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Abstract

We provide a complete data base of all realizable order
types of 11 points in general position in the plane.
Moreover, we develop a novel and efficient method for
complete extension to (abstract) order types of size 12
and more. With our approach we have been able to
determine the exact rectilinear crossing number for
up to n = 17, and slightly improved the asymptotic
upper bound. We briefly discuss further applications
of this approach.

1 Introduction

A finite point set in the plane belongs to the most
common ingredients for computational and combi-
natorial geometry problems. For quite many, espe-
cially combinatorial problems, the exact metric prop-
erties are not relevant, but the combinatorial prop-
erties of the underlying point set play the main role.
More precisely, the crossing properties of the line seg-
ments spanned by the point set already determine
the problem. Triangulations, crossing numbers, con-
vexity problems are among other famous examples.
Order types provide a means to encode the combina-
torial properties of finite point sets. The order type
of a point set S = {p1, .., pn} is a mapping that as-
signs to each ordered triple (pi, pj , pk) an orientation.
Throughout this work we assume that S is in general
position, that is, the orientation of each point triple is
either clockwise or counter-clockwise. Two point sets
S1, S2 are of the same order type if and only if there is
a bijection between S1 and S2 such that either all (or
none) corresponding triples are of equal orientation.
To achieve results for point sets of fixed size for the

problems mentioned above, it is sufficient to check one
instance of each order type instead of looking at all
(infinitely many) point sets. A data base containing
all order types of size up to 10 already exists [2] and
has been applied fruitfully to many problems in com-
putational and combinatorial geometry [6].
Order types have played a crucial role in gather-

ing knowledge about crossing numbers. The cross-
ing number of a graph G is the least number of edge
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crossings attained by a drawing of G in the plane. We
consider the problem of finding the rectilinear (edges
are required to be straight line segments) crossing
number cr(Kn) of the complete graph Kn on n ver-
tices [12]. Determining cr(Kn) is commonly agreed to
be a difficult task, see [3] for references and details.
So far the exact values of cr(Kn) have been known
for n ≤ 12 [2, 3]. In Section 4 we extend this range to
n ≤ 17. Moreover, we also present an improvement
on the asymptotic upper bound of cr(Kn). Our re-
sults are available on-line [1]. We close with a brief
discussion of further applications of our approach.

2 Order type data base for n=11

A complete data base of order types for sets with up
to 10 points has already been established [2]. We
present an extension to this data base for point sets
of size 11. Our approach is strongly related to [2] and
uses improved techniques to cover the following three
steps, cf. [2] for the necessary concepts and definitions.

1. Generating a complete candidate list of abstract
order types

2. Grouping abstract order types into projective
classes and deciding realizability

3. Realizing all realizable order types by point sets
with ”nice” coordinate representation

For the first step, we acquired 2 343 203 071 in-
equivalent abstract order types. We only stored one
representative of each projective class explicitly at
this time. This evaluates to 41 848 591 abstract pro-
jective order types of size n = 11, see Table 1.
The second step - deciding realizability - is the hard-

est part of the construction. The trouble is, that this
decision problem is known to be NP-hard [13] and
no practical algorithms are known, not even for small
sets, say of size 10 or 11. We tried to find realizations
and started by applying refined versions of the heuris-
tic methods from [2] for each projective order type
class. These worked for most of the abstract order
types in question. For classifying non-realizable order
types, we used a well-known practical algorithm for
a non-realizability proof developed by Bokowski and
Richter [9]. To our benefit, the heuristics for finding
realizations and proving non-realizability were suffi-
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cient to completely settle the case for n = 11, see
Table 1.
The main goal of the third step is to store the data

base in an application friendly way. To this end, we
provide two representations of the data base. An
explicit version of the data base contains one point
set for each planar order type, all in 16-bit integer
representation.

projective abstract o.t. 41 848 591

− thereof non-realizable 155 214

= projective order types 41 693 377

abstract order types 2 343 203 071

− thereof non-realizable 8 690 164

= order types 2 334 512 907

Table 1: Number of order types of cardinality n = 11.

Supporting the reliability in the construction of our
data base, all algorithms to generate the complete
data base of abstract order types are of purely com-
binatorial nature. The applied methods for deciding
realizability are heuristics, but the acquired results
can be checked in a deterministic way.
The vast storage and the lack of applicability are

the two main reasons - apart from calculation time
- that we do not have a complete data base of order
types with 12 or more points.

