XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Simulating distributed algorithms for lattice agents

Oswin Aichholzer*!, Thomas Hackl!, Vera Sacristant?, Birgit Vogtenhuber*!, and Reinhard Wallner!

Mnstitute for Software Technology, Graz University of Technology, Graz, Austria.
2Departament de Matematica Aplicada II, Universitat Politécnica de Catalunya, Barcelona, Spain.

Abstract

We present a practical Java tool for simulating syn-
chronized distributed algorithms on sets of 2- and 3-
dimensional square/cubic lattice-based agents. This
AgentSystem assumes that each agent is capable to
change position in the lattice and that neighboring
agents can attach and detach from each other. In
addition, it assumes that each module has some con-
stant size memory and computation capability, and
can send/receive constant size messages to/from its
neighbors. The system allows the user to define sets
of agents and sets of rules and apply one to the other.
The AgentSystem simulates the synchronized execu-
tion of the set of rules by all the modules, and can keep
track of all actions made by the modules at each step,
supporting consistency warnings and error checking.
Our intention is to provide a useful tool for the re-
searchers from geometric distributed algorithms.

Introduction

Mainly due to their scalability, distributed algorithms
are a powerful tool for the control of self-organizing
systems. One of the most interesting examples of a
field of application is the control of modular robotic
systems and, in particular, the development of geo-
metric algorithms for their locomotion, reconfigura-
tion, and self-repair. When dealing with these sys-
tems and algorithms, it is still often unaffordable to
actually implement and run the algorithms on a big
set of real prototypes and, in any case, it is recom-
mended to simulate the behavior of the algorithms
prior to their actual physical implementation. From
a different viewpoint, frequently algorithmic results
of theoretical nature are obtained but cannot imme-

*Email: {oaich,bvogt}@ist.tugraz.at. Research partially
supported by ESF EUROCORES programme EuroGIGA -
ComPoSe, Austrian Science Fund (FWF): T 648-N18.

TEmail: thackl@ist.tugraz.at. Research supported by the
Austrian Science Fund (FWF): P23629-N18 “Combinatorial
Problems on Geometric Graphs".

tEmail: vera.sacristan@upc.edu. Research partially sup-
ported by projects MTM2012-30951, MTM2009-07242, Gen.
Cat. DGR 2009SGR1040, and ESF EUROCORES programme
EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-
2011-4306, for Spain.

diately be translated into physical prototypes, as they
may require miniaturization or precision to a level
which is still out of reach. Having a simulator at
hand is then very convenient. In this paper we present
and describe the functionalities of a practical and very
general simulator that we hope will be useful in many
different research contexts. In the following descrip-
tions we present the 2D information followed, if ap-
plicable, by additional information needed for 3D in
squared brackets.

1 The agents

The initial agents setting is stored in the file
agents.txt. Each line of the file defines one agent
by its initial (global) coordinates (mandatory) plus
(optional) its state, its attachments and initializations
for (some of) its counters. Optionally it is possible to
state the size of the universe in the agents file.

Universe size UminX,maxX,minY,maxY[,minZ,maxZ]
To be positioned at the beginning of the file.

Initial (global) position x,y[,z]
The initial position is written as integer x-, y- [and
z-|coordinates, separated by a comma.

The state of an agent consists of exactly 5 characters,
written with a leading S.

Attachments A____[__]

The attachments of an agent are written as A followed
by 4 [6] booleans (0 for not attached, 1 for attached),
in the order north, west, east, south[, above, below].

Counters C__ _____
Each agent has 25 [45] integer counters, C00, . ..,C24
[,C25,...,C44], which can be set to any 16-bit in-

teger between —32767 and 32767.

2 The rules

The definition of what a robot may do is stored in
the file rules.txt. Each rule definition consists of 4
lines:

1. the name of the rule,

Simulating distributed algorithms for lattice agents

2. the priority of the rule,
3. the precondition, and
4. the postcondition.

The name is a nonempty string. Priorities are used
by each agent to decide which of the possibly several
rules that apply to its situation to execute. The prior-
ity of a rule is a positive integer between 1 and 32767.
Higher priorities win over lower ones. The precondi-
tion defines whether or not an agent may apply the
rule. Finally, the postcondition defines the actions to
be performed when a rule is applied to an agent.

2.1 Precondition

The precondition of a rule is any boolean combination
of: compare priorities, check neighboring empty /filled
positions, check own connections, match states/text
or counters/integers, and compare calculation results
with counters, messages and integers.

More precisely: a precondition is an AND combi-
nation of the following.

Neighbors N____|[__]

The situation of the direct neighboring positions
(north, west, east, south[, above, below]). For each
of them, 0 denotes empty (no agent), 1 denotes filled
(an agent), and * denotes indifferent.

Empty position Edx,dy[,dz|, EC__,dy[,dz],

An empty position requirement. Written as an E,
followed by the relative coordinates of the lattice po-
sition required to be empty, separated by a comma.
Alternatively instead of each value dx,dy or dz the
name of any counter can be inserted, where a counter
starts with a C, followed by the two digits number of
the counter.

