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Abstract. We propose a novel subdivision of the plane that consists
of both convex polygons and pseudo-triangles. This pseudo-convex de-
composition is significantly sparser than either convex decompositions
or pseudo-triangulations for planar point sets and simple polygons. We
also introduce pseudo-convex partitions and coverings. We establish some
basic properties and give combinatorial bounds on their complexity. Our
upper bounds depend on new Ramsey-type results concerning disjoint
empty convex k-gons in point sets.

1 Introduction

Geometric algorithms and data structures frequently use subdivisions of the
input space into compact and easy to handle polygonal cells. Triangulations
are among the most widely used of these tessellations. Since the running time
of algorithms is often correlated with the size of the subdivision, many efficient
algorithms tile the plane with generalizations of triangles such as convex polygons
or pseudo-triangles which provide a sparser tessellation but retain many of the
desirable properties of a triangulation. Both convex subdivisions and pseudo-
triangulations have applications in areas like motion planning [7, 26], collision
detection [1, 19], ray shooting [6, 14], or visibility [22, 23]. A pseudo-triangle is
the “most reflex” polygon possible—it has exactly three convex vertices with
internal angles less than π. Whether a chain of points is considered convex or
reflex depends only on the point of view. So pseudo-triangles can be considered
as natural counterparts of convex polygons.

In this paper we propose a combination of convex and pseudo-triangular
subdivisions: Pseudo-convex decompositions. A pseudo-convex decomposition is
a tiling of the plane with convex polygons and pseudo-triangles. We also in-
troduce the related concepts of pseudo-convex partitions and coverings whose
convex counterparts have been extensively studied as well. We establish some
basic combinatorial properties and give quantitative bounds on the complexity
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Fig. 1. A pseudo-convex decomposition (a), a pseudo-convex
partition (b), and a pseudo-convex covering (c).

of pseudo-convex decompositions, partitions, and coverings for point sets and
simple polygons. Pseudo-convex decompositions are significantly sparser than
convex decompositions or pseudo-triangulations.

All our bounds are combinatorial, we do in fact not know what the complexity
of finding a minimum decomposition for a given input point set is. Our upper
bounds depend on optimal solutions for small point configurations. Any im-
provement on a finite point set would lead to better bounds. We achieve optimal
bounds for small configurations by proving two geometric Ramsey-type results
concerning disjoint empty convex k-gons in point sets. These results extend pre-
vious work by Erdős, Hosono, and Urabe, but to the best of our knowledge our
results are the first Ramsey-type answers for such questions. Small configura-
tions of points are notoriously hard to deal with. An asymptotic lower bound
for the number of order types of a set of n points in the plane is nΘ(n log n) [13].
We confirmed our conjectures regarding sets of 8 and 11 points with the help of
the order type data base developed at TU Graz [2, 3]. We give analytical proofs
for some of our results, while others are purely based on the data base.
Organization. The next paragraphs give precise definitions for convex and
pseudo-convex decompositions, partitions, and coverings and Section 2 collects
some of their basic combinatorial properties. In the next subsection we state our
results and compare our bounds to previous work. Pseudo-convex decompositions
and partitions are significantly sparser than their convex counterparts while
pseudo-convex and convex coverings have asymptotically the same complexity.
We devote Section 3 to pseudo-convex decompositions and Section 4 to pseudo-
convex partitions of point sets but do not discuss pseudo-convex coverings any
further in this paper. Finally, Section 5 discusses pseudo-convex decompositions
for the interior of simple polygons. We conclude with some open problems.
Definitions. Let S be a set of n points in general position in the plane. A pseudo-
triangle is a planar polygon that has exactly three convex vertices with internal
angles less than π, all other vertices are concave. A pseudo-triangulation of S is
a subdivision of the convex hull of S into pseudo-triangles whose vertex set is
exactly S. A vertex is called pointed if it has an adjacent angle greater than π.
A planar straight line graph is pointed if every vertex is pointed.

