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Abstract. We consider an extension of a question of Erdős on the num-
ber of k-gons in a set of n points in the plane. Relaxing the convexity
restriction we obtain results on 5-gons and 5-holes (empty 5-gons). In
particular, we show a direct relation between the number of non-convex
5-gons and the rectilinear crossing number, provide an improved lower
bound for the number of convex 5-holes any point set must contain, and
prove that the number of general 5-holes is asymptotically maximized
for point sets in convex position.

Introduction

Let S be a set of n points in general position in the plane. A k-gon is a simple
polygon spanned by k points of S. A k-hole is an empty k-gon, that is, a k-gon
which does not contain any points of S in its interior.

Erdős [12] raised the following questions for convex k-holes and k-gons.
“What is the smallest integer h(k) (g(k)) such that any set of h(k) (g(k)) points
in the plane contains at least one convex k-hole (k-gon)?”; and more general:
“What is the least number hk(n) (gk(n)) of convex k-holes (k-gons) determined
by any set of n points in the plane?”.

As already observed by Esther Klein, every set of 5 points determines a
convex 4-hole (and thus 4-gon). Moreover, 9 points always contain a convex 5-gon
and 10 points always contain a convex 5-hole, a fact proved by Harborth [16].
Only in 2007/08 Nicolás [19] and independently Gerken [15] proved that every
sufficiently large point set contains a convex 6-hole, and it is well known that
there exist arbitrarily large sets of points not containing any convex 7-hole [17];
see [3] for a brief survey.

In this paper we concentrate on 5-gons and 5-holes and generalize the above
questions by allowing a 5-gon or 5-hole to be non-convex. Thus, when referring
to a 5-gon or 5-hole, it might be convex or non-convex and we will explicitly
state it when we restrict considerations to one of these two classes.

A preliminary version of this paper appeared as [6]. Similar results for 4-holes
can be found in [5]. For 4-gons there is a one-to-one relation to the rectilinear
crossing number of the complete graph, and thus results can be found in the
respective literature (e.g. [10, 13]).
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1 Small sets

A set of five points in convex position obviously spans precisely one convex 5-
gon. In contrast, already a set of only five points (with three extremal points)
can span eight different 5-gons; see Fig. 1.

Fig. 1. The eight different (non-convex) 5-gons spanned by a set of five points with
three extremal points (fixed order type).

For small point sets, Table 1 shows the numbers of 5-gons and 5-holes, re-
spectively. We obtained these numbers by checking all point sets (with the cor-
responding number of points) from the order type database [7]. Given are: the
minimum number of convex 5-gons and 5-holes; the maximum number of non-
convex 5-gons and 5-holes; the minimum and maximum number of (general)
5-gons and 5-holes; and, for easy comparison, the number of 5-tuples.

numbers of 5-gons numbers of 5-holes

convex non-convex general convex non-convex general
n

min max min max min max min max

(
n
5

)
5 0 8 1 8 0 8 1 8 1
6 0 48 6 48 0 31 6 31 6
7 0 156 21 157 0 76 21 77 21
8 0 408 56 410 0 157 56 160 56
9 1 900 126 909 0 288 126 292 126

10 2 1776 252 1790 1 492 252 501 252
11 7 3192 462 3228 2 779 462 802 462

Table 1. The number of 5-gons and 5-holes for n = 5...11 points.

For counting convex 5-gons and 5-holes it is easy to see that their number
is maximized by sets in convex position and gives

(
n
5

)
. Of course these sets do

not contain any non-convex 5-gons or 5-holes. From Table 1 we observe that the



minimum number of general 5-gons and 5-holes is
(
n
5

)
for 5 ≤ n ≤ 11. While

for 5-gons this is obviously true in general (a convex 5-tuple has exactly one
polygonization, while a non-convex 5-tuple has at least four), this is not the case
for 5-holes. In fact, we will show that for sufficiently large n, the convex set
maximizes the number of 5-holes; see Theorem 4.