Filled position Fdx,dy[,dz]

A filled position requirement. The restrictions and the
syntax are the same as in the Empty position condi-
tion.

Priorities P____[__]

Compare the priority of (the applied rule/s) of the
direct neighboring agents (north, west, east, south],
above, below]) with the agents’ own priority. For each
of them, < denotes that the priority of such agent
needs to be (strictly) smaller, = denotes smaller or
equal, and * denotes indifferent.

Smaller Priority Ldx,dy[,dz]

A (strictly) less priority agent requirement. The L is
followed by the relative coordinates of the agent re-
quired to have smaller priority, separated by a comma.
The usage of counters is the same as in the Empty po-
sition condition.

Smaller or equal Priority Qdx,dy[,dz]
A less or equal priority agent requirement. Syntax

and usage is analogous to the Smaller Priority condi-
tion.

Attachments A____[__]

The attachment states to the direct neighbors (north,
west, east, south[, above, below]), where 0 denotes
not attached, 1 denotes attached, and * denotes in-
different.

State S_____

The agent state can be required to match a simple
pattern, where an asterisk matches any character.

State of a remote agent Tdx,dy[,dz],_____
This is a combination of the Filled position and the
State precondition. Written as a T, followed by the
relative coordinates of the lattice position that needs
to be filled, and ended by the state that the remote
agent must have. The usage of counters is the same
as in the Empty position condition.

(Text) messages from direct neighbors

Every agent has four [six] text messages from its
direct neighbors (*=any, N=north, W=west, E—east,
S=south[, A=above, B=below]), each consisting of ex-
actly 5 characters. Any of these messages can be re-
quired to match a pattern, where an asterisk matches
any character and at most four asterisks are allowed.

Numeric comparisons <(-)____ (-)____,
>(-) o), =) ()

In addition to its 25 [45] counters, every agent
has 4 *+ 8 = 32 [6 * 3 = 18] numeric messages

from its direct neighbors, denoted #NO1,...,#N08,
#WO01,...,#W08, #EO1,...,#E08, #S01,...,#S08 in
2D, and limited to 3 counters per direction in 3D, in-
cluding #A01,...,#A03, and #B01,...,#B03. Aster-
isks can be used instead of a specific direction. Any of
these numeric values can be required to fulfill a com-
parison with respect to any other such value or to any
four digit number.

Remote numeric comparisons

Vdx,dy,C___ (-)____, Wdx,dy,C___ (-)____
These options are only available in 2D. They allow to
compare the first value with the second value. V indi-
cates strictly smaller and W indicates smaller or equal.
The first numeric value is a counter from a remote
agent at relative coordinates dx,dy. It requires the
agent to exist. The second numeric value can be a
counter, a numeric message from a neighbor or any
four digit number. See more details in the Numeric
comparisons description.

The following two operators enable generating any
boolean combination:

Parenthesis ()
Group the expressions they surround.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Negation !
Negates the expression it precedes.

2.2 Postcondition

The postcondition of a rule defines the actions per-
formed by an agent when it applies the rule. It is
any AND combination of the following: change posi-
tion, change attachments, modify state, compute and
update counters, and send messages. More precisely:

Position change Pdx,dy[,dz]

Move the agent to the given relative coordinates.
Counters can be used as in the Empty position condi-
tion.

Attachments A____[__]

For each of the four [six] possible directions (in the
already described order), the possibilities are: 0 de-
tach (if attached) before moving, and stay detached
afterwards; 1 detach (if attached) before moving, and
attach afterwards (if possible); * detach (if attached)
before moving, and attach afterwards if attached be-
fore (and possible); + stay attached along the move-
ment. In this case, attached agents are carried along

with the moving agent.

State S_____

New state of the agent. An asterisk denotes that the
according character remains unchanged.

(Text) messages to direct neighbors

Send messages to neighbors (* = all).

Calculations on counters and numerical mes-

sages C___ _ ____ ____,#___ _ ____ ____
2D only:

C___ _dx,dy,C____ ____ ,

#___ _ dx,dy,C____ ____ ,
C____¢C__,C__,C____ ____ ,

C C C

- —_—I VY VY

Every calculation action starts with a position to
write the result to (counter or outgoing message),
followed by the operation to be performed, and two
(readable) values on which the operation is per-
formed. Possible operations are + (add), - (subtract),
* (multiply), / (divide), M (modulo), A (maximum),
and I (minimum). As values for an operation,
either four-digit-numbers or internal counters (or one
external counter, only in 2D) or incoming numerical
messages can be used. The external counter is
defined by first indicating the coordinates (dx,dy or
C__,C__) of the agent and then the counter to be
used.

Swap XN, XW, XE, XS, [XA, XB]

Exchange the positions of two neighboring agents.
Written as a X, followed by the desired swap neigh-
bor.

3 The program flow

The program synchronously runs the rules on the
agents. It starts by reading the initial setting as well
as the set of rules. At every step, the following oper-
ations are performed in the order listed below. Alter-
natively, the order of steps 2 and 3 can be transposed
by the user, if desired. It is also possible for the user
to make all rules not involving position changes to be
applied before those involving position changes.