The convex decomposition number of S, κd(S), is the minimum number of
faces in a subdivision of the convex hull of S into convex polygons whose vertex
set is exactly S. A pseudo-convex decomposition of S is a partition of the con-



vex hull of S into convex polygons and/or pseudo-triangles spanned by S. For
instance every triangulation or pseudo-triangulation of S is a pseudo-convex de-
composition. The pseudo-convex decomposition number of S, ψd(S), is the mini-
mum number of faces in a pseudo-convex decomposition of S. The pseudo-convex
decomposition number (and equivalently the convex decomposition number) for
all sets S of fixed size n is denoted by ψd(n) := maxSψd(S).

The convex partition number of S, κp(S), is the minimum number of disjoint
convex polygons spanned by S and covering all vertices of S. Similarly, the
pseudo-convex partition number of S, ψp(S), is the minimum number of disjoint
convex polygons and/or pseudo-triangles spanned by S and covering all vertices
of S. The pseudo-convex partition number (and equivalently the convex partition
number) for all sets S of fixed size n is denoted by ψp(n) := maxSψp(S). Note
that disjoint here implies empty (of points): neither a convex nor a pseudo-convex
partition contains nested polygons.

The convex cover number of S, κc(S), is the minimum number of convex
polygons spanned by S and covering all points of S. Similarly, the pseudo-convex
cover number of S, ψc(S), is the minimum number of convex polygons and/or
pseudo-triangles spanned by S and covering all points of S. The pseudo-convex
cover number (and equivalently the convex cover number) for all sets S of fixed
size n is denoted by ψc(n) := maxSψc(S).

1.1 Previous work and results.

Decomposition. The convex decomposition number κd(n) is bounded by

12
11
n− 2 < κd(n) ≤ 10n− 18

7
.

The lower bound was given very recently by Garćıa-López and Nicolás [11] and
the upper bound was established by Neumann-Lara et al. [21]. Fevens, Mei-
jer, and Rappaport [10] and Spillner [25] designed algorithms for computing a
minimum convex decomposition for input point sets. Every minimum pseudo-
triangulation of n points has exactly n− 2 pseudo-triangles [26]. We show that
the pseudo-convex decomposition number is bounded by

3
5
n ≤ ψd(n) ≤ 7

10
n .

Furthermore, we also prove that ψd(n) is monotonically increasing with n.

Partition. The convex partition number κp(n) is bounded by
⌈
n− 1

4

⌉
≤ κp(n) ≤

⌈
5n
18

⌉
.

The lower bound was given by Urabe [27] and the upper bound was established
by Hosono and Urabe [16]. Arkin et al. [4] study questions related to convex



partitions and coverings by examining the reflexivity of point sets. We show
that the pseudo-convex partition number ψp(n) is bounded by⌊

3n
16

⌋
≤ ψp(n) ≤ n

4
.

Covering. The study of convex cover numbers is rooted in the classical work of
Erdős and Szekeres [8, 9] who showed that any set of n points contains a convex
subset of size Ω(log n). More recent results include the work by Urabe [27] who
proved that the convex cover number κc(n) is bounded by

n

log2 n+ 2
< κc(n) <

2n
log2 n− log2 e

.

There is an easy connection between the pseudo-convex cover number and the
convex cover number, namely ψc(n) ≤ κc(n) ≤ 3ψc(n) (all points which can be
covered by a pseudo-triangle can be covered by at most three convex sets). Thus
both numbers have the same asymptotic behavior, which implies

ψc(n) = Θ

(
n

log n

)
.

Geometric Ramsey-type Results. The upper bound construction for ψd(n)
relies on minimal pseudo-convex decomposition numbers for few points. These
are, in turn, related to a combinatorial geometry problem on empty convex
polygons that goes back to Erdős: For k ≥ 3 find the smallest integer E(k)
such that any set S of E(k) points contains the vertex set of a convex k-gon
whose interior does not contain any points of S (that is, S contains an empty
convex k-gon). Klein [8] showed that every set of 5 points contains an empty
convex quadrilateral, that is E(4) = 5. Harborth [15] proved that every set of
10 points contains an empty convex pentagon, that is E(5) = 10. In the last
decade, Urabe [27] proved that every set of 7 points can be partitioned into a
triangle and a disjoint convex quadrilateral. Hosono and Urabe [16] showed that
every set of 9 points contains two disjoint empty convex quadrilaterals. Very
recently Gerken showed that any set that contains a convex 9-gon also contains
an empty convex hexagon. Each of these results corresponds to a bound on the
pseudo-convex decomposition number ψd(n). The best upper bound we achieved
depends on new results for empty convex polygons.