2 5-gons

The rectilinear crossing number c̄r(S) of a set S of n points in the plane is the
number of proper intersections in the drawing of the complete straight line graph
on S. It is easy to see that the number of convex 4-gons is equal to c̄r(S) and is
thus minimized by sets minimizing the rectilinear crossing number. This is a well
known, difficult problem in discrete geometry; see [10] and [13] for details. Tight
values for the minimum number of convex 4-gons are known for n ≤ 27 points;
see e.g. [2]. Asymptotically we have at least c4

(
n
4

)
= Θ(n4) convex 4-gons, where

c4 is a constant in the range 0.379972 ≤ c4 ≤ 0.380488 [1]. As any 4 points in
non-convex position span three non-convex 4-gons, we get 3

(
n
4

)
−3c̄r(S) non-

convex and 3
(
n
4

)
−2c̄r(S) general 4-gons for a set S. Thus, sets which minimize

the rectilinear crossing number also minimize the number of convex 4-gons, and
maximize both the number of non-convex 4-gons and the number of general
4-gons.

Surprisingly, a similar relation can be obtained for the number of non-convex
5-gons. To see this, consider the three combinatorial different possibilities (order
types) of arranging 5 points in the plane, as depicted in Fig. 2.

8/1 4/3 1/5

Fig. 2. The three order types for n = 5. For each set its number of different 5-gons
and the number of crossings for the complete graph is shown.

Theorem 1. Let S be a set of n ≥ 5 points in the plane in general position.
Then S contains 10

(
n
5

)
− 2(n− 4)c̄r(S) non-convex 5-gons.

Proof. We denote with o3(S), o4(S), and o5(S) the number of 5-tuples of points
with 3, 4, and 5, respectively, points on their convex hull. Summing over all such
sets we get o3(S) + o4(S) + o5(S) =

(
n
5

)
.

Note that every four points spanning a crossing pair of edges in S show up
in (n− 4) 5-tuples of points in S. Using the number of crossings for each order

type from Fig. 2 we get c̄r(S) = o3(S)+3o4(S)+5o5(S)
n−4 .



Considering the numbers of different 5-gons given in Fig. 2, we see that the
total number of non-convex 5-gons in S is 8o3(S) + 4o4(S). Using these three
equations, it is straight forward to obtain the following relation for the number
of non-convex 5-gons in S: 8o3(S) + 4o4(S) = 10

(
n
5

)
− 2(n− 4)c̄r(S). ut

Taking the constant c4 for the rectilinear crossing number into account, we see
that asymptotically we can have up to 10

(
n
5

)
−2(n−4)c4

(
n
4

)
= 10(1−c4)

(
n
5

)
non-

convex 5-gons. This number is obtained for point sets minimizing the rectilinear
crossing number and by a factor ≈ 6.2 larger than the maximum number of
convex 5-gons.

For the number of convex 5-gons, no simple relation to the rectilinear crossing
number is possible: There exist two different sets (order types) S1 and S2, both
of cardinality 6 with 4 extremal points, with c̄r(S1) = c̄r(S2) = 8, where S1

contains one convex 5-gon, while S2 does not contain any convex 5-gon; see
Fig. 3.

S2 : 0/8S1 : 1/8

Fig. 3. Two point sets for n = 6, both with crossing number eight. One contains a
convex 5-gon, the other one does not.

3 5-holes

Recall that a 5-hole is a 5-gon which does not contain any points from the
underlying set in its interior.

