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Abstract

We describe an O(n5) time algorithm for deciding
whether a good drawing of the complete graph Kn,
given in terms of its rotation system, can be re-drawn
using only x-monotone arcs.

Introduction

In this paper we investigate x-monotone drawings of
complete graphs. We recall that a drawing of a graph
is x-monotone if each vertical line intersects each edge
at most once. We are interested in good drawings of
the complete graphs Kn. We recall that in a good
drawing of a graph no two edges share more than
one point (either a common end vertex or a cross-
ing) and no edge crosses itself (this last condition is
obviously satisfied in every x-monotone drawing). An
important motivation to focus the attention on good
drawings is that every crossing-minimal (in the usual
definition of crossing number) drawing of a graph is
good.

Besides their natural aesthetic appeal, x-monotone
drawings provide a nice generalization of rectilinear
and pseudolinear (see Section 3) drawings. Very little
seems to be known about this natural class of draw-
ings. Pach and Tóth proved in [4] two Hanani-Tutte
type theorems for (arbitrary, not necessarily good) x-
monotone drawings; their results were later strength-
ened by Fulek et al. in [3]. Pach and Tóth also showed
that, in sharp contrast with the behavior of the recti-
linear and the pseudolinear crossing numbers, which
cannot be bounded from above by any function of the
usual crossing number, the x-monotone crossing num-
ber of a graph is at most twice the square of its usual
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crossing number [5].

It is natural to ask what is the complexity of veri-
fying if a given drawing of a graph is equivalent to
an x-monotone drawing (that is, if there is a self-
homeomorphism of the sphere and a stereographic
projection that takes the original drawing into an x-
monotone drawing). We call such a drawing mono-
tone. For monotone drawings of Kn, tight lower
bounds on the crossing number are known [1, 2]. The
only algorithmic question related to monotone draw-
ings that we are aware of was settled in [3], where an
O(n2) algorithm is given that tests whether a graph
with given x-coordinates assigned to the vertices has
an x-monotone embedding (respecting the given x-
coordinates).

Here we adopt the broader point of view that we
are given the rotation system of the drawing (as op-
posed to, say, its cell structure). We recall that in a
given drawing, the rotation at a vertex is the clock-
wise ordering of edges at that vertex, and that the
rotation system is the collection of rotations at its ver-
tices. We investigate the question of whether, given
a rotation system that corresponds to a good draw-
ing of Kn, there exists a monotone drawing of Kn

with the same rotation system (i.e., the drawings are
weakly isomorphic). We show (see Theorem 5) that
there is a polynomial-time algorithm that settles this
decision problem.

A major tool in our algorithm is a variation of a
characterization of monotonicity by Balko, Fulek, and
Kynčl [2, Lemma 4.8] (see Theorem 2). The algorithm
can be easily modified to test whether a given good
drawing is weakly isomorphic to a 2-page book draw-
ing (see Corollary 7). Finally, we briefly discuss in
Section 3 a related result on characterizing pseudolin-
ear drawings of complete graphs.

1 A different characterization of monotonicity

For a drawing D of Kn let S = (v1, . . . , vs) be a se-
quence of its vertices. For 1 ≤ i < j ≤ s, we denote
with D(S, i, j) the drawing obtained from D by re-
moving v1, . . . , vi−1, vj+1, . . . , vs. If D is seen as a
subset of the plane, then a cell of D is a connected
component of R2 \D.



XVI Spanish Meeting on Computational Geometry

Definition 1 (Ábrego et al. [1]) A drawing D of
Kn is s-shellable if there exists a sequence S =
(v1, . . . , vs) of vertices and a cell C of D with the fol-
lowing property: for all 1 ≤ i < j ≤ s, the vertices vi
and vj are on the boundary of the region of D(S, i, j)
that contains C. The sequence S is an s-shelling of D
witnessed by C.

Definition 2 Let D be a drawing of Kn. We say
that a sequence of vertices (v1, . . . , vs) is a partial
shelling sequence from v1 to vs if there is a cell C of
D such that for all 1 < i < s, vi is incident to the cell
of D(S, i, s) that contains C. Similarly, we say that
(v1, . . . , vs) is a partial shelling sequence from vs to v1
if there is a cell C of D such that for all 1 < i < s, vi
is incident to the cell of D(S, 1, i) that contains C. In
either case, C witnesses the partial shelling sequence.

The following lemma is similar to [2, Observa-
tion 4.5], but uses a slightly more general formulation.

