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Abstract

A good drawing of a simple graph is a drawing on the sphere or, equivalently, in the plane in which
vertices are drawn as distinct points, edges are drawn as Jordan arcs connecting their end vertices, and
any pair of edges intersects at most once. In any good drawing, the edges of three pairwise connected
vertices form a Jordan curve which we call a triangle. We say that a triangle is empty if one of the two
connected components it induces does not contain any of the remaining vertices of the drawing of the
graph. We show that the number of empty triangles in any good drawing of the complete graph Kn with
n vertices is at least n.

1 Introduction

Consider a simple graph G = (V,E). A good drawing D(G) of G on the sphere S2 or, equivalently, in the
Euclidean plane E2 is a drawing with the following properties:

1. The vertices are drawn as distinct points on the sphere S2 (or in the Euclidean plane E2).

2. The edges are Jordan arcs1 which have the drawings of the vertices they connect as end points.

3. Edges do not pass through any drawn vertex except for their own end vertices.

4. Any pair of edges intersects in at most one point (either in the interior of both edges, forming a proper
crossing; or at a common end point).

Besides being a reasonable restriction for a natural drawing of a graph, a main interest in good drawings
comes from the fact that they are useful for minimizing the number of crossings: It is well-known that if
in a drawing of a graph there are edges which have self-intersections or pairs of edges which cross more
than once, then the graph can be redrawn with less crossings. Therefore, only good drawings need to be
considered when the goal is to make drawings with few crossings or to minimize the number of crossings.
See for example [14, 13] for results on this topic.

In a good drawing D(G) of a graph G, the edges of any three pairwise connected vertices in D(G) form
a Jordan curve2, which we call a triangle. This definition matches the usual definition for the special case of
straight-line drawings of G, i.e., drawings in the plane where edges are straight-line segments. Any triangle,
being a Jordan curve, partitions the sphere (or the plane) into two connected components. If, in D(G), one
of these components does not contain the drawing of any of the remaining vertices, then the triangle is called
empty. Further, for the case of a good drawing D(G) in the plane, one of the connected components induced
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by a triangle is bounded while the other one is unbounded. We denote the former as interior and the latter
as exterior of the triangle. If, in D(G), no vertex of G is drawn in the interior of a triangle, then we denote
the triangle as interior-empty. Likewise, if, in D(G), no vertex of G is drawn in the exterior of a triangle,
then we denote the triangle as exterior-empty.

In this work, we consider the number of empty triangles in good drawings D(Kn) of the complete graph
Kn with n vertices. The question of finding empty triangles in good drawings of the complete graph goes
back to Erdős’ question [3] about the existence of convex k-holes (empty polygons spanned by k vertices
and edges) in straight-line drawings of the complete graph Kn and the subsequently posed question about
their number [9]. For the existence question, it is by now well-known that every sufficiently large point set
contains empty convex triangles, quadrilaterals, pentagons [6], and also hexagons [12, 5], but that there exist
arbitrarily large point sets without empty convex heptagons [8]. While the existence question is trivial for
empty triangles, the question on the least number h3(n) of empty triangles in straight-line drawings of Kn

has attracted many researchers and has been the topic of a large number of publications. The currently
best known bounds for h3(n) are n2 − 32

7 n + 22
7 ≤ h3(n) ≤ 1.6196n2 + o(n2), where the upper bound is due

to Bárány and Valtr [2] and the lower bound can be found in [1]. Note that both the upper and the lower
bound are quadratic in n.

