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Abstract

Two plane graphs with the same vertex set are com-
patible if their union is again a plane graph. We
consider bichromatic plane straight-line graphs with
vertex set S consisting of the same number of red
and blue points, and (perfect) matchings which are
compatible to them. For several different classes C
of graphs, we present lower and upper bounds such
that any given graph G(S) ∈ C admits a compatible
(perfect) matching with this many disjoint edges.

1 Introduction

We consider bichromatic point sets S = R ∪B where
the red set R and the blue set B have the same cardi-
nality n. An edge spanned by two points of S is called
bichromatic, if it has one red and one blue endpoint. A
graph G(S) is called bichromatic, if all its edges are
bichromatic. Accordingly, an edge where both end-
points have the same color is called monochromatic,
and a graph is called monochromatic if all its ver-
tices have the same color. Two plane graphs with the
same vertex set S are called compatible if their union
is again a plane graph and disjoint if their intersec-
tion does not contain any edge. In the following, we
solely consider plane straight-line graphs, and refer to
them just as graphs for the sake of brevity.

There exist several results on compatible graphs, for
bichromatic as well as for uncolored point sets. For
example, Ishaque et al. [5] recently showed that any
(uncolored) geometric matching with an even number
of edges admits a disjoint compatible matching. In
a similar direction, Abellanas et al. [2] showed upper
and lower bounds for how many edges a compatible
matching for a graph of a certain class can admit.

In a different work, Abellanas et al. [1] showed
how many edges are needed at least to augment an
(uncolored) connected graph to a 2-vertex or 2-edge
connected graph. According results on bichromatic
graphs have been obtained by Hurtado et al. [4], who
also considered the question of augmenting a (discon-
nected) bichromatic graph to be connected. Among
others, they showed how to connect a bichromatic per-
fect matching to a (bichromatic) spanning tree. Hoff-
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mann and Tóth [3] extended this work to spanning
trees with maximum vertex degree three.

In this work we investigate the following question.
Given a bichromatic graph G(S), we want to find
a matching M(S) (of some type) that is compatible
with G(S). Following the lines of [2], we call such a
matching G(S)-compatible. Similarly, if M(S) is dis-
joint from G(S), we also say that it is G(S)-disjoint.
We consider two classes of G(S)-compatible match-
ings: (1) bichromatic G(S)-disjoint / perfect match-
ings (Section 2) and (2) monochromatic matchings
(Section 3).

For a G(S)-compatible matching M(S), we denote
the number of edges in M(S) that are disjoint from
G(S) by d(G(S),M(S)). Similar to the work in [2],
we focus on bounds for this number for the considered
classes of matchings and the graph classes of spanning
trees (tree), spanning paths (path), spanning cycles
(cycle), and perfect matchings (match).

A preliminary version of this work can be found
in [7], Section 3.3.

2 Bichromatic matchings

We start with bichromatic (perfect) matchings which
are compatible to a given bichromatic graph. To sim-
plify reading, we mostly omit the attribute bichro-
matic in this section.

It is well known that every set S with |R| = |B|
admits a bichromatic perfect matching [6]. On the
other hand, there exists a large class of point sets
with |R| = |B|, for which there exists only one such
matching M(S). Note that for any plane graph G(S)
that is obtained by adding edges to M(S), we get
d(G(S),M(S)) = 0. Due to these observations, and
to avoid trivial bounds, we restrict considerations in
this section to point sets admitting strictly more than
one bichromatic perfect matching.

Let S be the class of point sets admitting at least
two different bichromatic perfect matchings, and let
Sn ⊂ S be the sets with |R| = |B| = n. For a given
class C of graphs, we denote by

bC(n) = min
S∈Sn

min
G(S)∈C

max
M(S)

d(G(S),M(S))

the maximum number such that for every point set
S ∈ Sn and every graph G(S) ∈ C, we can find
a bichromatic disjoint compatible matching M(S) of
cardinality at least bC(n). Accordingly, we denote by
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bpC(n) = min
S∈Sn

min
G(S)∈C

max
M(S)

d(G(S),M(S))

the maximum number such that for every point set
S ∈ Sn and every graph G(S) ∈ C, there exists a
bichromatic compatible perfect matching M(S) with
(at least) bpC(n) edges disjoint from G(S).

Note that bC(n) ≥ bpC(n), as any compatible
perfect matching M(S) for a given graph G(S)
contains a G(S)-disjoint matching M ′(S) of size
d(G(S),M ′(S)) = d(G(S),M(S)).

We start with the class of perfect matchings, and
with disjoint compatible matchings for them.

Theorem 1 dn−12 e ≤ bmatch(n) ≤ 3n
4 .

Proof. Consider a perfect matching PM(S). Us-
ing the result of Hoffman and Tóth [3], we augment
PM(S) to a bichromatic spanning tree T (S) with
maximum vertex degree three; see Figure 1.