Lemma 1 A sequence S = (v1, . . . , vs) of vertices is
an s-shelling of a drawing D of Kn witnessed by a
cell C of D if and only if (i) v1 and vs are incident
with C, (ii) (v1, . . . , vs) is a partial shelling sequence
from v1 to vs witnessed by C, and (iii) (v1, . . . , vs)
is a partial shelling sequence from vs to v1 witnessed
by C.

The following theorem is the key ingredient to our
algorithm. It connects monotonicity (the existence of
a monotone good drawing) of a rotation system with
three simple properties. For the proof of this theorem
we need the notion of the unbounded cell of a good
drawing D. This is the cell of D of which every point
is connected to infinity.

Theorem 2 A good drawing D of Kn is monotone if
and only if there exists a permutation π = (v1, . . . , vn)
of its vertices such that the following three properties
hold.

1. For every vi, the rotation of vi contains a consec-
utive subsequence that contains exactly the ele-
ments vi+1, . . . , vn.

2. For every vi, the edge vivi+1 does not cross any
edge vavb, for all a, b > i.

3. No 3-cycle in D separates v1 from vn.

Proof. The three properties clearly hold if D is
monotone w.r.t. π. A drawing is monotone if and only
if it contains a permutation π = (v1, . . . , vn) of its ver-
tices such that π is an n-shelling of D and the path
defined by π is plane [2, Lemma 4.8]. Planarity of
the path (v1, . . . , vn) in D directly follows from Prop-
erty 2. By [2, Lemma 4.7], Property 3 is equivalent to
v1 and vn sharing a cell. It remains to prove that π

is an n-shelling of D (witnessed by a cell C). By
Lemma 1 this is the case if D has a partial shelling
sequence from v1 to vn and one from vn to v1, wit-
nessed by C.

We first show that D has a partial shelling sequence
from v1 to vn. The vertices v1 and vn share at least
one cell C, the unbounded cell. By Property 2, v1v2
is not crossed. Thus, v1 and v2 share two cells, which
merge with C when removing v1. Continuing this ar-
gument for any i from 2 to n, we can derive from
Properties 2 and 3 that vi and vn share a cell (the un-
bounded cell) that contains C in D(π, i, n). Hence, vi
and vn share a cell (the unbounded cell) in D(π, i, n)
and D has a partial shelling sequence from v1 to vn
witnessed by C.

Next we show that D has a partial shelling sequence
from vn to v1 witnessed by C. For the sake of contra-
diction assume that there is no such partial shelling
sequence. Recall that, by Property 3, v1 and vn share
the unbounded cell C in D. Therefore, there is an
edge vivi+1 (i ≤ n − 1) that is crossed by an edge
vjvk of the sub-drawing induced by v1, . . . , vi+1. Both
j and k have to be less than i. W.l.o.g., let j < k.
Note that k = j+ 1 is not possible due to Property 2.
Thus, 1 ≤ j ≤ i− 3 and j + 1 < k < i. Consider the
drawing induced by vj , vk, vi, vi+1, plus vk−1 (see
Figure 1). The vertices vi and vi+1 partition the ro-
tation around vk into two parts. By Property 1, vk−1
and vj have to be in the same partition. However, by
Property 2, the path (vj , . . . , vk) must not cross any
of the edges of the 3-cycle vkvivi+1, a contradiction.

Thus, by Lemma 1, π is an n-shelling of D and
since the path (v1, . . . , vn) is plane, it follows that D
is monotone w.r.t. π. �

vi+1vivj

vk

vk−1

vk−1

Figure 1: There cannot be an edge vjvk crossing an
edge vivi+1.

Note that the second part of the proof shows that
our properties imply the reverse formulation of Prop-
erty 2 (i.e., where a, b < i+ 1).

2 The algorithm

In this section, we provide an O(n5) time and O(n4)
space algorithm for deciding monotonicity, based on
Theorem 2. The algorithm is separated into two
phases, one where the checks for the properties are
prepared, and one where we pick the rightmost ver-
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tex vn and test the properties with respect to this
choice. Both phases rely on dynamic programming.

Throughout this section, an interval (w, k) in the
rotation of a vertex v is the consecutive subsequence
of its rotation that starts with w and has length k.

Preprocessing. In the preprocessing phase we pre-
pare two data structures to be able to check Prop-
erties 1 and 2 of Theorem 2 (see Lemmata 3 and 4,
respectively) in constant time per problem instance.
For Property 3 we need no preprocessing as it can be
checked directly in the permutation search algorithm
(see the proof of Theorem 5).