A typical Ramsey type problem asks for the minimum size of a system that
contains at least one of two (or more) subconfigurations. We prove the following
two results:

Theorem 1. Every set of 8 points in general position contains either an empty
convex pentagon or two disjoint empty convex quadrilaterals.

Theorem 2. Every set of 11 points in general position contains either an empty
convex hexagon or an empty convex pentagon and a disjoint empty convex quadri-
lateral.



Both results were established with the help of the order type data base [2, 3].
In the full paper we also provide a surprisingly intuitive geometric proof of
Theorem 1 that requires only a moderate number of case distinctions.

Simple Polygons. An initial step of many algorithms on simple polygons is
a decomposition into simpler components [17]. Keil and Snoeyink [18] devised
an algorithm for computing the minimum convex decomposition of the interior
of a given simple polygon. Chazelle and Dobkin [5] studied a variant of this
optimization problem allowing Steiner points, Lien and Amato [20] constructed
approximately convex decompositions. Motivated by early results which we ob-
tained during the investigations for this paper, Gerdijkov and Wolff [12] extended
the work by Keil and Snoeyink to compute the minimum pseudo-convex decom-
position of a simple polygon.

The minimum convex decomposition of a pseudo-triangle with n vertices may
require n− 2 triangles and the minimum pseudo-triangulation of any convex n-
gon is a triangulation with n − 2 faces. (In these extremal examples, Steiner
points do not lead to a smaller convex decomposition or pseudo-triangulation.)
We show that any n-gon has a pseudo-convex decomposition of size �n/2� − 1.

Note that any quadrangulation (a decomposition into quadrilaterals) of an
n-gon is a pseudo-convex decomposition, and it also has �n/2� − 1 faces. How-
ever, not every polygon has a quadrangulation. Allowing Steiner points on the
boundary of the polygon, Ramaswami, Ramos, and Toussaint [24] show that the
minimum quadrangulation of every n-gon has at most �2n/3� + O(1) faces in
the worst case.

2 Basic Combinatorial Properties

Our first (trivial) observation is that ψd(n) ≤ κd(n), ψp(n) ≤ κp(n), and ψc(n) ≤
κc(n). It is well known that κc(n) ≤ κp(n) ≤ κd(n). For pseudo-convex faces we
trivially have ψc(n) ≤ ψp(n). ψp(n) ≤ ψd(n) follows from the bounds given in
the previous section.

Next we observe that ψd(n + 1) ≤ ψd(n) + 1, ψp(n + 1) ≤ ψp(n) + 1, and
ψc(n+ 1) ≤ ψc(n) + 1. This follows by induction when inserting the points in x-
sorted order. For covering and partitioning the last inserted vertex is a singleton,
for decomposing it forms a corner of a pseudo-triangle similar to the last step in
a Henneberg construction.

Fig. 2. Sets with non-monotone
behavior.

The following lemma establishes an in-
teresting connection between the convex
partition number and the pseudo-convex
decomposition number.

Lemma 1. For any point set S we have
ψd(S) ≤ 3κp(S) − 2 and thus ψd(n) ≤
3κp(n) − 2.

The pseudo-convex decomposition, parti-
tion, and covering numbers for a particular point set S are not necessarily



n 3 4 5 6 7 8 9 10 11 12 13 14 15

ψc(n) 1 1 2 2 2 2 2 3 3 3 3 3 3

ψp(n) 1 1 2 2 2 2 3 3 3 3 3..4 3..4 4

ψd(n) 1 2 2 3 4 4 5 6 6 7 8 8..9 8..9

Table 1. Bounds on the pseudo-convex cover number ψc(n), partition number
ψp(n), and decomposition number ψd(n) for small point sets.

monotone. Consider the examples in Figure 2. On the left, a set S with 9
points and ψd(S) = 3. Removing the bottom most point of S results in a set
S′ with 8 points and ψd(S′) = 4. On the right, a set S with 6 points and
ψc(S) = ψp(S) = 1. Removing the top-most point of S results in a set S′ with 5
points and ψc(S′) = ψp(S′) = 2. Table 1 shows the exact values of ψc(n), ψp(n),
and ψd(n) for small sets of points.