3.1 An improved lower bound for the number of convex 5-holes

Let h5(S) denote the number of convex 5-holes of a point set S, and let h5(n) =
min|S|=n h5(S) be the number of convex 5-holes any point set of cardinality n
has to have. The best upper bound h5(n) ≤ 1.0207n2+o(n2) can be found in [9].
Although h5(n) is conjectured to be quadratic in the size of S, to this date not
even a super-linear lower bound exists. For quite some time, the best published
lower bound was h5(n) ≥ bn−46 c, obtained by Bárány and Károlyi [8]. Garćıa [14]
improves this bound to h5(n) ≥ 2

9n − O(1). In the proceedings version of our
paper [6], we presented a slightly better bound, showing h5(n) ≥ 3bn−48 c.

The following theorem further improves the lower bound for h5(n), but still
remains linear in n. It is based on an idea of Clemens Huemer [18].



Theorem 2. Any set of n points in the plane in general position contains at
least h5(n) ≥

⌈
3
7 (n− 11)

⌉
convex 5-holes.

Proof. Consider an arbitrary set S of n points. Assume that there is an extreme
point p ∈ S which is incident to (at least) one convex 5-hole spanned by S. We
count these convex 5-holes (solely) for p, remove p from S, and continue with
S1 = S\{p}. Assume further that we can repeat this i ≥ 0 times. This way we
count (at least) i different convex 5-holes, and obtain a point set Si of cardinality
|Si| = n − i, for which all extreme points of Si are not incident to any convex
5-hole.

Now take any extreme point p ∈ Si. Sort all other points of Si radially around
p (such that its neighbours on the convex hull CH(Si) are the first point p1 and
the last point pn−i−1 in the sorting, respectively). Split the sorted set Si\{p}
into consecutive groups Gl, for 1 ≤ l ≤

⌊
n−i−5

7

⌋
, of seven points each, such

that the remainder R contains at least four points; see Fig. 4. Then every group
Gl together with the sorting anchor p and the first four points of Gl+1 (or R,
respectively) gives a set G′l ⊂ Si of 12 points.

R

p

G′
2

G2

Fig. 4. Splitting Si into groups Gl of seven points each, plus a remainder R of at least
four points.

We know by Dehnhardt [11] that every set of 12 points, and thus also every
set G′l, contains at least 3 convex 5-holes. As p is not incident to any convex
5-hole, all convex 5-holes in any set G′l must be incident to at least one point of
its underlying set Gl and can thus be counted (solely) for Gl. As R must have
at least four points, there are exactly

⌊
n−i−1−4

7

⌋
groups Gl, and at least three

times that many convex 5-holes in Si. Adding the convex 5-holes we counted for
points of S\Si, of which there are at least i, we obtain a lower bound of

i+ 3

⌊
n− i− 5

7

⌋
≥ i+ 3

n− i− 5− 6

7

=
3n+ 4i− 33

7



for the total number of convex 5-holes in S. This term is minimized for i = 0,
which leads to a lower bound of

⌈
3
7 (n− 11)

⌉
for the minimum number h5(n) of

convex 5-holes in any set of n points. ut
In the above proof we used a result by Dehnhardt [11], stating that ev-

ery set of 12 points contains at least three convex 5-holes. In fact, Dehnhardt
showed 3 ≤ h5(12) ≤ 4, and conjectured that h5(12) = 4. Using the order type
database [7], we found point sets of 12 points that contain only three convex
5-holes, disproving Dehnhardt’s conjecture and thus settling h5(12). A point set
attaining this lower bound h5(12) = 3 is shown in Fig. 5. Note, that this point
set has 4 extreme points. This answers the question of Dehnhardt (in [11]),
whether there exist sets of n points whose convex hull is not a triangle, but
which minimize h5(n).

Fig. 5. A set of 12 points containing only three convex 5-holes, implying h5(12) = 3.

Note that on the one hand, for n ≤ 17 the best known lower bound is still
only h5(n) ≥ 3. On the other hand, from the examples we found so far it follows
that h5(13) ≤ 4, h5(14) ≤ 6, and h5(15) ≤ 9; see [21] for point sets attaining
these bounds.

