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On 5-gons and 5-holes
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Abstract. We consider an extention of a question of Erdős on the number of k-gons in a set of n points
in the plane. Relaxing the convexity restriction we obtain results on 5-gons and 5-holes (empty 5-gons).

Introduction

Let S be a set of n points in general position in the plane. A k-gon is a simple polygon
spanned by k points of S. A k-hole is an empty k-gon, that is, a k-gon which does not
contain any points of S in its interior.

Erdős [9] raised the following questions for convex k-holes and k-gons. “What is the
smallest integer h(k) (g(k)) such that any set of h(k) (g(k)) points in the plane contains
at least one convex k-hole (k-gon)?”; and more general “What is the least number hk(n)
(gk(n)) of convex k-holes (k-gons) determined by any set of n points in the plane?”.

As already observed by Esther Klein, every set of 5 points determines a convex 4-hole
(and thus 4-gon). Moreover, 9 points always contain a convex 5-gon and 10 points always
contain a convex 5-hole, a fact proved by Harborth [12]. Only in 2007/08 Nicolás [14]
and independently Gerken [11] proved that every sufficiently large point set contains a
convex 6-hole, and it is well known that there exist arbitrarily large sets of points not
containing any convex 7-hole [13]; see [2] for a brief survey.

In this paper we concentrate on 5-gons and 5-holes and generalize the above questions
by allowing a 5-gon/5-hole to be non-convex. Thus, when referring to a 5-gon/5-hole, it
might be convex or non-convex and we will explicitly state it when we restrict consid-
erations to one of these two classes. Similar results for 4-holes can be found in [3]. For
4-gons there is a one-to-one relation to the rectilinear crossing number of the complete
graph, and thus results can be found in the respective literature.

A set of five points in convex position obviously spans precisely one convex 5-gon.
In contrast, already a set of only five points (with three extremal points) can span eight
different 5-gons; see Figure 1(left). This makes the considered questions more challenging
(and interesting) than they might appear on a first glance.

Due to space limitations all proofs are omitted in this extended abstract.

1 Small sets

For small point sets, Table 1 shows the numbers of 5-gons and 5-holes, respectively.
Given are the minimum number of convex 5-gons/5-holes, the maximum number of non-
convex 5-gons/5-holes, the minimum and maximum number of (general) 5-gons/5-holes,
and, for easy comparison, the number of 5-tuples.

For counting convex 5-gons/5-holes it is easy to see that their number is maximized
by sets in convex position and gives

(

n

5

)

. Of course these sets do not contain any non-
convex 5-gons/5-holes. From Table 1 we also see that the minimum number of general
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numbers of 5-gons numbers of 5-holes
convex non-convex general convex non-convex general

n
min max min max min max min max

(

n

5

)

5 0 8 1 8 0 8 1 8 1
6 0 48 6 48 0 31 6 31 6
7 0 156 21 157 0 76 21 77 21
8 0 408 56 410 0 157 56 160 56
9 1 900 126 909 0 288 126 292 126

10 2 1776 252 1790 1 492 252 501 252
11 7 3192 462 3228 2 779 462 802 462

Table 1. The number of 5-gons and 5-holes for n = 5...11 points.

5-gons and 5-holes is
(

n

5

)

for 5 ≤ n ≤ 11. While for 5-gons this is obviously true in
gerneral (a convex 5-tuple has exactly one polygonization, while a non-convex 5-tuple
has at least four), this is not the case for 5-holes. In fact, we will show that for sufficiently
large n, the convex set maximizes the number of 5-holes; see Theorem 3.6.

2 5-gons

The rectilinear crossing number c̄r(S) of a set S of n points in the plane is the number
of proper intersections in the drawing of the complete straight line graph on S. It is easy
to see that the number of convex 4-gons is equal to c̄r(S) and is thus minimized by sets
minimizing the rectilinear crossing number, a well known, difficult problem in discrete
geometry; see [7] and [10] for details. Tight values for the minimum number of convex
4-gons are known for n ≤ 27 points; see e.g. [1]. Asymptotically we have at least c4

(

n

4

)

=

Θ(n4) convex 4-gons, where c4 is a constant in the range 0.379972 ≤ c4 ≤ 0.380488. As
any 4 points in non-convex position span three non-convex 4-gons, we get 3

(

n

4

)

−3c̄r(S)

non-convex and 3
(

n

4

)

−2c̄r(S) general 4-gons for a set S. Thus, sets which minimize the
rectilinear crossing number also minimize the number of convex 4-gons, and maximize
both the number of non-convex 4-gons and the number of general 4-gons.