3 Pseudo-Convex Decompositions

We first give a formula for the number of faces in a pseudo-convex decomposition:

Lemma 2. Let S be a set of n points in general position. Let P be a pseudo-
convex decomposition of S, nk the number of convex k-gons in P , and p the
number of pointed vertices. Then the number of faces of P is

|P | = 2n− p− 2 −
n∑

k=4

nk(k − 3)

Corollary 3 The number of faces in a pointed pseudo-convex decomposition is

|P | = n− 2 −
n∑

k=4

nk(k − 3)

Although the pseudo-convex decomposition number for a particular point set S
might not be monotone (recall Figure 2), ψd(n) nevertheless increases monoton-
ically with n.

Theorem 4. The pseudo-convex decomposition number increases monotonically
with the number of points.

3.1 Small Point Sets

In this section we give tight upper and lower bounds on ψd(n) for sets of up
to 13 points. Recall that ψd(n + 1) ≤ ψd(n) + 1 and (by Theorem 4) ψd(n) ≤
ψd(n+ 1). Obviously ψd(3) = 1. If four points do not lie in convex position (see
Fig. 3(a)) then any decomposition needs at least two faces and hence ψd(4) = 2
and ψd(5) ≥ 2. Every set of 5 points contains an empty convex quadrilateral [8].
Pseudo-triangulating in a pointed way around this quadrilateral yields ψd(5) = 2
by Corollary 3.



(a) n = 4 (b) n = 6 (c) n = 7 (d) n = 10 (e) n = 12 (f) n = 14

Fig. 3. (a)-(e) Lower bound examples, (f)
every minimum decomposition is non-pointed.

ψd(5) = 2 implies ψd(6) ≤ 3. Figure 3(b) shows a configuration S of 6 points
such that every pseudo-convex decomposition of S has at least 3 faces. S does
not span any empty convex k-gon for k > 4. Any empty convex quadrilateral
spanned by S necessarily uses all three inner points, so any partition of S can
contain at most one convex quadrilateral which implies ψd(6) = 6−2−(4−3) = 3
for pointed pseudo-decompositions which are optimal in this case.

ψd(6) = 3 implies ψd(7) ≤ 4. Figure 3(c) shows a configuration S of 7 points
such that every pseudo-convex decomposition of S has at least 4 faces. The
argument is similar to the one for the example with 6 points. Again, S does not
span any empty convex k-gon for k > 4. Any pointed decomposition contains at
most one convex quadrilateral, because every convex quadrilateral contains the
point in the center. With every additional quadrilateral, we also add at least one
non-pointed vertex, so a non-pointed decomposition cannot contain less faces
than a pointed one. Therefore, ψd(7) = 7 − 2 − (4 − 3) = 4.

ψd(7) = 4 implies ψd(8) ≥ 4. Theorem 1 together with Corollary 3 implies
ψd(8) ≤ 8− 2− 2 = 4. We construct this decomposition by pseudo-triangulating
in a pointed way around the convex polygon(s) guaranteed by Theorem 1.

Every set of 10 points contains an empty pentagon [15] and so Corollary 3
implies ψd(10) ≤ 10 − 2 − (5 − 3) = 6. Figure 3(d) (which is a close relative
of a construction in [16]) shows a configuration S of 10 points such that every
pseudo-convex decomposition of S has at least 6 faces. First note that S does
not span an empty convex pentagon and a disjoint empty convex quadrilateral.
Furthermore, every empty convex pentagon spanned by S necessarily contains
the three points in the upper center, so any partition of S can contain at most
one convex pentagon. If we start our decomposition with a pentagon, then we
can not add a quadrilateral without creating at least one non-pointed vertex.
Therefore, any non-pointed decomposition cannot save any faces compared to
the pointed one which implies ψd(10) = 10 − 2 − (5 − 3) = 6.

ψd(10) = 6 implies that ψd(9) ≥ 5. Since every set of 9 points contains two
disjoint empty convex quadrilaterals [16], we have (with Corollary 3) ψd(9) ≤
9−2−2∗(4−3) = 5. ψd(10) = 6 also implies ψd(11) ≥ 6. Theorem 2 together with
Corollary 3 yields ψd(11) ≤ 11− 2− 3 = 6. We construct this decomposition by
pseudo-triangulating in a pointed way around the convex polygon(s) guaranteed
by Theorem 2.