Remark (added during revision): Valtr [20] recently presented a bound of h5(n) ≥
n
2−O(1). In a forthcoming paper (by Aichholzer, Fabila-Monroy, Hackl, Huemer,
Pilz, and Vogtenhuber) this bound is further improved to h5(n) ≥ 3

4n+ o(n).

3.2 A lower bound for the number of (general) 5-holes

We obtained the following observation for general 5-holes by checking all 14 309 547
according point sets from the order type database [7].

Observation 1. Let S be a set of n = 10 points in the plane in general position,
and p1, p2 ∈ S two arbitrary points of S. Then S contains at least 34 5-holes
which have p1 and p2 among their vertices.



Based on this simple observation we derive the following lower bound for the
number of 5-holes, following the lines of a similar proof for the number of 4-holes
in [5, Theorem 5].

Theorem 3. Let S be a set of n ≥ 10 points in the plane in general position.
Then S contains at least 17n2 −O(n) 5-holes.

Proof. We consider the point set S in x-sorted order, S = {p1, . . . , pn}, and sets
Si,j = {pi, . . . , pj} ⊆ S. The number of sets Si,j having at least 10 points is

n−9∑
i=1

n∑
j=i+9

1 =
n2

2
−O(n)

For each Si,j consider the eight points of Si,j\{pi, pj} which are closest to the
segment pipj to obtain a set of 10 points, including pi and pj . By Observation 1,
each such set contains at least 34 5-holes which have pi and pj among their
vertices. Moreover, as pi and pj are the left- and rightmost point of Si,j , they
are also the left- and rightmost point for each of these 5-holes. This implies that
any 5-hole of S counts for at most one set Si,j , which gives a lower bound of
17n2 −O(n) for the number of 5-holes in S. ut

3.3 Maximizing the number of (general) 5-holes

The results for small sets shown in Table 1 suggest that the number of (general) 5-
holes is minimized by sets in convex position. In this section we will not only show
that this is in fact not the case, but rather prove the contrary: For sufficiently
large n, sets in convex position maximize the number of 5-holes.

Lemma 1. A point set S with triangular convex hull and i interior points con-
tains at most (4i+5) 5-holes which have the three extreme points among their
vertices.

Proof. Let ∆ be the convex hull of S, a, b, and c the three extreme points of
S (in counterclockwise order), and I = S\{a, b, c} the set of inner points of S,
|I| = i. As all 5-holes we consider have a, b, and c among their vertices, they
contain either one or two edges of ∆.

First, we derive an upper bound for the number of 5-holes that contain only
one edge of ∆. If two points p, q ∈ I form a 5-hole that contains only the edge ab
of ∆, they have to be neighboured in a circular order of I around c; see Fig. 6(a).

Let p be before q in the counterclockwise order around c. We say that p
starts a 5-hole (with ab). Note that q is uniquely defined by p and ab, and that
the triangular area bounded by the supporting lines of cp, ap, and ab must not
contain any points of I.

Assume that p starts a 5-hole with each edge of ∆, implying that the ac-
cording areas for all three edges of ∆ have to be empty; see Fig. 6(b). Then any
other point q ∈ I can start 5-holes with at most two edges of ∆, as p lies in one
of the three areas that would have to be empty for q; see again Fig. 6(b). Using
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Fig. 6. (a) A 5-hole containing only the edge ab of ∆. (b) Shaded areas have to be
empty if p (or q, respectively) starts a 5-hole with each edge of ∆.

this fact, we conclude that at most one point of I might start three such 5-holes
and all other inner points start at most two such 5-holes. This gives a total of
at most (2i+1) 5-holes that contain only one edge of ∆.

Second, we consider 5-holes that contain two edges of ∆ where one of the
two vertices of I is reflex and the other is convex. Assume that there exists such
a 5-hole without the edge ab, and with pab as reflex vertex; see Fig. 7(a).

pab

x

a b

c

(a)

x′

pab

x

a b

c

(b)

Fig. 7. (a) A 5-hole apabxbc containing two edges of ∆. (b) Only one point of I can
span two 5-holes for ab.