Lemma 3 Let D be a good drawing. Given two ver-
tices v and v′, as well as an interval (w, k), 2 ≤ k ≤
n − 1, in the rotation around v that contains v′. Let
D(v, w, k) be a sub-drawing induced by v and the ver-
tices in the interval (w, k). In O(n5) time we can con-
struct a data structure of size O(n4) to answer the
following query. Is there a consecutive subsequence of
k − 1 vertices in the rotation of v′ that contains ex-
actly the vertices of D(v, w, k) without v and v′? In
addition, the data structure provides the first element
of the subsequence, if it exists.

Proof. Let σ be the linearly ordered sequence ob-
tained from the rotation around v′ when removing v
(i.e., σ starts with the element after v). Add the first
k − 1 vertices of σ to a queue Q and let c be the
number of vertices in Q that are in the interval (w, k)
in the rotation around v (c can be obtained in linear
time). If c = k−1, Q is the required subsequence and
we are done. (As an answer we only store the first
element of Q in our data structure.) Otherwise, add
the next element vl of σ that has not been added to
Q to it, and remove the first element vf of Q from
it. (The invariant that |Q| = k − 1 is maintained.)
If vf is part of the interval at v, there cannot exist a
subsequence as required at v′ and we are done. If vl
is part of the interval at v, we increase c by one. If at
some point c = k − 1, we are done and Q defines the
requested subsequence. The first element of that sub-
sequence (i.e., the first element of Q) can obviously
be reported in constant time in that case. Otherwise,
if we added all vertices of σ to Q without c becoming
k−1, we know that the required subsequence does not
exists. We repeat this process for any combination of
v, v′, w, and k, resulting in overall O(n5) time and
O(n4) space. �

Lemma 4 Let D be a good drawing. Given two ver-
tices v and v′, as well as an interval (w, k), 2 ≤ k ≤
n − 1, in the rotation around v that contains v′. Let
D(v, w, k) be a sub-drawing induced by v and the ver-
tices in the interval (w, k). In O(n5) time we can con-
struct a data structure of size O(n4) to answer the

following query. Is there an edge in D(v, w, k) that
crosses vv′?

Proof. We use dynamic programming. Clearly, for
k = 2, the edge vv′ is uncrossed. Suppose it is
also uncrossed for a subproblem given by the tuple
(v, v′, (w, k)). If there is an edge crossing vv′ in the
subproblem (v, v′, (w, k + 1)), this crossing must be
with an edge that is incident to the additional vertex.
(Note that given the rotation system, we can deter-
mine in constant time whether two edges of a good
drawing of Kn cross.) There is only a linear num-
ber of choices for the other end vertex for an edge
crossing vv′. Thus, one step can be performed in lin-
ear time and the O(n5) time and O(n4) space bounds
follow. �

Permutation search. Using the data structures from
the preprocessing we can now prove our claim about
checking monotonicity. The algorithm is implicitly
given in the proof of the following theorem.

Theorem 5 Given the rotation system of a good
drawing D of Kn, we can test in O(n5) time and
O(n4) space whether there exists a permutation π of
its vertices such that D is monotone w.r.t. π.

Proof. Using dynamic programming we build a per-
mutation π = (v1, . . . , vn) of the vertices of D and
show that it fulfills the properties of Theorem 2, or
that such a permutation does not exist. In a first
phase, we apply the preprocessing provided by Lem-
mata 3 and 4. For the second phase, we guess a vertex
vn, the last element of π. We then apply Theorem 2
as follows. For any vertex vi and an interval (w, k) in
its rotation containing vn, let D(vi, w, k) be the sub-
drawing induced by vi and the vertices in the interval
for k ≤ n − 1. We check whether there is a permu-
tation of the vertices of D(vi, w, k) starting with vi
and ending with vn such that Properties 1 and 2 are
fulfilled. At the end of the second phase for each vn,
we check whether there exists a vertex and an interval
around it, such that this vertex can be v1 (in combi-
nation with the guessed vn), fulfilling Property 3.

In the following, we describe the second phase in
more detail. For each choise of vn we consider problem
instances comprising a vertex vi and an interval (w, k)
around vi. The base cases (vi, (w, 3)) can be easily
decided. Using dynamic programming, we can assume
that all problem instances up to k − 1 are decided.