Figure 1: A perfect matching (solid edges) augmented
to a spanning tree (augmenting edges are dashed).

Now consider the graph A(S) = T (S)\PM(S) of
the augmenting edges. A(S) contains exactly n − 1
edges. Further, as every vertex is incident to exactly
one edge of PM(S), the maximum vertex degree in
A(S) is at most two. In other words, A(S) is a collec-
tion of paths P and isolated vertices. Every path P
with kP +1 vertices has kP edges, of which dkP

2 e form
a matching. Thus, A(S) contains a matching with∑

P∈Pd
kP

2 e ≥ d
n−1
2 e edges, yielding a lower bound

of bmatch(n) ≥ dn−12 e for the number of edges in a
maximum PM(S)-disjoint compatible matching.

For an upper bound on bmatch(n) consider the per-
fect matching PM(S) shown in Figure 2. Every red
vertex that is incident to one of the small edges in-
side a triangle does not “see” any blue vertex except
for the one it is matched to. Thus, in any PM(S)-
disjoint compatible matching M(S) all these red ver-
tices must stay unmatched, implying an upper bound
of bmatch(n) ≤ d(PM(S),M(S)) ≤ 3n

4 . �

The upper bound for disjoint matchings (induced
by Figure 2) directly implies an according upper
bound of bpmatch(n) ≤ 3n

4 for perfect matchings that
are compatible to a given perfect matching. But for
this case we can say even more.

Theorem 2 bpmatch(n) ≤ n
2 .

Figure 2: An upper bound example for bmatch(n).

Proof. Consider the perfect matching PM(S) illus-
trated in Figure 3. Every vertex that is incident to one
of the short edges can only be compatibly matched in
two ways; either to the other vertex of the edge it
is incident to, or to the accordingly colored vertex of
the long edge next to it. As matching one vertex of
a short edge to the according vertex of the long edge
next to it would force the other vertex of the short
edge to stay unmatched, any perfect matching M(S)
that is compatible with PM(S) must contain all short
edges of PM(S). �

Figure 3: An upper bound example for bpmatch(n).

For the classes of spanning trees, spanning cycles,
and spanning paths, the examples illustrated in Fig-
ure 4 imply bounds of btree(n) = bcycle(n) = 0 and
bpath(n) ≤ 1.

Figure 4: Upper bound examples for btree(n) and
bcycle(n).

3 Monochromatic matchings

We continue with monochromatic compatible match-
ings for bichromatic graphs. In the following, we de-
note by

mC(n) = min
|S|=2n

min
G(S)∈C

max
M(S)

d(G(S),M(S))

the maximum number such that for every graph
G(S) ∈ C there exists a monochromatic compatible
matching M(S) with (at least) mC(n) edges.
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We again start with the class of bichromatic per-
fect matchings, and with monochromatic compatible
matchings for them.

Theorem 3 n
4 ≤ mmatch(n) ≤ 5n

12 .

Proof. Consider a perfect matching PM(S). As-
sume w.l.o.g. that PM(S) does not contain any ver-
tical edge, and that for at least half of the edges, the
left vertex is red. We augment the matching to a
weakly simple polygon in the following way. First, we
add a bounding box around the PM(S). Next, we
extend all edges with a left red vertex to the right
until it hits the bounding box or (an extension of) an
edge. Then we extend all other edges to the right as
well, but with a slight turn. The result is a so-called
weakly simple polygon, which can be transformed to
a simple polygon by slightly “inflating” the edges; see
Figure 5 (left). In the resulting polygon, all left end-
points of edges and all red right endpoints of edges
appear as reflex vertices. All blue right endpoints of
matching edges are “hidden” in the exterior of the
polygon.

Figure 5: (left) Transforming a perfect matching to
a simple polygon. (right) A resulting compatible
matching.

Abellanas et al. [1] showed that for every simple
polygon P (V ) with vertex set V and every subset
V ′ ⊆ V containing all reflex vertices of P (V ), there
exists a perfect matching of the vertices V ′ where no
edge is outside the boundary of P (V ). Applying this
result to the set of reflex vertices of the constructed
polygon, we obtain a matching M(S) with at most
n
2 bichromatic edges and thus M(S) has at least n

4
red edges, implying mmatch(n) ≥ n

4 . Figure 5 (right)
shows a possible resulting matching.

Figure 6: Scheme for a bichromatic perfect matching
where any monochromatic compatible matching has
at most 5n

12 edges.

