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Abstract

For a given point set S (in general position), two
pointed pseudo-triangulations are compatible if their
union is plane. We show that for any set S there exist
two maximally disjoint compatible pointed pseudo-
triangulations, that is, their union is a triangulation
of S. In contrast, we show that there are point sets S
and pointed pseudo-triangulations T such that there
exists no pointed pseudo-triangulation that is compati-
ble to and different from T .

1 Introduction and Preliminaries

Let S be a set of n (labeled) points in the Euclidean
plane in general position, that is, no three points of S
lie on a common line. We denote the convex hull
of S with CH(S), with h the number of extreme points
of S, that is, the points of S that are on the boundary
of CH(S), and with i = n−h the number of non-extreme
(interior) points of S.

Let G = (S,E), E ⊆ (S × S), be a geometric (or
straight-line) graph whose vertex set is S, and whose
edges are straight-line segments spanned by points of S.
In the following we will solely consider straight-line
graphs and thus simply refer to them as graphs. A graph
is called plane, if no two of its edges cross (i.e., share a
point p 6∈ S).

Two plane straight-line graphs G = (S,E) and G′ =
(S,E′) on top of (the same) point set S are compatible,
if their union G∪G′ = (S,E∪E′) is plane. Accordingly,
we call an edge e ∈ (S×S) compatible (to G) if (S,E ∪
{e}) is a plane graph. For recent work on compatible
graphs see e.g. [1] and references therein. An overview
of results with different types of graph compatibility can
be found in [2].

A pseudo-triangle is a simple polygon which has
exactly three corners (vertices with interior angle
smaller than π). A path along the boundary of a
pseudo-triangle that has two of the corners as end
points and does not contain the third one is called a
side-chain of this pseudo-triangle, and the non-incident
corner is called opposite (to this side-chain). A pseudo-
triangulation T = (S,E) is a plane straight-line graph
on top of S whose edges partition the convex hull CH(S)
into pseudo-triangles.
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A vertex p ∈ S in a pseudo-triangulation T is called
pointed (towards a face f of T ), if p is a reflex vertex
in f and thus has an incident angle larger than π with-
out emanating edges. The whole pseudo-triangulation
is called pointed, if all its vertices are pointed. Note
that for any pseudo-triangulation, all extreme vertices
of S are pointed towards the outer face.

Pseudo-triangulations have been first introduced by
Pocciola and Vegter [3] in a more general framework and
by Streinu [5] in the context of geometric graphs. They
are a rather young structure, with interesting properties
and applications. See the recent survey [4] and refer-
ences therein.

Streinu [6] showed that pointed pseudo-triangulations
are minimal pseudo-triangulations, and at the same
time they are maximal pointed plane straight-line
graphs (where minimal and maximal is with resprect
to the number of edges). Further, any pointed pseudo-
triangulation on top of a point set S with n points has
2n − 3 edges, independent of the number of interior
points of S.

Proposition 1 If two pointed pseudo-triangulations
T = (S,E) and T ′ = (S,E′) of a point set S are com-
patible, then they differ by at most i edges: |E\E′| =
|E′\E| ≤ i.

Proof. The number of edges in any pointed pseudo-
triangulation of a point set S with n points is 2n − 3.
As S has i interior and h = n − i extreme points, the
number of edges in any maximal plane graph (triangu-
lation) of S is 3n−h−3 = 2n+ i−3. Thus, considering
an arbitrary pointed pseudo-triangulation T of S, the
number of edges that can be added to obtain a maxi-
mal plane graph is 2n+ i− 3− 2n+ 3 = i. This implies
that any plane straight-line graph compatible with T ,
and thus also any such pointed pseudo-triangulation,
can have at most i edges that are not in T . �

We call two pointed pseudo-triangulations T = (S,E)
and T ′ = (S,E′) maximally disjoint compatible, if their
union T ∪ T ′ = (S,E ∪ E′) is a triangulation of S. In
other words, T and T ′ differ by exactly i edges.

