − 2,
which completes the proof of Theorem 2.

By definition, any point set of size 1 or 2 cannot be separated (since we
cannot construct a simple polygon with one or two convex vertices). Hence,
it remains to consider the cases in which |B| ∈ {3, 4}. Let d be the shortest
distance between any pair of blue points. We say that a set R ε-densely covers
B (for any ε > 0) if any wedge emanating from p ∈ B and not containing any
point of R inside a circle with center p and radius d/2 has an opening angle of
at most ε. Observe that, if R ε-densely covers B, no point of B can appear on
the boundary of CH(S). Moreover, if ε ≤ π/3, any convex region that contains
three or more blue points must contain a red point. Showing that for any set R
that ε-densely covers B (for some sufficiently small ε), B cannot be separated
from R, we obtain the following result.

Theorem 3. For any set B of three points or four points in non-convex position,
there exists a set R such that B is not separable from R.
Proof. We claim that for any set R that ε-densely covers B (for some sufficiently
small ε), B cannot be separated from R. Assume that this is not true, and let P
be a separating polygon. Since the red set R is ε-dense, every blue point must
be inside a pocket of P (where a pocket is a simple polygon defined by an edge
of CH(P ) and the sub-sequence of edges of P between the two vertices of that
edge).

If |B| = 3, the separating polygon has to be a pseudo-triangle, and every
pocket is a side chain of P . We define the aperture of a side chain as the inner
angle between the supporting lines of the first and the last edge of the side
chain. Since the red set is ε-dense, at most two blue points can be separated via
the same side chain, and thus there must be at least two side chains enclosing
blue points. Moreover, any such side chain has an aperture angle of at most ε.
Consider the angular turn at a vertex of P , i.e., the signed angular change of
direction when traversing the boundary of P . Recall that the sum of the angular
turns a simple polygon is 2π and observe that due to the aperture of the pockets,
the sum of the angular turns of the two pockets containing at least one blue
point is (−2π)+2ε. The angular turns of the three convex vertices can only add
an amount strictly smaller than 3π to that sum, which implies that we would
need a fourth convex vertex to close the polygonal chain.

We now consider the case |B| = 4. Recall each pocket of P is associated to
a sub-sequence of edges that starts and ends at convex vertices of P . Moreover,
convex vertices of P in such a sub-sequence (other than the endpoints) corre-
spond to reflex vertices of the pocket (and vice versa). Since CH(P ) must have
at least three vertices, P can have at most one single pocket that is non-convex
(and this situation can only happen when CH(P ) is a triangle).

As B is non-convex, any pocket containing all four blue points (and no red
point) would need at least two convex vertices. This implies that there have to
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be at least two pockets containing blue points. Let k be the number of pockets
of P that contain blue points, and let β1, . . . , βk be the number of blue points
contained in each pocket (in decreasing order).

k = 2, β1 = 3, β2 = 1 k = 3 k = 4

(a) (b) (c)

k = 2, β1 = 2, β2 = 2

v

u

w
c

(d) (e) (f)

Figure 8: Scheme of the possible configurations in which we can place four blue
points in up to four pockets. In all cases, we obtain a contradiction, hence a
separating polygon cannot exist.

Since
∑

i βi = 4 and βi ∈ {1, . . . , 3}, we distinguish between the following
cases (depicted in Figure 8):

Case k = 2, β1 = 3, β2 = 1. This case (depicted in Figure 8 (a)) is similar to
the case |B| = 3. As a pocket containing three points must have a con-
vex vertex, the convex hull of P has three vertices and the two pockets
containing the blue points must share a convex hull vertex (i.e., the side
chains associated to each pocket share an endpoint). One of the tree blue
points sharing a pocket must see both convex hull vertices of that pocket,
and therefore the aperture of that pocket is at most ε. As before, the sum
of angular turns is too small, and P cannot be closed without introducing
additional convex vertices.