ψd(11) = 6 implies ψd(12) ≤ 7. Figure 3(e) shows a configuration S of 12
points such that every pseudo-convex decomposition of S has at least 7 faces.



The largest empty convex set in this configuration is a hexagon. Every empty
convex pentagon or hexagon contains at least three of the four inner points and
thus separates the other points, so that no disjoint convex quadrilateral can
be found. The coordinates of this point set are: (0, 0), (0, 20), (20, 20), (20, 0),
(1, 10), (10, 19), (19, 10), (10, 1), (5, 7), (7, 15), (15, 13), (13, 5).

ψd(12) = 7 implies ψd(13) ≤ 8. The point set with the following coordinates
requires 8 faces for every pseudo-convex decomposition: (65535, 65535), (0, 0),
(29293, 36890), (15166, 26472), (27461, 37283), (32929, 42217), (29439, 42711),
(27746, 42587), (27491, 42925), (32135, 45720), (29447, 45175), (31736, 48764),
(19257, 42830).

3.2 Upper Bound

p

Fig. 4. Petals of size 5.

Our upper bound construction is based on ex-
act pseudo-convex decomposition numbers for small
point sets. Assume that we are given a set S with n
points and that we know the value of ψd(k) for some
k < n. We choose a point p on the convex hull of S.
Now we partition the plane by half-lines emanating
from p into �(n − 1)/(k − 1)� wedges such that ev-
ery wedge contains at most k − 1 points of S \ {p}.
Let a petal be the convex hull of points in a wedge together with p. We have a
total of �(n− 1)/(k− 1)� petals, each of which can be decomposed into at most
ψd(k) faces. Two adjacent petals can be combined with a pseudo-triangle into
one larger convex set. We combine inductively adjacent convex sets (all including
p) until we obtain the convex hull of S. We have proved an upper bound of

ψd(n) ≤
⌈
n− 1
k − 1

⌉
ψd(k) +

⌈
n− 1
k − 1

⌉
− 1 ≤ ψd(k) + 1

k − 1
n . (1)

The best currently known upper bound can be achieved by evaluating Inequality
(1) for k = 11 and ψd(11) = 6. We obtain

ψd(n) ≤ ψd(11) + 1
11 − 1

n =
6 + 1
10

n =
7n
10

.

Furthermore, the left inequality of (1) implies ψd(15) ≤ 9 for k = 8.

3.3 Lower Bound

Fig. 5. Lower bound
example for k = 5.

We present a lower bound construction of 5k points for
every odd k ≥ 3 such that any pseudo-convex decom-
position consists of at least 3k − 1 faces (see Fig. 5).
The details of the construction can be found in the
appendix. It implies

ψd(n) ≥ 3n
5

− 1.



4 Pseudo-Convex Partitions

An upper bound of ψp(n) ≤ n/4 can be easily established: Any four points
form either a pseudo-triangle or a convex quadrilateral and grouping them in
x-sorted order guarantees disjointness. It is possible that optimal bounds on
small point sets improve the upper bound of n/4. For example, we do not know
the exact value of ψp(13), we know only that ψp(13) ∈ {3, 4} (c.f., Table 1).
ψp(13) = 3 would imply ψp(n) ≤ 3n/13 by partitioning x-sorted groups of 13
points independently.

4.1 Lower Bound

Lemma 3. ψp(n) ≥ � 3n
16 �.

Proof. We consider a set S of n = 4k points (see Fig. 6). S consists of k groups
of 4 points, ai, bi, ci, and di. First we show that if ci is a reflex vertex of a
pseudo-triangle P , then ai and bi must be the corners of P : this is the case since
ci lies in the convex hull of the corners of P , and there is a halfplane for ai (bi)
whose boundary line passes through ci and whose intersection with P is ai (bi).

a1

b1 c1
d1

a2

b2
c2

d3

d2

a3
b3

c3
d4

d5

Fig. 6. k = 7.