3 Complete abstract point extension

For several problems and conjectures the complete
order type data base of sets of up to 11 points has
been sufficient to give a final answer, cf. [3]. How-
ever, many problems tend to be harder and cannot
be settled just by checking all cases for size up to
11. Still it looks highly plausible to gain significantly
more insight with a few additional points, say 12 or
13 points. To evade these obstacles we make use of
well-known theoretical results. For many problems on
point sets there exist inductive restrictions, so-called
subset properties.

Definition 1 (Subset property) Let Sn be an or-
der type consisting of n elements, n ≥ 4, and consider
some property that is valid for Sn. Then this property
is called a subset property if and only if there exists
some Sn−1 ⊂ Sn of n− 1 elements such that a similar
property holds for Sn−1.

Our general idea is to exploit subset properties for
order type based problems to obtain results beyond
point sets of size 11. First, we are applying the order
type data base to completely determine the problem
for point sets of small size, that is, up to n = 11.
This gives a set of result order types of cardinality

11, all realized by point sets. Next, we enumerate
all order types of size 12 that contain one of the 11-
point result order types as a subset. Applying the
subset property, we are able to filter these 12-point
order types. Only order types that fulfill the subset
property are kept. Then we repeat this procedure,
theoretically extending the set of result order types
to arbitrary n.
For this technique, we require an algorithm that

calculates for a given order type of cardinality n all
(n+1)-point order types that contain the input order
type as a sub-order type. We call this step complete
point extension. It is well known that an extension
technique relying only on the geometric realizations
of the data base cannot guarantee completeness of
the extension, see Figure 1. For a specific n-point
realization of an order type we cannot derive all
required n+1 order types just by adding a new point
to this realization. To achieve completeness of the
extension, we use an abstract extension method, that
is, applying a combinatorial extension technique. We
provide a one-element extension to an abstract order
type by adding a pseudoline to the dual pseudoline
arrangement in all combinatorially possible ways.

Figure 1: Two realizations of the order type of five
points in convex position. Only the right point set
can be extended in a way such that the resulting point
set has three points on its convex hull.

For specific applications with a subset property, we
define an order type extension graph. In this graph
each order type is represented by a node. For each
order type of size n + 1 (son), there is exactly one
connection by an edge to a predecessor sub-order type
of size n (father). By this definition we have that each
order type corresponds to a unique predecessor order
type by removal of a single point. On the other hand,
an extension process that only extends corresponding
to the edges of an order type extension graph (from
father to son) enumerates each extended order type
exactly once.
In general, the algorithm of complete abstract

point extension extends one input order type point
by point, then continuing on the remaining set of
order types. After extension with one abstract point,
we check if the created order type of size n+ 1 (son)
has the initial order type of size n as its predecessor
order type (father) in the order type extension graph.
Only if this is the case we keep it as a candidate
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for the output. The very general approach with
the order type extension graph guarantees to avoid
duplicates in the construction process, thus it can
be used for recursive enumeration techniques, known
as reverse search, cf. Avis and Fukuda [7]. An
additional benefit of this technique is that it can be
applied iteratively, i.e., extending from n points to
n+ 1, n+ 2, and so on, without storing intermediate
results. In fact, only the order types corresponding
to a single path of the order type extension graph
have to be kept in memory, that is, the edges
describing the father-son relationship between order
types of size n, n + 1, n + 2, and so on. This allows
calculations which otherwise would not be possible
because of enormous storage requirements for inter-
mediate steps. In addition, applications based on
the order type extension graph are easily executed in
parallel. Thus, highly time intensive problems may
be settled through distributed computing approaches.

4 New Rectilinear Crossing Numbers

4.1 Subset Property for cr(Kn)

The next two well-known lemmas (see e.g. Guy [11]
for references) provide the necessary relations to ob-
tain a subset property for cr(Kn).

Lemma 1 cr(Kn) ≥ � n
n−4 cr(Kn−1)

Corollary 2 (Crossing number subset prop-
erty) For any drawing of Kn with c crossings there
exists at least one sub-drawing Kn−1 with at most
�n−4

n c� crossings.

Lemma 3 Let n ∈ N be odd. Consider a straight-
line drawing of Kn with c crossings. Then: c ≡(
n
4

)
(mod 2).