Case k = 2, β1 = β2 = 2. First consider the case in which there is a pocket Q1

that is not convex. If Q1 does not contain a blue point or it contains a
blue point that sees the convex hull vertices of Q1, then we can argue in
the same way as in the case where |B| = 3 (since the two pockets will be
consecutive and each will have aperture at most ε, see Figure 8 (d)).
Otherwise, no blue point sees both convex hull vertices of Q1 (Figure 8
(e)). In this case, we know that both blue points inside Q1 see each other.
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≤ ε≤ π − α+ ε

α
≥ α− 2ε

≤ ε

b1
b2

Figure 9: Angles used in the proof that no pocket with a convex vertex con-
tains two blue points. Note that alternatively, the supporting line of b1b2 could
intersect b3b4.

v wc

b3

b4

Figure 10: No separating polygon can exist with two blue points in a pocket
with a convex vertex.

Let Q2 be the second pocket containing blue points. As in the previous
cases, we know that the aperture of Q2 is at most ε. Let u and v be
the convex hull vertices defining Q2 and let w be the third vertex of the
triangular convex hull of P . W.l.o.g., v and w define the pocket Q1. Let
b1 and b2 be the two vertices of B in the pocket Q2 and let b3 and b4 be
the ones in Q1. Further, let α > 0 be the smallest angle between b1b2 and
b3b4. We argue using bounds on the angles of the resulting polygon, see
Figure 9.

Since the angular turns have to sum up to 2π, we observe that the sum
of the inner angles of all convex hull vertices is at most ε. The smallest
angle between the convex hull edge vw and b1b2 is at most ε, since the
aperture of Q2 is at most ε, and the inner angle at v is at most ε, but
in the other direction. This implies that the angle between vw and b3b4
is at least α − ε. In particular, the supporting line of b3b4 intersects the
segment vw if we choose 2ε < α. W.l.o.g., let b3 and b4 be arranged in a
way that the ray from b3 through b4 intersects vw. Barring symmetries,
we have the situation shown in Figure 10. Let c be the convex vertex of P
in the pocket Q2. Observe that c has to be in the same closed half-plane
defined by the supporting line of vb4 as the edge vw, as otherwise b4 sees
both v and w or the boundary of P has another convex vertex between
v and c. Since c is separated from b3 by the supporting line of vb4, the
interior of the triangle defined by the supporting lines of vb4, b4b3, and
b3w is disjoint from P , and has an angle of at least α−2ε at b3. However,
this contradicts the assumed ε-density for a suitable choice of ε.

It remains to consider the case in which all pockets are convex. By the non-
convexity of B, pockets containing blue points cannot share an endpoint
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(Figure 8 (f)). However, in this case, the convex hull of the four pocket
endpoints cannot contain all points of R, implying that P cannot be a
separating polygon.

Case k ≥ 3. Regardless of how many points are on the convex hull of P , notice
that the pockets must share at least two endpoints (Figure 8 (b) and (c)),
and that all extreme vertices of P must be pocket endpoints. As the total
aperture angle of the three pockets cannot be larger than kε < π, the
polygon cannot be closed.

Figure 11: Two pseudo-triangles containing many red points such that the four
blue points are not separable. However, they are the extreme vertices w.r.t. some
polygon.

The example in Figure 11 shows a point set where the four blue points lie
on the geodesic hull but are not separable. This implies, in contrast to sets of
larger cardinality, that for |B| = 4, the concepts of separability and geodesic hull
are not equivalent. Thus, we switch back to the geodesic setting and consider
the remaining cases |B| ∈ {3, 4}.

Lemma 3. For any set S, any set B ⊂ S of four points, and any permutation σ
of B, there exists a polygon P such that EP (S) = B and the clockwise ordering
of B on the boundary of CHP (S) is exactly σ.