2 Two Compatible Pointed Pseudo-Triangulations

We start with the following question. Given a point
set S with n points, can we find two compatible
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pointed pseudo-triangulations which are maximally dis-
joint? Recall that maximally disjoint means that the
two pointed pseudo-triangulations have exactly 2n−3−i
edges in common, where i is the number of interior
points of S.

Theorem 2 For every point set S with n points,
i of them interior, there exist two pointed pseudo-
triangulations T1 = (S,E1) and T2 = (S,E2) such
that T1 and T2 are maximally disjoint compatible, that
is, |E1\E2| = |E2\E1| = i.

Proof. We prove the statement by construction of the
two pointed pseudo-triangulations T1 and T2 by itera-
tively adding edges. We color edges of T1 blue (dashed),
those of T2 red (dotted), and edges that are in both, T1

and T2, black (solid), see Figures 2-4. For the sake of
brevity we sometimes refer to edges belonging to T1, T2,
or both, by their color.

Assume that S has a triangular convex hull pqr, and
i > 0 interior points1. We start by adding the bound-
ary of the convex hull to both, T1 and T2. Now choose
an extreme point p ∈ S, and consider the boundary
of the convex hull of S\{p}, consisting of the edge qr
and a concave chain C connecting q and r in the inte-
rior of CH(S). The chain C together with p forms a
pseudo-triangle with corners pqr that does not contain
any point of S in its interior, see Figure 1.
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Figure 1: Empty pseudo-triangle (shaded) formed by p
and the chain C (dashed).

For our construction, we add black edges from q to
all points of C except r (to both T1 and T2), red edges
from p to all points of C except q and r (to T2), and
all edges on the chain C (except the one incident to q)
with color blue (to T1). See Figure 2 for the set of edges
added in this step.

The union of T1 and T2 splits CH(S) into a set of
triangles. Each triangle that contains further points of S
in its interior has q as one corner, two of the triangle

1If S has more than three extreme points, we first triangu-
late these extreme points arbitrarily (adding the edges to both,
T1 and T2), and then process each resulting non-empty triangle
independently.
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Figure 2: First step of adding edges to T1 and T2.

edges are black, and the third is blue. In each such
triangle, one of the corners adjacent to the blue edge
becomes pointed in the whole graph when removing this
blue edge. We mark this corner red (indicated by a small
arc in the figures).

We consider these triangles iteratively, in a similar
way as the starting triangle. Throughout the process we
keep the following invariants for each interior triangle ∆:
q is a corner of ∆ and both triangle edges incident to q
are black. One of the other two corners is marked with
color c′∆ ∈ {red, blue} (red after the first step). Let this
colored corner be p∆ and the remaining corner r∆. The
triangle edge p∆r∆ has the color c∆ ∈ {red, blue}\{c′∆}
(blue after the first step).

Let S∆ ⊂ S be the set of points inside ∆ plus the
corners of ∆. Like in the first step, we consider the
chain C∆ on the convex hull of S∆\{p∆}. We add black
edges from q to all points of C∆ except r∆, edges with
color c∆ from p∆ to all points of C∆ except q and r∆,
and all edges on the chain C∆ (except the one incident
to q) with color c′∆. Inside every nonempty triangle, we
mark the corner that becomes pointed in T1 ∪ T2, when
removing the c′∆-colored triangle edge, with color c∆.
See Figure 3 for one iterative step (inside the shaded
triangle).
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Figure 3: Iterative construction step.

The construction results in a red-blue-black colored
triangulation of S, and thus T1 and T2 are compatible.

Concerning the pointedness of the interior points of S,
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note that in each construction step, all points on the
chain C∆ (except q and r∆) become pointed towards p∆

with respect to color c′∆. This pointedness cannot be de-
stroyed in further recursive steps because there is noth-
ing left to be processed between C∆ and p∆ (see again
Figure 3). With respect to color c∆, each point on C∆

(except q and r∆) is pointed towards one of its adja-
cent c′∆-colored edges on C∆. If the according triangle
is not empty then the point is marked with c∆ for the
next iteration and thus cannot get any additional in-
cident c∆-colored edges in the relevant area. Thus all
points of S are pointed in both T1 and T2.