For an upper bound on the number of edges in
a monochromatic matching, we can recycle the idea

from Figure 2. Inverting the colors of every second
triangle construction and combining them to a closed
cycle, we obtain a perfect matching PM(S) where ev-
ery sixth point of each color must remain unmatched
in any monochromatic PM(S)-compatible matching;
see Figure 6 for a schematic illustration. �

The principle of the lower bound part of the above
proof can be reused to provide a lower bound for the
size of maximum monochromatic compatible match-
ings for trees, in dependence of the number of interior
vertices (of one color) of the tree. The basic idea
for this bound was developed during a research week
which was also the starting point for the work [2].

Theorem 4 Let T (S) be a bichromatic tree T (S)
with ir interior (non-leaf) red vertices. There exists a
red matching M(S) with d(T (S),M(S)) ≥ d ir−16 e.

Proof. We generate a simple polygon for T (S) by
adding a bounding box, connecting T (S) to the box
and then inflating the whole construction. Every ver-
tex v of T (S) with vertex degree d(v) corresponds to
d(v) vertices in the polygon P , at most one of them
being reflex. We choose one of these d(v) vertices for
each vertex v of T (S), (if v corresponds to a reflex
vertex, we choose that one). Additionally, we choose
a second vertex for each of the ir red interior vertices;
see Figure 7 (left) for a resulting polygon.

Figure 7: (left) A simple polygon generated from a
bichromatic tree (non-selected vertices and vertices on
the bounding box are drawn gray). (right) A (nearly)
perfect matching of the selected vertex set.

Applying the result of [1] to the selected vertices,
we obtain a (nearly) perfect matching with b 2n+ir

2 c
edges, at least b ir2 c of them red. But it might happen
that both red vertices corresponding to one red vertex
in S are incident to such a red edge. Also, there might
occur cycles of such red edges; see Figure 7 (right).

In general, the translated red edges form a set of cy-
cles and paths. For such a path of length k, dk2 e edges
can simultaneously occur in a monochromatic T (S)-
compatible matching. For a red cycle of length k, bk2 c
of these edges can be used. Assuming the worst case
where (nearly) all red edges form 3-cycles, we obtain
d ir−16 e edges for a red T (S)-compatible matching. �

Applying Theorem 4 to the class of spanning paths,
we obtain
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Corollary 5 mpath ≥ dn−26 e.

Note that in a path all vertices have degree at most
two. Thus, a cycle of odd length among the red edges
(translated back to S) can only occur if the path ends
inside this cycle. As there might be a sequence of cy-
cles C1, . . . , Cl such that each Ci+1 contains Ci in its
interior, this observation does not improve the above
bound; see Figure 8.

Figure 8: Multiple red 3-cycles for a path resulting
from a matching of the according inflated polygon.

For spanning cycles, the proof of Theorem 4 can be
slightly modified, yielding the following lower bound.

Corollary 6 mcycle(n) ≥ dn−14 e.

Proof. For creating a simple polygon P for a given
spanning cycle C(S), we duplicate an extreme ver-
tex v (w.l.o.g. a blue one), and cut the cycle between v
and its duplicate v′. Then we extend one of the in-
cident edge of v′ until it hits the bounding box, and
again inflate the resulting construction, by this hiding
v′ again. Applying the above construction, we obtain
at least bn2 c red matching edges. As the “end” vertex
v of the inflated path is extreme, the red edges trans-
lated back to S cannot form any odd cycles. Thus we
can use at least half of the obtained red edges for a
C(S)-compatible monochromatic matching. �

For upper bounds, consider the examples shown in
Figure 9. In Figure 9 (left), any monochromatic com-
patible edge is incident to one of the two high degree
vertices, implying mtree(n) ≤ 1. In Figure 9 (right),
the only vertex to which an “end vertex” of a “spike”
can be matched is the next vertex on the big circle,
implying that mcycle(n), mpath(n) ≤ 5n+7

12 .

Figure 9: Upper bound examples for spanning trees
(left) and spanning cycles (right).

4 Conclusion

We have shown the following bounds on the numbers
of edges mC(n) that can be reached by a monochro-
matic G(S)-compatible matching, with G(S) ∈ C and
C ∈ {tree, path, cycle,match}.

n
4 ≤ mmatch(n) ≤ 5n

12
dn−26 e ≤ mpath(n) ≤ 5n+7

12
dn−14 e ≤ mcycle(n) ≤ 5n+7

12
mtree(n) = 1

Further, we showed that every bichromatic perfect
matching admits a disjoint compatible bichromatic
matching with at least dn−12 e edges, and that there
exist point sets with non-unique bichromatic perfect
matchings for which any compatible bichromatic (per-
fect) matching has at most 3n

4 (n
2 ) disjoint edges.

We conclude with the following open problem.
Given a bichromatic perfect matching PM(S), can we
always find a bichromatic compatible perfect match-
ing M(S) with d(PM(S),M(S)) > 0, supposed that
S = R ∪ B is a point set admitting at least two dif-
ferent bichromatic perfect matchings?
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