Proof. If the points of B are in convex position, then the statement follows
directly from Corollary 1 and Theorem 1. Thus, assume that B is not in convex
position. Consider a line l1 spanned by two of the extreme points of B, and a
line l2 that is parallel to l1 and passes through the third extreme point of B
(see Figure 12). We construct two pseudo-triangles P1 and P2, each with four
edges, with the following properties: (1) P1 has a convex and a reflex vertex on
l1, such that the reflex vertex is between the convex vertex and both blue points
on l1. (2) Accordingly, P2 has a convex and a reflex vertex on l2, such that the
reflex vertex is between the convex vertex and the blue vertex on l2. (3) Both,
P1 and P2, have a vertex between l1 and l2, and the edges connecting the convex
point on l1 (l2) to these vertices are parallel. (4) The non-extreme point of B
lies between P1 and P2. (5) All red points lie inside P1 or P2. Note that these
properties can always be fulfilled, as the convex points of the pseudo-triangles
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l1

l2

P1

P2

Figure 12: Construction for a polygon P with EP (S) = B based on two pseudo-
triangles that contain all red points (depicted with dots) and none of the blue
points (drawn as crosses).

can be far away, and thus the reflex angles can be made arbitrarily small and
the area covered by the pseudo-triangles can be arbitrarily “thick”.

As indicated in Figure 12, we can merge the two pseudo-triangles to form
a polygon by adding a narrow passage from a convex vertex of P1 to a convex
vertex of P2. To obtain our final polygon P with EP (S) = B in the desired
order, we proceed like in the proof of Theorem 1, connecting the blue points to
the four convex vertices of P1 and P2 that were not used for the passage between
P1 and P2.

If we combine this result with Theorems 1 and 2 we obtain the following
statement.

Theorem 4. For any set S, any set B ⊂ S of at least four points, and any
permutation σ of B, there exists a polygon P such that EP (S) = B and the
clockwise ordering of B on EP (S) is exactly σ.

We conclude this section by studying what happens when the set B has
cardinality three.

Theorem 5. Let B ⊂ S be a set with |B| = 3 such that B spans the geodesic
hull of S for some polygon P . Then B is separable.

Proof. Recall that the geodesic hull of S is a weakly simple polygon which has
all points of B on its boundary, and contains all points of S \ B in its interior.
Moreover, a vertex v of the geodesic hull can only be convex if (1) v ∈ B, or
(2) v is part of some weakly simple polygonal chain and thus coincides with
a reflex vertex of the geodesic hull. Thus, as |B| = 3, the geodesic hull must
consist of a pseudo-triangle ∆, possibly with polygonal chains attached to the
convex vertices of ∆, where each blue vertex corresponds to one convex vertex
of ∆; see Figure 13. By slightly shrinking ∆, we obtain a pseudo-triangle ∆′

still having all points of S \ B in its interior that leaves all points of B outside.
Thus ∆′ is a separating polygon for B.
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Figure 13: A set B ⊂ S with |B| = 3, and a polygon P (dark shaded) with
EP (S) = B (depicted ×). The geodesic hull is drawn light shaded.

|B| Pushable Separable
≤ 2 never (Def.) ⇔ never (Def.)

3 not always ⇔ (Thm. 1 and 4) not always (Thm. 3)
4 always (Thm. 3) ⇐ (Thm. 1) convex position: always (Cor. 1)

non-convex: not always (Thm. 3)
≥ 5 always (Thm. 4) ⇔ always (Thm. 2)

Table 1: Overview of results and relationship between pushable and separable.

Together with Theorem 3 the above result implies that there exist point sets
S with |B| = 3 such that B can not be used to define the geodesic hull of S. This
is in contrast to the fact that for any set with |B| ≥ 4 this is always possible.
Table 1 gives an overview of the obtained results and also shows the relation
between a set being ’pushable’ (meaning that there is a polygon such that B is
on the geodesic hull) and ’separable’ for different cardinalities of B.