Then the non-convex quadrilateral apabbc must not contain any points of I,
which implies that all other such 5-holes without the edge ab have pab as reflex
vertex as well. Let x be the convex vertex in a 5-hole without ab. We say that x
spans the 5-hole (for ab).

Note that a point x might span two 5-holes for ab, namely axpabbc and
apabxbc. But this situation can happen for at most one point x, as all other
points have to lie inside the triangle axb and thus for each of them, x lies inside
exactly one of the two according possible 5-holes; see Fig. 7(b).

Now assume that for every edge e of ∆, there exist 5-holes skipping (solely) e.
Then for every edge e there is one unique point pe ∈ I that is the single reflex



vertex in all 5-holes for e, and each non-convex quadrilateral spanned by ∆\{e}
and pe is empty; see Fig. 8.

pbc
pac

pab

a b

c

Fig. 8. If for each combination of two sides of ∆ there is a 5-hole where one vertex of
I is convex, then the shaded area must be empty.

Assume further that there is a point y, that spans a 5-hole for each edge
e of ∆. Note that if a point x lies below the supporting line of apbc, then the
5-gon axpabbc contains pbc. Accordingly, if x lies below the supporting line of
bpac, then pac lies inside apabxbc. Thus, no point inside the triangle formed by
the supporting lines of apbc, bpac, and ab can span a 5-hole for ab because any
such 5-gon contains either pbc or pac. As similar statements hold for the other
edges of ∆ as well, y has to lie outside all these triangles, and thus inside the
triangle formed by the supporting lines of apbc, bpac, and cpab.

Note that y can span only one 5-hole for each side, as for each reflex point
there is a line l supporting one of the segments cpab, apbc, or bpac such that y
and the reflex point lie on opposite sides of l. (Recall that the shaded area in
Fig. 8 must be empty of points from S and that y lies inside the triangle formed
by the supporting lines of apbc, bpac, and cpab.)

Fig. 9 shows the three possible 5-holes spanned by y both separately and
altogether. As by assumption, the whole shaded area in Fig. 9(d) does not contain
any points of I, all other points must be located in the non-shaded wedges.

Now, if a point lies in the wedge from y towards pab, then it cannot span
a 5-hole for ac, as y lies inside one candidate and pab lies inside the other.
Accordingly, a point in the wedge from y to pbc cannot span a 5-hole for ab, and
a point in the wedge from y to pac cannot span a 5-hole for bc. Thus, at most
one point might span a 5-hole for e, for each edge e of ∆. We obtain an upper
bound of (2i+4) for the number of 5-holes that contain two edges of ∆ where
one of the two vertices of I is reflex and the other is convex: at most two such
5-holes per point of I, plus one for the special point spanning a 5-hole for each
edge of ∆, plus one additional 5-hole per edge of ∆.

Finally, consider 5-holes that contain two edges of ∆, where the two addi-
tional vertices are both reflex, like the one shown in Fig. 10.

There is at most one such 5-hole per non-used side of ∆. Moreover, the
existence of such a 5-hole for an edge e of ∆ implies that there is no 5-hole for e
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Fig. 9. Three 5-holes spanned by y, each one leaving out a different side of ∆.

p
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Fig. 10. Remaining points of I have to be located in the white areas.

where one of the vertices of I is convex. Thus, the upper bound for all 5-holes
using two edges of ∆ (with and without a point of I being convex) is still (2i+4).
Hence, together with the (2i+1) 5-holes using one edge of ∆ we obtain an upper
bound for the total number of 5-holes of (4i+5). ut

Note that the upper bound from Lemma 1 is most likely not tight. The best
example we found so far is depicted in Fig. 11. It spans 3i+2 (non-convex) 5-holes
(of all eight types indicated in Fig. 1), where i is the number of points inside the
triangle.