Surprisingly, a similar relation can be obtained for the number of non-convex 5-gons.
To see this, consider the three combinatorial different possibilities (order types) of ar-
ranging 5 points in the plane, as depicted in Figure 1(right). The proof of the following
theorem is based on relations between the number of 5-gons and the numbers of crossings
of these configurations.

Theorem 2.1 Let S be a set of n ≥ 5 points in the plane in general position. Then S

contains 10
(

n

5

)

− 2(n − 4)c̄r(S) non-convex 5-gons.

Taking the constant c4 for the rectilinear crossing number into account, we see that
asymptotically we can have up to 10

(

n

5

)

− 2(n − 4)c4
(

n

4

)

= 10(1 − c4)
(

n

5

)

non-convex 5-
gons. This number is obtained for point sets minimizing the rectilinear crossing number
and by a factor ≈ 6, 2 larger than the maximum number of convex 5-gons.

For the number of convex 5-gons, no simple relation to the rectilinear crossing number
is possible: There exist two different sets (order types) S1 and S2, both of cardinality 6
with 4 extremal points, with c̄r(S1) = c̄r(S2) = 8, where S1 contains one convex 5-gon,
while S2 does not contain any convex 5-gon.
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Figure 1. Left: The eight different (non-convex) 5-gons spanned by a
set of five points with three extremal points. Right: The three order types
for n = 5. For each set its number of different 5-gons and the number of
crossings for the complete graph is shown.

3 5-holes

3.1 A new lower bound for the number of convex 5-holes

Let h5(S) denote the number of convex 5-holes of a point set S, and let h5(n) =
min|S|=n h5(S) be the number of convex 5-holes any point set of cardinality n has to

have. The best upper bound h5(n) ≤ 1.0207n2+ o(n2) can be found in [6]. The previous
best lower bound h5(n) ≥ ⌊n−4

6
⌋ has been obtained by Bárány and Károlyi [5].

Here we give a slight improvement on this bound, which still remains linear in n. It
is based on an observation by Dehnhardt [8] that every set of 12 points contains at least
three convex 5-holes.

Theorem 3.1 Let S be a set of n ≥ 12 points in the plane in general position. Then

h5(n) ≥ 3⌊n−4

8
⌋

3.2 A lower bound for the number of (general) 5-holes

We obtained the following observation for general 5-holes by checking all 14 309 547
according point sets from the order type data base [4].

Observation 3.2 Let S be a set of n = 10 points in the plane in general position, and

p1, p2 ∈ S two arbitrary points of S. Then S contains at least 34 5-holes having p1 and

p2 among their vertices.

This observation implies the following result, using a similar approach as in [3].

Theorem 3.3 Let S be a set of n ≥ 10 points in the plane in general position. Then S

contains at least 17n2 −O(n) 5-holes.

3.3 Maximizing the number of (general) 5-holes

The results for small sets shown in Table 1 suggest that the number of (general) 5-holes is
minimized by sets in convex position. We not only show that this is in fact not the case,
but rather prove the contrary: For sufficiently large n, sets in convex position maximize
the number of 5-holes.

Lemma 3.4 A point set S with triangular convex hull and i interior points contains at

most (4i+5) 5-holes which have the three extreme points among their vertices.

Lemma 3.5 Let Γ be a non-empty convex quadrilateral in S. There are at most four

5-holes spanned by the four vertices of Γ plus a point of S in the interior of Γ.
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Considering the size of the convex hull of each 5-tuple, these two lemmas lead to the
following theorem.

Theorem 3.6 For n ≥ 86 the number of 5-holes is maximized by a set of n points in

convex position.

4 Conclusion

In this abstract we presented several results for a variant of a classic Erdős-Szekeres
type problem for the case of 5-gons and 5-holes. The following questions remain open:
What is the maximum number of general 5-gons and of non-convex 5-holes? Is there
a super-linear lower bound for the number of convex 5-holes (cf. Theorem 3.1) or a
super-quadratic lower bound for the number of general 5-holes (cf. Theorem 3.3)?
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