Finally, every interior point of S appears on ex-
actly one chain C∆ as non-endpoint. For every non-
endpoint of a chain C∆, exactly one red, one blue,
and one black edge is added, which, including the ini-
tial three black edges on the convex hull of S, adds
up to |E1| = |E2| = 2n − 3. Together with point-
edness and planarity, this proves that T1 and T2 are
pointed pseudo-triangulations. Figure 4 shows the two
resulting maximally disjoint compatible pointed pseudo-
triangulations. �
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Figure 4: Two maximally disjoint compatible pointed
pseudo-triangulations.

3 Compatible Pointed Pseudo-Triangulations for a
given Pointed Pseudo-Triangulation

We now consider a more restrictive setting. Given
a point set S and a pointed pseudo-triangulation
T = (S,E), can we find a pointed pseudo-triangulation
T ′ = (S,E′), such that T and T ′ are compatible and
differ by at least k edges for some k ≥ 1?

Before giving a general answer to this question, let
us introduce the concept of flips. A flip in a pointed
pseudo-triangulation T = (S,E) is the exchange of an
edge e ∈ E by an edge e′ ∈ (S × S)\E such that the
resulting graph T ′ = (S,E\{e}∪{e′}) is again a pointed
pseudo-triangulation. The flip is called compatible flip
if e′ is compatible with T .

In a pointed pseudo-triangulation, every edge e that
is not a convex hull edge is flippable, and there is a
unique edge e′ to which e can be flipped [4].

Two questions naturally arise. Given a point set S
and a pointed pseudo-triangulation on top of S, can
we always perform a compatible flip? And if this is
true, is the flip graph of pointed pseudo-triangulations
(w.r.t. compatible flips) connected, that is, can we
flip any pointed pseudo-triangulation to any other by
only using compatible flips? Note that this is true in
the unrestricted case [4]. Unfortunately, for compatible
flips the answer to both questions is negative. There
exist point sets (also with interior points) and pointed
pseudo-triangulations that do not admit any compat-
ible flip. Thus the according flip graph is not con-
nected (as it has isolated vertices). Figure 5(left) shows
a small point set and a pointed pseudo-triangulation
(black/thin lines) which does not admit any compati-
ble flip. The only compatible edge in this example is
drawn in red/bold. As the interior point has two inci-
dent edges on each side of the dotted line, adding the
red edge and removing one black edge always leaves this
point non-pointed and thus the resulting graph is not a
pointed pseudo-triangulation.

Figure 5: Point sets and pointed pseudo-triangulations
that do not admit any compatible flip.

Figure 5(right) contains a more complex example,
showing that the basic concept of the small example
can be used to build point sets with many interior points
and according pointed pseudo-triangulations such that
not a single edge can be compatibly flipped. Again, the
black/thin edges form a pointed pseudo-triangulation.
The red/bold edge, as well as all other compatible edges,
cannot be part of any compatible flip.

Actually, the example in Figure 5(right) can be mod-
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ified to contain an arbitrary number of (at least six)
points. In the interior, it contains the graph from Fig-
ure 5(left) as a subgraph (the central triangle plus two
of the adjacent triangles plus the pseudo-triangle adja-
cent to these triangles). Starting from this subgraph, we
can iteratively make the example larger by adding first
the last missing triangle, and then the desired number
of pseudo-triangles (with the only restriction that one
layer of pseudo-triangles has to be completed before the
next one is started).

Corollary 3 For every n ≥ 6 and i ≤ max{1, n− 6},
there exists a point set S with n points, i of them
interior, such that there exists a pointed pseudo-
triangulation for S that does not admit any compatible
flip.

In the graphs from Figure 5, every interior vertex p
has degree four. Further, for each p and each compat-
ible edge e = pq, the supporting line of e partitions
the edges incident to p into two groups such that each
group contains two edges. This provides the argument
for why none of the compatible edges can be involved
in a compatible flip.