For each vertex vi and an interval (w, k) around vi
that is containing vn, we guess a successor vi+1 from
that interval. We check whether the rotation of vi+1

has a consecutive subsequence that matches the cho-
sen interval at vi; let (w′, k − 1) be this interval at
vi+1. Then, we check whether the edge vivi+1 crosses
any edge in the sub-drawing D(vi, w, k). Both checks
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can be done in constant time (see Lemmata 3 and 4)
after the preprocessing phase. As soon as one of these
checks fails, we know that this problem instance is not
part of the required permutation and continue with
the next instance. If both checks are positive, we ob-
tain w′ and there is a permutation of the vertices of
D(vi, w, k) starting at vi and ending at vn fulfilling
Properties 1 and 2 if there exists one such permuta-
tion for vi+1 and the interval (w′, k − 1).

After all problem instances (vi, (w, n−1)) have been
decided for one fixed vn, it remains to find a valid v1.
Note that Properties 1 and 2 are fulfilled for one in-
terval (w, n− 1) at v1 if and only if they are fulfilled
for all intervals of length n − 1 around v1. We check
Property 3 for each of the O(n) possibilities for v1 in
a brute-force way (O(n3) triangle side tests) and are
done for the fixed vn.

The first phase takes O(n5) time and O(n4) space.
There are linearly many possibilities to chose vn, there
is a cubic number of subproblems (vi, (w, k)), and for
each subproblem, we check a linear number of succes-
sor vertices. Checking all possible choices for v1 takes
O(n4) time for each vn. Hence, the overall algorithm
to decide monotonicity needs O(n5) time and O(n4)
space. �

Note that in case such a permutation π exists, we
can easily retrieve it with the algorithm by simply
storing valid successor vertices. For a valid vertex v1
it is then standard to retrieve π in linear time.

We can modify the above approach to obtain an
algorithm to test whether a drawing has a 2-page book
drawing. Instead of checking whether an edge vv′ is
crossed by edges of a sub-drawing (Lemma 4), we can
check whether it is crossed at all.

Lemma 6 The set of uncrossed edges of a good draw-
ing D can be reported in O(n3) time.

Proof. Since the edges are uncrossed, they define a
planar graph, and therefore there are only O(n) such
edges. We first obtain a maximal plane sub-drawing
of D consisting of a set of edges denoted by F by pro-
cessing the edges in an arbitrary order. The current
edge is compared against all edges already added to F
(at most linearly many). If the edge crosses none of
them, we add it to F . Thus, F will contain (a super-
set of) all uncrossed edges of D. Finally, we test each
edge of F with all edges of D, reporting the uncrossed
ones. �

Corollary 7 Given a good drawing D, we can test
whether D is weakly isomorphic to a 2-page book
drawing in O(n5) time and O(n4) space.

The spine of a 2-page book drawing of Kn together
with the edge v1vn forms a plane (i.e., crossing-free)
Hamiltonian cycle. It is conjectured [6] that every

good drawing of Kn contains a plane Hamiltonian cy-
cle. For our dynamic-programming approach, the in-
terval of a vertex defining the subproblem enables us
to reason about the subproblem. This interval can
not be used when looking for plane Hamiltonian cy-
cles. Is there a polynomial-time algorithm to obtain
a plane Hamiltonian cycle in a good drawing of Kn, if
it exists? Can the set of all uncrossed edges of a good
drawing be reported in o(n3) time?

3 Pseudo-linear drawings

Consider a drawing of Kn in the projective plane P2.
A pseudo-line is a bi-infinite simple curve in P2 that
does not disconnect P2. A drawing in P2 is pseudo-
linear if each edge can be simultaneously extended to
a pseudo-line such that in the resulting set of pseudo-
lines each pair of pseudo-lines intersects exactly once
in a proper crossing. It is well-known that a pseudolin-
ear drawing is monotone. Balko, Fulek, and Kynčl [2]
show that a monotone drawing is pseudolinear iff it
does not contain a drawing of K4 that contains a
crossing and where in this sub-drawing one vertex is in
the interior of a triangle (w.r.t. the unbounded cell).
We call such a drawing a bad K4. We show (in the
full version) that the restriction to monotone draw-
ings in the statement of [2] is unnecessary, a result
obtained independently by Arroyo, McQuillan, and
Richter (personal communication).

Theorem 8 A good drawing of Kn in P2 is pseudo-
linear if and only if it does not contain a bad K4.
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