1. Check and get valid rules. For all agents,
check which rules would apply (ignoring priorities)
and store valid rules sorted by priority. Store the
highest priority of valid rules as current priority and
set the agents priority to open. For all open priority
agents sorted by priority, do until all agents have fized
priority: i) fetch current rules to current priority, and
ii) check priority-conditions for all rules. If they are
fulfilled, set priority to fized. If a condition is not ful-
filled, remove this rule from the specified agent and if
the agents rule list is empty, reduce the current prior-
ity to the highest priority of the remaining rules. If a
circular dependency between rules on different agents
is detected, remove all related rules. Finally, for each
agent remove all rules with priority lower than the
priority of the agent.

2. Perform actions. For all agents, for all previ-
ously stored rules for the agent, perform applicable
actions in the following order: i) detach, ii) compute
attachment decisions, iii) change position (includes
collision detection test), iv) update attachments, v)
update state, and vi) swap agents.

3. Compute calculations and send messages.
For all agents and for all previously stored rules for
the agent, do all calculations (in the order they are
listed in the rule) and send numerical messages and
all text messages to the post-office. Then, deliver all
messages from the post-office to their recipients.

4 The interface

The main window of the program consists of a menu
and a tabbed panel with five tabs, as can be seen in
the topmost portion of Figure 1.

Universe. This tab allows to visualize the agents as
they apply the rules. The algorithm can be visualized
step by step or can be let to run, it can be stopped,
and it is also possible to jump one or more steps for-
wards and backwards. In addition to the colors that
can be used to distinguish the agents’ states and their
attachments, clicking on an agent allows to show its

Simulating distributed algorithms for lattice agents

id, position, attachments, state, counter values, mes-
sages, and current priority. Zooming and translating
the scene is always possible. In the 3-dimensional sim-
ulator rotations are also possible. Figure 1 shows a
screen shot of the universe of the 2D simulator, in
which the information of one of the agents can be
seen. The universe panel also shows the current num-
ber of iterations, and all warning and error messages.

o

Figure 1: A screen shot of the program, showing the
visualization of a set of rules running on a set of agents.

Agents and Rules. The tab consists of two text
panels. The left one shows the agents file, the right
one shows the rules file. Both files can be indepen-
dently loaded, modified and saved. Editing shortcuts
are provided. When saving any of the files, inconsis-
tencies and syntax errors are detected and marked.
See Figure 2 for an illustration.

Figure 2: A screen shot of the panel showing the current
agents (left) and rules (right). An error is detected and
shown.

Log tabs. There are three log tabs, each showing
the corresponding file. The actions.log file stores the
information of the rules applied by all agents at each
iteration. The positions.log file stores the complete
information of all agents at each iteration (position,
state, attachments, counters, etc.). The error.log file
stores all error messages at each iteration.

Agents generator. This tab allows to graphically
generate or modify a set of agents, together with their
attachments, states and counters.

5 Implemented algorithms

We have designed and implemented a large set of dis-
tributed algorithms, and we have run them on dif-
ferent configurations of agents. The implemented al-
gorithms cover tasks from self-organization to self-
reconfiguration. Self-organization includes: choosing
a leader, building a spanning tree, counting the num-
ber of agents, and computing the minimum bounding
box. All these self-organization tasks refer to con-
nected sets of agents. Details can be found in [4].
Among the self-reconfiguration algorithms, we have
implemented generic reconfiguration strategies for ar-
bitrary connected shapes either assuming linear force
per module [4], inspired by the centralized algorithm
proposed in [1], or only constant force [3], follow-
ing [2]. In addition, we have also implemented path
finding algorithms, as well as some screen-saver-like
amusement ones.

6 Conclusion

Our simulator is robust and, we think, can be use-
ful to any researcher wishing to run experiments
on a wide range of distributed algorithms for self-
organizing agents.

We therefore offer both the simulator and the
aforementioned examples to the scientific community.
They can be downloaded from the web page [5], which
also includes i) the source files, ii) a user guide, and
iii) the references with the details of the already im-
plemented algorithms.

A for the source files, our wish is that anyone inter-
ested in extending the simulator by adding to it some
new functionality can do it, and this is why we offer
them. We only ask anyone modifying the simulator
to inform us and to give to each coauthor its credit.

References

[1] G. Aloupis, S. Collette, M. Damian, E. D. Demaine,
R. Flatland, S. Langerman, J. O’Rourke, S. Ra-
maswami, V. Sacristan, S. Wuhrer, Linear reconfig-
uration of cube-style modular robots, Computational
Geometry — Theory and Applications, 42, 6-7 (2009),
652-663.

[2] F. Hurtado, E. Molina, S. Ramaswami, V. Sacristan,
Distributed universal reconfiguration of 2D lattice-
based modular robots, in: Proc. 29th European Work-
shop on Computational Geometry, 2013, 139-142.

[3] O. Rodriguez, Simulacié de lactuacié distribuida de
robots modulars, Degree thesis, Universitat Politéc-
nica de Catalunya, Spain, 2013.

[4] R. Wallner, A System of Autonomously Self-
Reconfigurable Agents, Degree thesis, Graz University
of Technology, Austria, 2009.

[5] Under construction, available soon.