3 Realizing the Non-Pappus Arrangement
By duality, every set of points in the d-dimensional Euclidean space corresponds
to an arrangement of hyperplanes in the same space (see e.g. [5] for details on
this mapping). This dual is incidence and order preserving. When traversing
a line u∗ in the plane, the order in which the lines v∗ and w∗ are crossed gives
the orientation of the corresponding point triple u, v, w in the primal setting [8].
Hence, the crossings in the line arrangement determine the order type of the
corresponding point set. An arrangement of pseudo-lines is a set of simple curves
such that each pair has exactly one point in common, and at this point the pair
crosses. The crossings in the pseudo-line arrangement define an abstract order
type. Obviously, if we can stretch the curves to straight lines without changing
the order of all crossings, we obtain a realization of the order type defined by
the crossings. This has been used in the exhaustive enumeration of point set
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order types [1]. However, for sets of size 9 or more, it is known that there exist
non-realizable abstract order types (i.e., pseudo-line arrangements that are non-
stretchable). The example for 9 pseudo-lines is based on the well-known Pappus’
Theorem [10, 14].

Using the axiomatic system of [12, p. 4], one can show that geodesic order
types are in fact a subset of abstract order types, i.e., of those that are defined
by pseudo-line arrangements. Let the predicate cc(u, v, w) be true whenever
the point triple (u, v, w) is oriented counterclockwise. We already observed that
cc(u, v, w)⇒ cc(v, w, u), cc(u, v, w)⇒ ¬ cc(u,w, v), and cc(u, v, w)∨cc(u,w, v).
Note that the latter holds since we require all points to be strictly inside the
surrounding polygon. What remains to show is that

cc(x, u, v) ∧ cc(x, v, w) ∧ cc(x,w, u)⇒ cc(u, v, w) and

cc(a, b, u) ∧ cc(a, b, v) ∧ cc(a, b, w) ∧ cc(a, u, v) ∧ cc(a, v, w)⇒ cc(a, u, w).

In other words, if x is left of π(u, v), π(v, w), and π(w, u) then CHP ({u, v, w})
is given by the sequence 〈u, v, w〉, and the points to the left of π(a, b) are in
transitive radial order around a. For the first of these statements, observe that
since x cannot be on the geodesic hull of the four points, it is inside the pseudo-
triangular region of the hull. Hence, it is easy to see that the implication is
analogous to the Euclidean setting. For the second implication, consider the
geodesics from a to u, v, and w. If they split at a, transitivity follows from the
analogy to the Euclidean setting. The same is the case if they split at the same
vertex r, as r is reflex. If, say, u splits first (the other case is symmetric), it is
clear that the orientation of (a, u, v) is the same as of (a, u, w). It follows that
all parts of the axiomatic system are fulfilled, and therefore all geodesic order
types are realizations of abstract order types (cf. [12, pp. 23–35]).

3.1 The Arrangement
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Figure 14: A non-stretchable pseudo-line arrangement derived from Pappus’
Theorem, adapted from [7, Fig. 5.3.2] (left). The transformed arrangement,
having all lines crossing line 1 first (right).

15



278 345 467 567 678
279 348 468 568 679

368 469 569
378 478 578
379 479 579

589

Table 2: All ascending counterclockwise point triples derived from the arrange-
ment.

The non-stretchable arrangement whose abstract order type we realize in
the geodesic setting is an adaption from the one shown in [7, p. 107]; see Fig-
ure 14 (left). It is well-known that this pseudo-line arrangement cannot be
stretched and thus the corresponding abstract order type cannot be realized
by a point set. From the correspondence between a straight line in the Eu-
clidean plane to a great circle in the sphere model of the projective plane, it
is easy to see that an arrangement is stretchable in the real plane if and only
if it is stretchable in the projective plane, provided that no pseudo-line in the
projective plane coincides with the line at infinity. We can therefore apply pro-
jective transformations to the arrangement without affecting its realizability.
In this way we transform the arrangement of [7] to the standard labeling ; see
Figure 14 (right) for the resulting drawing. Roughly speaking, the crossings of
a pseudo-line that happen before the crossing with l1 are “moved” to the other
side. Namely, these are the crossing of l9 with l8 and the crossings of l5 with
l9, l8, l7, and l6, in the given order. We do so in order to make all pseudo-lines
cross pseudo-line l1 before any other. In the primal, this corresponds to p1 being
on the convex hull boundary and points p2, . . . , p9 being sorted clockwise around
it. Note that this kind of projective transformation actually preserves the order
type. Table 2 shows all triples with ascending indices that have counterclock-
wise orientation (which easily allows obtaining the orientation of all triples).
For example, the entry “278” indicates that pseudo-line l2 crosses l8 before l7,
inducing counterclockwise orientation of the point triple p2p7p8 in the primal.