In contrast, for general good drawings, Harborth [7] showed in 1989 that it is possible to draw Kn such
that it contains only 2n − 4 empty triangles. Note that this implies that most edges are not incident to
any empty triangle, while in straight-line drawings, every edge is incident to at least one empty triangle.
Harborth mentioned in the same work that for 3 ≤ n ≤ 6, the number of empty triangles in any good
drawing D(Kn) is at least 2n− 4. For n ≥ 7, the best general lower bound he could show was 2. However,
Harborth conjectured that every vertex in any drawing D(Kn) is incident to at least two empty triangles.
Recently, Fulek and Ruiz-Vargas [4] proved Harborth’s conjecture to be true, thus providing a lower bound
of 2n

3 for the number of empty triangles in any good drawing D(Kn). In this paper we improve that bound
and show that the number of empty triangles in any such drawing is at least n. Further, for n ≤ 8, we show
that Harborth’s upper bound of 2n− 4 is still tight and we conjecture this to be the case in general.

Outline. Before proving our main theorem in Section 3, we review Ruiz-Vargas’ proof in Section 2 and
show that it allows to obtain additional properties of the considered empty triangles. Further, we investigate
the relation between rotation schemes and the task of computing the minimum number of empty triangles
in Section 4 and present results for graphs with few vertices. In Section 5, we conclude by giving a short
account on our conjecture that every good drawing contains at least 2n− 4 empty triangles.

Note that for many purposes, including counting empty triangles, drawings on the sphere S2 are equivalent
to drawings in the plane E2 by Riemann stereographic projection3: In any good drawing D(Kn) of the
complete graph Kn, let a cell (of D(Kn)) be an open region (of S2 or E2, respectively) whose boundary is
defined by (parts of) drawn edges of Kn and which does not contain any part of D(Kn) (i.e., no part of a
drawn edge or vertex of Kn). Then for drawings in E2 exactly one cell is unbounded, while for drawings
on S2 all cells are bounded. Now consider a drawing D(Kn) on S2 and an arbitrary cell C of D(Kn).
Applying Riemann stereographic projection with the projection center in C, one obtains a drawing D′(Kn)
in E2 where the unbounded cell is the projection of C. Note that for every triangle ∆ in D(Kn), C is
completely contained in one of the two connected components of S2 induced by ∆. Further, note that the
projection does not change any crossing properties of the edges. Thus, all vertices of Kn which are drawn
in the connected component of S2 induced by ∆ that contains C lie in the exterior of the projection ∆′

of ∆, while all vertices of Kn which are drawn in the other connected component of S2 induced by ∆ lie
in the interior of ∆′. Particularly, ∆ is empty if and only if ∆′ is (interior- or exterior-)empty. While both
models are equivalent in that sense, in some parts of our reasoning it will be more convenient to consider
the drawings in the plane rather than on the sphere. Especially, all the drawings in all figures are assumed
to be in the plane.

3Riemann stereographic projection is a projection from the plane to a tangent sphere (or back) where the projection center
lies on the sphere and opposite to the tangent point of the plane.
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2 Empty star triangles

Recall that in a good drawing D(G) of a graph G, the edges incident to a vertex v do only intersect in D(v)
(where D(v) is the drawing of v). Thus, the (drawing of the) graph consisting of all vertices of G and all
edges incident to a vertex v of G is always crossing-free. We denote this graph as the induced star graph
(of v in D(G)). Note that D(G) induces a circular order of the edges incident to v; see Figure 1.
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Figure 1: The induced star graph of vertex v1 (drawn bold) in a good drawing of a graph. The vertices that
are incident to v1 are labeled with respect to their circular order around v1 in D(G).

If for a triangle ∆ = D(uvw), the (drawing D(uv) of the) edge uw is not crossed by any (drawing of an)
edge incident to v in D(G), then we say that ∆ is a star triangle (at v in D(G)). In the drawing in Figure 1,
D(v1v2v4) is a star triangle at v1. For comparison, D(v1v2v3) is not a star triangle at v1, as the edge v2v3
crosses the edge v1v4 in D(G). D(v1v5v6) and D(v1v6v2) are other star triangles at v1. As can be seen
in Figure 1, the induced star graph of a vertex in a general graph might have isolated vertices. In contrast,
the star graph of a vertex in the complete graph Kn always contains n − 1 edges and connects all vertices
of Kn, see Figure 2.
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(a) Induced star graph of v1 in D(K6).
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(b) Induced star graph of v3 in D(K6).