LetW ⊂ S denote a subset of 3k points {ai, bi, ci :
i = 1, 2, . . . , k}. Consider a polygon P from a pseudo-
convex partition of S. We show next that P is in-
cident to at most 4 points of W . This implies im-
mediately that any pseudo-convex partition of these
n = 4k points consists of at least 3k/4 = 3n/16 poly-
gons. Suppose, by contradiction, that P is incident
to more than 4 points of W .

First suppose that P is convex, that is, P contains
a convex pentagon Q with all vertices in W . Since
each group contains only three points of W , Q must
have corners in at least two groups. Q can contain at most two points from each
group, because the triangle aibici cannot be completed to a convex pentagon
in S. Therefore, Q must have corners in at least three groups, and it contains
a triangle T with corners of W from three different groups. We show that T
(and also P ) contains a point di in its interior, which is a contradiction. If
T has a corner in W in group j, then T contains the point dj in its interior
unless both other corners must be either in groups [j + 1, j + �k/2�] or groups
[j + �k/2�, j + k − 1]. There are no three groups whose indices satisfy these
constraints for all three corners, and so T must contain a point di in its interior.

If P is a pseudo-triangle with at least five vertices from W , then it must have
two reflex vertices from W . Since the convex hull vertices can only be corners
of P , two reflex vertices are ci and cj , i 
= j. We have seen that if P contains ci
and cj , then it also contains ai, bi and aj , bj , and so it must have four corners:
A contradiction. �



5 Pseudo-Convex Decompositions of the Interior of a
Simple Polygon

Theorem 5. Every simple polygon with n ≥ 3 vertices has a decomposition into
at most

⌈
n−2

2

⌉
convex or pseudo-triangular faces, and this is the best possible

bound.

Proof. The lower bound is attained by the comb polygons (Fig. 7 (a)). We prove
the upper bound by induction on n ∈ N. The theorem is obvious for n = 3, 4.
Consider a simple polygon Pn with n ≥ 5 vertices. Triangulate Pn and let Tn

denote the dual graph of the triangulation. Every node of Tn corresponds to a
triangle, and every edge of Tn corresponds to a diagonal in the triangulation. Tn

is a tree with maximal degree three and with n− 2 nodes.
If n is odd then we delete a triangle t corresponding to a leaf node in Tn. By

induction, Pn − t can be decomposed into n−3
2 faces. Therefore Pn decomposes

into n−3
2 + 1 =

⌈
n−2

2

⌉
faces. Assume that n is even, and so

⌈
n−2

2

⌉
= n

2 − 1. The
triangulation consists of an even number of triangles. If a diagonal decomposes
Pn into two even polygons, then induction completes the proof. Hence we assume
that every diagonal decomposes Pn into two odd polygons.

Let the triangle abc correspond to a leaf in Tn such that ac is a diagonal of
Pn. We show that no diagonal of Pn is incident to b. Suppose, by contradiction,
that ad is a diagonal of Pn. Then abcd is a convex polygon, let d′ be the vertex
of Pn in acd \ {a, c} closest to the line ac. Note that bd′ is a diagonal of Pn, and
at least one of ad′ and cd′ is also a diagonal (since n ≥ 5). If bd′ decomposes Pn

into odd polygons, then either ad′ or cd′ decomposes it into two (non-empty)
even polygons. We conclude that b sees the interior of an edge ef of Pn.

Consider the pseudo-triangle pt(b, e, f) (three corners uniquely define a pseudo-
triangle in a simple polygon). If Pn = pt(b, e, f), then Pn is a pseudo-triangle,
and our proof is complete. Each of the components of Pn − pt(b, e, f) is an odd

(a) Comb poly-
gon for n odd
and for n
even.

a

b

c

d
d′

(b) If b is incident to a diago-
nal bd, then there is a ver-
tex d′ such that bd′ and at
least one of ad′ or cd′ are
also diagonals.

a

b

c

e f

g

(c) If b sees the edge ef then
we can form the pseudo-
triangle pt(b, e, f).