A drawing of K13 with 229 (or fewer) crossings con-
tains at least one sub-drawing K12 with � 9

13 229� =
158 (or fewer) crossings. Recursive application shows
that there exists a sub-drawing of size 11 with
� 8

12 158� = 105 crossings. By the parity property we
can further reduce the number of crossings for the 11-
point subset to at most 104. Thus to achieve a data
base of all order types of size 13 with 229 (or fewer)
crossings, one can start with a complete data base of
order types of size 11 defining drawings of Kn with at
most 104 crossings, i.e., either 102 or 104 crossings.

4.2 Results on cr(Kn) for n ≥ 12

Using the crossing number subset property, we were
able to calculate the rectilinear crossing numbers for
n = 12, ..., 17, see Table 2.

n 12 13 14 15 16 17

cr(Kn) 153 229 324 447 603 798

dn 1 4 534 20 16 001 36 ≥ 37269

Table 2: cr(Kn) for n = 12, ..., 17.

The numbers dn of inequivalent drawings of Kn

minimizing the number of crossings are given in the
last row of Table 2. To obtain these numbers we
had to perform the more challenging task of decid-
ing the realizability of the calculated abstract order
types. Our heuristics - see Section 2 - found realizing
point coordinates for all optimal abstract drawings for
n ≤ 16. Thus, the calculated values are exact. Note
that the numbers of inequivalent optimal drawings
of Kn follow a parity pattern. There are relatively
few drawings of Kn with cr(Kn) crossings for even n
compared to the case of odd n. This property is the
main reason that allows complete abstract extension
to work so well, as the problem itself cuts down on
the number of interesting sets periodically.
In addition to new results on cr(Kn) for constant n,

we also achieved an improvement on the asymptotic
upper bound. We constructed a set of 54 points with
115999 crossings such that with the strategy of lens re-
placement [3] we were able to prove the next theorem.
The previously best known bound was ν∗ < 0.38074,
whereas ν∗ > 0.37533 still holds as a lower bound [8].

Theorem 4 ν∗ = limn→∞ cr(Kn)/
(
n
4

)
< 0.38058

5 Further Applications

5.1 Happy End Problem

Erdös and Szekeres asked in 1935 for the smallest
number g(k), such that each point set in the plane
with at least g(k) points contains a convex k-gon [10].
For k > 5 this problem is still unsolved, where it is
known that g(6) ≤ 37. The conjecture is that the
true value for g(6) is 17. To answer this conjecture
our plan is to apply our abstract extension technique
in order to obtain all sets without empty convex
hexagons for n ≤ 17. If we cannot find a set for
n = 17 this will prove the conjecture to be true. The
subset property for this problem is obvious: any n−1
point subset of a set of n points to be considered
must not contain a convex hexagon.

5.2 Decomposition

Similar to the convex-decomposition problem of
decomposing a point set into convex polygons one
might allow the resulting faces to be either convex
polygons or pseudo-triangles [4]. When investigating
this problem it turned out to be important to know
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optimal decompositions of small sets. In this context
we asked for independent (disjoint) empty convex
polygons spanned by the set. Let us briefly mention
two results we got from the data base, see [4] for
details. First: Any set of 8 points contains either an
empty convex pentagon or two independent empty
convex quadrilaterals. And with a similar flavor:
Any set of 11 points contains either an empty convex
hexagon or an independent empty convex pentagon
and an empty convex quadrilateral. The mentioned
results directly lead to an upper bound of 7n/10 for
the number of convex or pseudotriangular faces used
to decompose a set of n points.

5.3 Counting Triangulations

Counting the number of triangulations of a set of
points in the plane is another interesting geometric
problem. Exact numbers, using our data base, are
known for all sets with n ≤ 11 points. The best gen-
eral asymptotic lower bound for this problem is based
on these results for small sets [5]. To improve the
bound it will be useful to obtain a tight lower bound
for n = 12, 13, .... As a subset property for this task
we can use the fact that adding an interior point to
a given set increases the number of triangulations by
some constant factor.

6 Open Problems

The next steps of our investigation will be to com-
pute cr(K18). The possible range for cr(K18)
is {1026, 1027, 1028, 1029}, where our conjecture is
cr(K18) = 1029. Using heavy distributed comput-
ing we consider this task to be realistic in the near
future.
An interesting open problem is whether there al-

ways exists at least one optimal drawing of Kn which
contains an optimal sub-drawing of Kn−1. A poten-
tial counter-example is n = 18, as all 17-point subsets
of the only known drawing of K18 with 1029 crossings
determine more than cr(K17) = 798 crossings.
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