Lemma 2. Let Γ be a non-empty convex quadrilateral in S. There are at most
four (non-convex) 5-holes spanned by the four vertices of Γ plus a point of S in
the interior of Γ .



Fig. 11. A point set where the extreme triangle spans 3i+2 (non-convex) 5-holes.

Proof. Let p1, . . . , p4 be the vertices of Γ . Observe that any non-convex 5-hole
has to use three edges of Γ . Thus there are four choices for the unused edge of Γ ,
and for each choice there is at most one way to complete the three used edges of
Γ to a 5-hole. Assume to the contrary that two different 5-holes avoid the edge
p1p2 and use points q1 and q2, respectively, in the interior. Then q2 lies in the
triangle formed by p1p2q1. But then q1 must lie inside the polygon p1q2p2p3p4,
a contradiction. ut

Taking into account the size of the convex hull of each 5-tuple, these two
lemmas lead to the following theorem.

Theorem 4. For n ≥ 86 the number of 5-holes is maximized by a set of n points
in convex position.

Proof. In the following we assign every non-convex 5-tuple to the (three or four)
vertices of its convex hull, and call this convex hull the representing triangle (or
quadrilateral) of the potential non-convex 5-holes.

From Lemma 1 we know that a non-empty triangle ∆ with i > 0 interior
points represents at most 4i+5 non-convex 5-holes. In addition, each of the
o = n−3− i points outside ∆ might form a convex quadrilateral Γ with ∆.
According to Lemma 2, each such Γ represents at most 4 non-convex 5-holes.
Thus, altogether we obtain (1) as an upper bound for the number of non-convex
5-holes which have the vertices of ∆ on their convex hull.

4o+ 4i+ 5 = 4n− 7 (1)

Note that if a (convex) quadrilateral is non-empty, then its vertices form
at least one triangle which is non-empty as well. Thus, summing (1) for all
non-empty triangles, we obtain an upper bound on the number of non-convex
5-holes.

Considering convex 5-holes, observe that every 5-tuple gives at most one
convex 5-hole. Denote with N the number of 5-tuples that do not form a convex
5-hole, and with T the number of non-empty triangles. Then we get (2) as a first
upper bound on the number of (general) 5-holes of a point set.(

n

5

)
−N + (4n− 7) · T (2)



To obtain an improved upper bound from (2), we need to derive a good
lower bound for N . For this, consider again a non-empty triangle ∆. As ∆ is not
empty, each of the

(
n−3
2

)
5-tuples that contain all three vertices of ∆ is either

not convex or not empty. On the other hand, for such a 5-tuple, all of its
(
5
3

)
contained triangles might be non-empty. Thus, we obtain T

(
n−3
2

)
/
(
5
3

)
as a lower

bound for N , and (3) as an upper bound for the number of 5-holes.(
n

5

)
+

(
4n− 7−

(
n−3
2

)(
5
3

) ) · T (3)

For n ≥ 86 this is at most
(
n
5

)
, the number of 5-holes for a set of n points in

convex position, which proves the theorem. ut

Examples show that at least for n ≤ 16 the number of general 5-holes is not
maximized by convex sets. Hence, the truth for the lower bound in Theorem 4
of the cardinality n of the point sets lies somewhere in the range from 17 to 86.

4 Conclusion

In this paper we presented several results for a variant of a classical Erdős-
Szekeres type problem for the case of 5-gons and 5-holes.

During the preparation of the full version of this paper we have been able
to extend some of the presented results to k-gons and k-holes for k > 5. A
preliminary version of these results has been presented at [4]. The thesis [21]
summarizes all obtained results for k ≥ 4.

Several questions remain unsettled, among which we specifically want to
mention the following. Is there a super-linear lower bound for the number of
convex 5-holes (cf. Theorem 2)? And does there exist a super-quadratic lower
bound for the number of general 5-holes (cf. Theorem 3)?
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