Figure 2: Examples of induced star graphs (drawn bold) and star triangles in a good drawing D(K6) of the
complete graph K6. Vertices are labeled with respect to their circular order around v1. D(v1v2v4) is a star
triangle at v1. D(v1v2v3) is not a star triangle at v1 (as the edge v2v3 crosses the edge v1v4 in D(G)), but
it is a star triangle at v3. D(v1v5v6) is an interior-empty star triangle at v1. D(v1v3v5) is an exterior-empty
triangle. Further, it is a star triangle at v5, but not at v1 or v3.

This property can be used to obtain the following proposition about star triangles in good drawings of
complete graphs.

Proposition 1. Consider a good drawing D(Kn) of the complete graph Kn with n ≥ 3 and let ∆ = D(uvw)
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be a star triangle at v. Then ∆ is empty if and only if u and w are adjacent in the circular order of the
edges around v (in D(G)).

Proof. Let H ⊆ Kn be the induced star graph of v plus the edge uw. As ∆ is a star triangle at v, D(H) is
crossing-free. Further, uvw is the only simple cycle in H. Let V1 and V2 be the subsets of vertices of Kn

which are drawn in the two connected components induced by ∆, respectively. As ∆ is a star triangle at
v, uw is not crossed by any of the edges of the induced star graph of v, where the latter contains an edge
between v and each other vertex of Kn. Thus, all edges from v to vertices of V1 are drawn completely in one
connected component induced by ∆, and all edges from v to vertices of V2 are drawn completely in the other
connected component induced by ∆, implying that the circular order of the vertices around v is u, V1, w, V2.
Hence, u and w are adjacent in this order if and only if V1 = ∅ or V2 = ∅, which is equivalent to ∆ being
interior-empty or exterior-empty.

In [4, Proposition 3.1], Fulek and Ruiz-Vargas show that in a good drawing in the plane, every vertex
is incident to at least one interior-empty triangle. He does so by explicitly finding such a triangle ∆. We
reconsider the proof of this proposition, showing that ∆ is in fact a star triangle at v.

Proposition 2. For every good drawing D(Kn) of the complete graph Kn in the Euclidean plane with n ≥ 4
vertices and every vertex v of Kn, there exists at least one interior-empty star triangle at v in D(Kn).

Proof. Let H0 be the star graph of v, and let u0 be a vertex of Kn\{v}; see Figure 3 for an accompanying
example. By [4, Corollary 2.3], there is an edge u0w0, with w0 ∈ Kn\{u0, v}, such that D(H0 ∪ {u0w0})
is still a crossing-free drawing. Consider the triangle ∆0 = D(vu0w0). If ∆0 is interior-empty then it only
remains to show that ∆0 is a star triangle at v; see below. Otherwise, let H1 = H0 ∪ {u0w0}, and let u1

be a vertex of Kn whose drawing lies in the interior of ∆0. Repeating the argumentation, there is a vertex
w1 ∈ Kn\{u1, v} such that D(H1 ∪ {u1w1}) is still crossing-free (and thus, D(w1) lies in the interior or on
the boundary of ∆0). As ∆1 = D(vu1w1) contains strictly less vertices of Kn than ∆0, repeating this process
terminates with an interior-empty triangle ∆i = vuiwi in a crossing-free drawing D(Hi ∪ {uiwi}) ⊂ D(Kn).

v

w0 u0

∆0

(a)

v

u1

w1

∆1

(b)

Figure 3: Finding interior-empty star-triangles at v: Hi is drawn bold, the edge uiwi is drawn dashed, and
∆i is drawn shaded. (a) First step: ∆0 is not interior-empty. (b) Second step: ∆1 is interior-empty, so this
is also the last step in this example.