3.2 The Realization
Consider the point set S = {p1, . . . , p9} shown in Figure 15. The only triples
whose orientations do not match those indicated by Figure 14 are the permuta-
tions of p2, p7 and p9. Equivalently, one can say that the triangle defined by the
three points is the only one that has the wrong orientation among all triangular
subgraphs of the complete graph of S. This triangle is shown with thick (blue)
edges.

We already discussed how reflex vertices of a surrounding polygon can change
the orientation of a triple. The problem with this tool is that the polygonal chain
is likely to reorder other triangles as well. In the point set shown in Figure 15,
this tool can, however, be applied. We create a polygon P that contains S. The
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Figure 15: A point set that “almost” realizes the unrealizable arrangement. The
point triple spanning the thick blue triangle ∆p2p7p9 is the one for which the
orientation is wrong.

result of the construction is shown in Figure 16. We cross four edges during
this operation. Note that the geodesics π(p1, p9, P ) and π(p1, p8, P ) are now
no longer line segments, still the order defined by their end vertices has not
changed. The triple p2, p7, p9, however, is now oriented counterclockwise, as
demanded by the abstract order type. By checking all the point triples, the
reader can verify that this geodesic order type indeed realizes the abstract order
type of the non-Pappus arrangement.

Theorem 6. There exists a point set S and a polygon whose geodesic order type
realizes an abstract order type that is not realizable as a point set in the plane.

We note that our construction is minimal; that is, there cannot exist a
point set of nine points and a polygon of fewer vertices (than the one given in
Figure 16) that realize the non-Pappus arrangement.

There are 13 non-stretchable pseudo-line arrangements of 9 lines; all these
arrangements correspond to the same arrangement in the projective plane, i.e.,
the non-Pappus arrangement [14]. As already mentioned, the sphere model of
the projective plane shows that a pseudo-line arrangement in the Euclidean
plane is stretchable if and only if the corresponding arrangement in the projec-
tive plane is stretchable. We found one realization for one abstract order type of
the non-Pappus arrangement, however, we do not know whether the remaining
12 non-realizable abstract order types are realizable as a geodesic order type as
well.

4 Conclusion
In this paper, we made a first step into generalizing the concept of point set
order types to geodesic order types. For a selection of four or more points out of
a set S, we showed how to construct a polygon such that exactly these vertices
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Figure 16: A geodesic realization of the arrangement (right). The shortest
paths between the points are geodesics in the interior of the polygon (gray).
The region of interest is shown in detail in the middle. The polygon closes with
a convex vertex far on the right side, as indicated.

are on the geodesic hull of S, in any order desired. To the contrary, this is not
always possible for three points. We further showed an example of an abstract
order type that is not realizable in the Euclidean plane, but is realizable in
geodesic environments.

Several interesting questions rise from our investigations. Which bounds on
the number of vertices in the polygon that forces the desired geodesic hull can
we derive? What is the complexity of minimizing the number of vertices? Even
though we showed the realizability of the abstract order type derived from Pap-
pus’ Theorem, we have no general tools to realize order types inside polygons.
Can every abstract order type (which is non-realizable in the Euclidean plane)
be realized as a geodesic order type? And which of them can be realized in a
given polygon? If not all of them can be realized, does realizability of an order
type imply realizability of all abstract order types that correspond to the same
pseudo-line arrangement in the projective plane?
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