Fig. 7. Lower bound (a). An example 24-gon. (b)-(c).



polygon. Every such component is adjacent to a unique edge of the geodesic
geo(a, e) or geo(c, f). If pt(b, e, f) has k vertices, then it has k − 3 edges along
these geodesics (all edges except ab, bc, and ef). We show that there is one edge
along the geodesics geo(a, e) and geo(c, f) that is not adjacent to any compo-
nent of Pn − pt(b, e, f): Consider the dual graph of an arbitrary triangulation of
pt(b, e, f). It is a tree where one leaf node corresponds to abc and another leaf
corresponds to efg for some vertex g. Assume w.l.o.g. that eg is a side and fg is a
diagonal in pt(b, e, f). If eg were adjacent to an odd component of Pn−pt(b, e, f),
then fg would partition Pn into two even polygons. Therefore pt(b, e, f) with k
vertices is adjacent to at most k − 4 components of Pn − pt(b, e, f).

Let ni denote the number of vertices of the components of Pn − pt(b, e, f)
for i = 1, 2, . . . , k − 4. We have k +

∑k−4
i=1 (ni − 2) = n. By induction, every odd

component with ni vertices can be decomposed into (ni − 1)/2 faces. Together
with pt(b, e, f), the polygon Pn can be decomposed into

1 +
k−4∑
i=1

ni − 1
2

≤ 1 +
1
2

(
k−4∑
i=1

ni − 2

)
+
k − 4

2
=
n

2
− 1

faces, as required. ��

6 Conclusions and Open Problems

We proposed pseudo-convex decompositions, partitions, and coverings. We es-
tablished some of their basic properties and gave combinatorial bounds on their
complexity. Our upper bounds depend on new Ramsey-type results concerning
disjoint empty convex k-gons in the plane. We (obviously) would like to know
what the exact bounds on ψd(n) and ψp(n) are and if the exact bound for ψd(n)
can be realized with a pointed decomposition. It would also be interesting to de-
termine the complexity of computing a minimum pseudo-convex decomposition
or covering for a given point set.

Acknowledgements. The first two authors want to thank Ferran Hurtado and
Hannes Krasser for valuable discussions on the presented subject.
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A Omitted Proofs

Lemma 1. For any point set S we have ψd(S) ≤ 3κp(S) − 2 and thus ψd(n) ≤
3κp(n) − 2.

Proof. Any pointed pseudo-triangulation of S is a pseudo-convex decomposition
of S with n−2 faces. Using the at most κp(S) convex faces of a minimum convex
partition of S and pseudo-triangulating the area between them in a pointed way,
we can “save” several faces. A convex face of size ki ≥ 3 saves ki − 3 faces (that
is, the size of a triangulation of the convex ki-gon, which would be part of a full
pointed pseudo-triangulation).

Since all points of S are covered by exactly one face of a convex partition
we have

∑κp(S)
i=1 ki = n and so we can reduce the number of faces by at least∑κp(S)

i=1 (ki−3) = n−3κp(S). Therefore a minimum convex partition of S directly
yields a pseudo-convex decomposition of S with at most (n−2)−(n−3κp(S)) =
3κp(S) − 2 faces. ��

Theorem 4. The pseudo-convex decomposition number increases monotonically
with the number of points.

Proof. We have to show that ψd(n) ≤ ψd(n+1) which is equivalent to show that
for all point sets S, |S| = n, ψd(S) ≤ ψd(n+1) holds. So let S be some point set
with n vertices and let q ∈ S be an extreme point of S. We place a new vertex
q+ arbitrarily close to q to get the set S+ = S ∪ q+ such that both, q and q+,
are extreme vertices of S+. Note that S+ \ q has the same order type as S, that
is, for any two points p1, p2 ∈ S \ q the triples p1, p2, q and p1, p2, q

+ have the
same orientation.

As S+ has n+1 points it can be pseudo-decomposed with at most ψd(n+1)
faces. Let D+ be such a decomposition. Note that the face F of D+ which con-
tains the edge qq+ has to be convex, as otherwise q and q+ would lie on different
sides of at least one edge of the pseudo-triangle F . Now contract the edge qq+

until q and q+ coincide. By this transformation the face F loses one edge, but
all other faces of D+ remain combinatorially unchanged, that is, either convex
polygons or valid pseudo-triangles. Thus we obtain a pseudo-decomposition D
of S which has either the same number of faces as D+ or, in the case that F was
a triangle, one less. Therefore ψd(S) ≤ ψd(S+) ≤ ψd(n+ 1). ��

A.1 Lower Bound Construction for Pseudo-Convex Decompositions

Lemma 4. For every odd k, there are 5k points in the plane such any pseudo-
convex decomposition consists of at least 3k −O(1) faces.