Finally consider the interior-empty triangle ∆i, i ≥ 0, that has been found by this procedure. As
D(Hi ∪ {uiwi}) contains the star graph of v in D(Kn) and is crossing-free, ∆i is a star triangle at v.

Consider a good drawing D(Kn) of the complete graph Kn in the Euclidean plane (n ≥ 4) and let v be
a vertex of Kn. By Proposition 2, there exists at least one interior-empty star triangle ∆ at v. Let C be a
cell of D(Kn) which lies completely in the interior of ∆. From D(Kn), we obtain a good drawing D′(Kn)
in the plane where the projection of ∆ is an exterior-empty triangle by applying Riemann stereographic
projection twice: First project D(Kn) to the sphere. Then project the result back to the plane with the
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(new) projection center inside the projection of C, i.e., in D′(Kn) C is the unbounded cell. Repeating the
above proof to the drawing D′(Kn), we obtain an interior-empty triangle ∆′ which is a star-triangle at v
in D′(Kn). As the projection does not change any crossing properties of the edges, the inverse projection
of ∆′ is a star-triangle of v in D(Kn) as well (either interior- or exterior-empty). Similarly, if we have a good
drawing on the sphere, we can first project it to the plane (by this making an arbitrary cell unbounded) and
then apply the same arguments as above. Thus, we altogether obtain the following corollary.

Corollary 3. For every good drawing D(Kn) of the complete graph Kn with n ≥ 4 vertices and every vertex
v of Kn, there are at least two empty star triangles at v in D(Kn).

The bounds from Proposition 2 and Corollary 3 are tight in the sense that there exist drawings of Kn in
the plane where most vertices are incident to exactly one interior-empty and one exterior-empty triangle, or
to exactly two interior-empty and no exterior-empty triangles. See for example Figure 4(a) for the former
and Figure 4(b) or Harborth’s upper bound drawing [7, Fig. 1] for the latter.

v1 v2 v3 v4 v5 v6 v7 v8

(a)

v1 v2 v3 v4 v5 v6 v7 v8

(b)

Figure 4: Good drawings of K8 with 2n−4 = 12 empty triangles where (a) vertices v3, . . . , v5 are incident to
exactly one interior-empty and one exterior-empty triangle, and (b) vertices v3, . . . , v5 are incident to exactly
two interior-empty and no exterior-empty triangles.

3 Lonely and lucky vertices

Consider a good drawing D(Kn) of the complete graph Kn and a vertex v in this drawing. If there exists a
triangle ∆ in D(Kn) for which v is the only vertex drawn in one of the two connected components induced by
∆, then we say that v is lonely in ∆. For example, in the drawing in Figure 2, vertex v3 is lonely in D(v1v2v4)
as it is the only vertex drawn in the interior of D(v1v2v4). Likewise, vertex v5 is lonely in D(v2v3v6) as it is
the only vertex drawn in the exterior of D(v2v3v6).

Proposition 4. If a vertex v of Kn, n ≥ 4, is lonely in a good drawing D(Kn), then v is incident to at least
three empty triangles in D(Kn).

Proof. Consider a triangle ∆ = D(v1v2v3) in D(Kn) which witnesses the loneliness of v, i.e., v is the only
vertex in one of the two connected components induced by ∆. Further, consider the edges e1 = vv1, e2 = vv2,
and e3 = vv3 between v and the three vertices of ∆. As D(Kn) is a good drawing, at most one of e1, e2,
and e3 can form a crossing with an edge of ∆. We distinguish two cases.

Case 1: None of e1, e2, and e3 forms a crossing with an edge of ∆. Note that in this case, e1, e2, e3, and v
are all completely in the same connected component induced by ∆. Moreover, as none of the other vertices
is on this side of ∆, each of the three triangles formed by v and two vertices of ∆ is empty; see Figure 5.