Using the contrary argumentation, we can derive suf-
ficient conditions for compatibly flippable edges.

Proposition 4 Given a pointed pseudo-triangulation
T = (S,E) and a compatible edge e = pq ∈ (S × S)\E
that destroys the pointedness of p but not of q, consider
the two non-empty subsets into which the set of incident
edges of p is split by the supporting line of e. If one of
these subsets contains only one edge e′, then e′ can be
flipped to e in a compatible way.

Proof. Consider the two pseudo-triangles ∆1 and ∆2

that are incident to e′ and the corners c1 of ∆1 and c2
of ∆2 that are opposite to the side-chains on which e′

lies. As the edge e does not destroy the pointedness of q,
and as e′ is the only edge incident to p on one side of the
supporting line of e, e lies on the geodesic from c1 to c2
in ∆1 ∪∆2\e′. Thus e′ is flippable to e in a compatible
way. �

Corollary 5 A necessary condition for a pointed
pseudo-triangulation T = (S,E) to not admit a com-
patible flip is that every interior point p of S has vertex
degree d(p) ≥ 4 in T . Every point with vertex degree
d(p) ≤ 3 has at least one incident edge that can be com-
patibly flipped.

Proof. We have seen in the arguments for Corollary 3
that a vertex with degree four might not admit any
compatible flip. In the other direction, if T contains
vertices with degree less than four, consider such a ver-
tex p and the pseudo-triangle ∆ in which p is pointed.
The geodesic from p to its opposite corner in ∆ spans

a compatible edge e = pq that destroys the pointedness
of p and does not destroy the pointedness of q. The
line through this edge e has at least one side with only
one edge e′ incident to p, and thus e′ can be compatibly
flipped to e. �

Let us come back to the question of compati-
ble pointed pseudo-triangulations. Consider again
the example in Figure 5(left). Any pointed pseudo-
triangulation on top of this point set that contains the
red/bold edge must not contain two of the black/thin
edges in order to keep the interior vertex pointed. Thus
it has to also contain another non-black edge. But any
non-black edge on top of S, except for the red one, is
incompatible to the black pointed pseudo-triangulation.
Accordingly, in the example in Figure 5(right), none of
the compatible edges can be part of a pointed pseudo-
triangulation compatible to the black one.

Corollary 6 For every n ≥ 6 and i ≤ max{1, n− 6},
there exists a point set S with n points, i of them
interior, such that there exists a pointed pseudo-
triangulation T = (S,E) that is incompatible to any
pointed pseudo-triangulation T ′ = (S,E′) with E′ 6= E.
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C. Huemer, F. Hurtado, M. Kano, A. Márquez, D. Rap-
paport, S. Smorodinsky, D. Souvaine, J. Urrutia, and
D. Wood. Compatible geometric matchings. Compu-
tational Geometry: Theory and Applications, 42(6-
7):617–626, 2009.

[2] C. Huemer. Compatible Geometric Graphs: Problems
on Trees and Matchings. Ph.D. Thesis, Graz University
of Technology, 2008.

[3] M. Pocchiola and G. Vegter. The visibility complex. In-
ternat. J. Comput. Geom. Appl., 6(3):279–308, 1996.
ACM Symposium on Computational Geometry (San
Diego, CA, 1993).

[4] G. Rote, F. Santos, and I. Streinu. Pseudo-
Triangulations – a Survey. Contemporary Mathematics,
453:343–410, 2008. American Mathematical Society.

[5] I. Streinu. A combinatorial approach to planar non-
colliding robot arm motion planning. In 41st Annual
Symposium on Foundations of Computer Science (Re-
dondo Beach, CA, 2000), pages 443–453. IEEE Com-
put. Soc. Press, Los Alamitos, CA, 2000.

[6] I. Streinu. Pseudo-triangulations, rigidity and mo-
tion planning. Discrete and Computational Geometry,
34:587–635, 2005.