Description of our construction. For every odd k ∈ N, we construct a
set of 5k points Pk = {ai, bi, ci, di, ei, : i = 1, 2, . . . , k}. The polygons A =
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Fig. 8. Our construction for k = 5 with 25 points on the
left. A sub-configuration of {ai, bi, ci, di, ei} on the right.

a1a2 . . . ak and C = c1c2 . . . ck form two centrally symmetric regular k-gons such
that A ⊂ C. Let o denote the center of symmetry. For every i = 1, 2 . . . , k, the
quadrilateral Qi = aibicidi is rhombus, where the diagonal aici is much longer
than cidi. Point ei lies near the center of the rombus aibicidi in the interior of
the triangle aibidi ∩ aicidi. The configurations {ai, bi, ci, di, ei}, i = 1, 2, . . . , k,
are congruent. See Figure 8 for an example with k = 5. The ratio of the diameter
of the polygons A and C are so close to 1 that any rhombus Qi can be separated
from the other rhombi by a straight line. Furthermore, we choose the ratio of the
two diagonals of Qi such that any line passing through ai or ci and another point
of {ai, bi, ci, di, ei}, intersects the line segment djbj+1 for j = i + k−1

2 mod k.
Any line spanned by {bi, di, ei} intersects the segments ci−1ci and cici+1.

Reference points. For a point set Pk and a pseudo-convex decomposition D,
we choose 6k reference points and show that every face of D (with at most
one exception) can contain at most two reference points. This proves that the
number of faces is at least 3k − 1.

Let ε > 0 be a sufficiently small real number. Each reference point lies in
the ε-neighborhood of an intersection point of two lines determined by Pk, in
a triangle incident to the intersection point. The locations of the six types of
reference points are given in Table 2 below.

Reference in the ε-neighborhood of in the triangle
point

xi bidi ∩ aici ∆(ai, bi, bidi ∩ aici)

yi bidi ∩ ciei ∆(di, ei, bidi ∩ ciei)

zi cibi+1 ∩ dici+1 ∆(ci, ci+1, cibi+1 ∩ dici+1)

ui ciei+1 ∩ eici+1 ∆(ei, ei+1, ciei+1 ∩ eici+1)

vi aici+1 ∩ eiai+(k−1)/2 ∆(ai, ai+(k−1)/2, aici+1 ∩ eiai+(k−1)/2)

wi ciai+1 ∩ ei+1ai+1+(k+1)/2 ∆(ai+1, ai+1+(k+1)/2, cici+1 ∩ ei+1ai+1+(k+1)/2)

Table 2. The locations of the six types of
reference points for i = 1, 2, . . . , k (addition is mod k).
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Fig. 9. The location of the reference points for sub-configurations Qi and Qi+1.

Most faces can contain at most two reference points. A convex poly-
gon spanned by Pk and empty from points in Pk can contain the pairs {xi, yi},
{zi, ui}, {vi, wi}, and {vi, wj} for any i = 1, 2, . . . , k, j 
= i. A pseudo-triangular
face can contain almost any two reference points in the family {xi, yi, zi, ui, vi, wi}.

A face may contain four reference points {zi, ui, vi, wi} if and only if it also
contains the symmetry center o of the the construction (Fig. 10(f)). Therefore
at most one face contains more than two reference points.

A pseudo-triangle face bidiciai+1ei can contain three reference points (namely,
xi, yi, and wi), for any i = 1, 2, . . . , k. If face bidiciai+1ei appears in our decom-
position D, then we move reference point xi by 2ε to the opposite side of segment
bidi. Therefore the set of reference points depends on the decomposition D, not
only on the input points Pk. A careful analysis for all pairs of reference points
shows that a face not containing the symmetry center in its interior cannot
contain more than two reference points.

(a) (b) (c) (d) (e) (f)

Fig. 10. Five tilings of the convex hull of P5 with 16 convex
or pseudo-triangle faces (a–e), and one with 17 faces (f).