5



v3

v1 v2

v

(a)

v3

v1 v2

v

(b)

Figure 5: None of the edges between v and {v1, v2, v3} crosses an edge of ∆ = D(v1v2v3): (a) v in the interior
of ∆, and (b) v in the exterior of ∆.
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Figure 6: One of the edges between v and {v1, v2, v3}, w.l.o.g. vv1, crosses an edge of ∆ = D(v1v2v3): (a) v in
the interior of ∆; (b) v in the exterior of ∆, vv3 drawn such that D(vv2v3) is interior-empty; and (c) v in
the exterior of ∆, vv3 drawn such that D(vv2v3) is exterior-empty.

Case 2: One of the edges e1, e2, or e3 forms a crossing with an edge of ∆. W.l.o.g., let e1 = vv1 be this
edge. Then the crossed edge of ∆ is v2v3, and ∆′ = D(vv2v3) is an empty triangle; see Figure 6. As the
edge v2v3 is crossed by vv1, ∆′ is none of the empty star triangles at v which are encountered by the proof
of Proposition 2 and by Corollary 3. Thus, together with these two empty star triangles, v is incident to at
least three different empty triangles.

In the following, let l(v) be the number of triangles in D(Kn) in which v is lonely, and t(v) be the number
of empty triangles in D(Kn) incident to v. If t(v)− l(v) ≥ 2 then we say that v is lucky. Note that for n ≥ 4,
every vertex v that is not lonely is lucky, as we know by Corollary 3 that in this case t(v) ≥ 2. Also, every
vertex v with l(v) = 1 is lucky, as in this case t(v) ≥ 3 by Proposition 4.

Theorem 5. For n ≥ 4, the number of empty triangles in any good drawing D(Kn) of the complete graph
Kn with n vertices is at least n.

Proof. We prove the bound by induction on the number n of vertices. For the induction base, it is straight-
forward that for n = 4, every good drawing contains exactly four empty triangles; see again Figures 5 and 6.
So assume that the statement is true for any good drawing D(Kn′) with n′ < n, and consider a good drawing
of D(Kn). We distinguish two cases.

Case 1: D(Kn) contains a vertex v which is lucky. As v is lucky, we know that t(v)− l(v) ≥ 2. Removing v
and all its incident edges results in a drawing D(Kn−1). By the induction hypothesis, this drawing contains
at least n−1 empty triangles. When adding v and all its incident edges again, the number of empty triangles
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is increased by t(v) and decreased by l(v). Thus, D(Kn) contains at least n − 1 + t(v) − l(v) ≥ n + 1 > n
empty triangles.

Case 2: All vertices of Kn are lonely in D(Kn). By Proposition 4, every lonely vertex is incident to
t(v) ≥ 3 empty triangles. Summing up the number of incident empty triangles per vertex over all vertices,
every triangle is counted exactly thrice (once for each of its vertices). Thus, 1

3 ·
∑

v∈Kn
t(v) ≥ 1

3 ·
∑

v∈Kn
3 = n

is a lower bound for the number of empty triangles in D(Kn).

4 Rotation schemes and graphs with few vertices

While the emptiness of a triangle clearly depends on the drawing, not all information of the good drawing
is needed to decide whether a triangle v1v2v3 is empty. While for deciding interior- or exterior-emptiness we
need to know which side of the triangle contains the unbounded face, we can decide whether a triangle is
empty by only looking at the rotation scheme of the drawing. Given a drawing of a graph G on an oriented
surface, the rotation scheme of the drawing of G gives the circular order of the edges around each vertex
of G. Let v1v2v3 be a triangle in a good drawing. The rotation scheme of v2 is separated by the edges v2v1
and v2v3 into two disjoint (possibly empty) sequences. For any fixed direction of the circular order around
v2, let R2 be the sequence between the edges v2v1 and v2v3, and let L2 be the sequence between the edges
v2v3 and v2v1. For v1 and v3, we define R1, L1 as well as R3 and L3 analogously. We call a sequence Ri

a right sequence and a sequence Li a left sequence, for 1 ≤ i ≤ 3. In any rotation scheme (and any good
drawing) of the complete graph, edges from v1, v2, and v3 to any vertex v are trivially contained either in at
least two left sequences or at least two right sequences; we then say that v is left of v1v2v3 or right of v1v2v3,
respectively. In a good drawing, the triangle is empty if either all other vertices are left of v1v2v3 or all other
vertices are right of v1v2v3; see again Figures 5 and 6.

Exhaustively generating all possible rotation schemes of Kn for small n and counting the number of empty
triangles therein can therefore easily be done. It remains to verify whether a rotation scheme is actually
realizable, i.e., is the rotation scheme of at least one good drawing. Deciding realizability can be done in a
combinatorial way by considering a drawing as a crossing-free graph where (i) each vertex is either a vertex of
the original graph or a crossing of the original graph, (ii) each edge is a part of an edge of the original graph,
and (iii) each face is a cell of the original graph. For small point sets, a simple backtracking procedure that
subsequently adds edges of the original graph and checks whether the drawing is good is sufficient and can
be implemented in a straight-forward way. Note that Kynčl [10] gives a more sophisticated, polynomial-time
algorithm to decide realizability of a given rotation scheme of the complete graph. For 3 ≤ n ≤ 6, Harborth
mentioned in [7] that the number of empty triangles in any good drawing D(Kn) is at least 2n − 4. By
extensive computer search, we have been able to confirm this result and show the same to be true also for
n = 7 and n = 8.

Observation 6. For 3 ≤ n ≤ 8, the number of empty triangles in a good drawing of Kn is at least 2n− 4.

If every drawing with few empty triangles would contain a lucky vertex, then, by the proof of Theorem 5,
the number of empty triangles would always be at least 2n − 4. This is the case for the upper bound
example from Harborth [7, Fig. 1], as well as for the drawings shown in Figure 4; there, none of the vertices
v3, . . . , vn−2 is lonely in any triangle, and thus all of them are lucky. Unfortunately, the drawing in Figure 7
shows that, in general, an argumentation like this one is not possible.

Still, also in this drawing the total number of empty triangles equals 2n − 4. Moreover, for n = 8, the
drawing represents the only realizable rotation scheme (out of 5370725 different ones) for which there is no
lucky vertex. All other realizable rotation schemes of cardinality 4 ≤ n ≤ 8, no matter whether or not they
have few empty triangles, contain at least one lucky vertex.
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Figure 7: Example of a drawing of the only rotation scheme for K8 where every vertex is at least 2-lonely
and no vertex is lucky.

5 Conclusion

In this paper we have shown that any good drawing of the complete graph Kn with n vertices contains
at least n empty triangles, thus improving the best previous lower bound of 2n

3 . As mentioned in the last
section, Harborth already stated that the number of empty triangles for the best known minimizing examples
is 2n− 4, and we have confirmed this for n up to 8. We thus state the following conjecture.

Conjecture 7. For n ≥ 4, the number of empty triangles in any good drawing of the complete graph Kn is
at least 2n− 4.

A triangulation is a maximal, crossing-free drawing of a graph such that every face is an empty triangle.
In the plane, the outer face can be an exception, i.e., it might be a larger face. It is interesting to observe that
any triangulation of n points on the sphere has 2n− 4 triangular faces. Equivalently, any triangulation of a
set of n points in the plane with triangular convex hull consists of 2n− 5 triangles plus the outer, triangular
face.

A geometric graph consists of vertices which are embedded as points in the plane, and edges which are
straight line segments connecting two such points. It is easy to see that any complete geometric graph
contains a maximal crossing-free sub-graph, that is, a triangulation. In contrast, it is NP-complete to decide
whether a general (non-complete) geometric graph contains a triangulation as a sub-graph [11].

Note that in the non-geometric case a good drawing might contain 2n − 4 empty triangles, but, as
these triangles might overlap, no triangulation as a sub-drawing. See for example Figure 6(a) where in any
crossing-free sub-drawing one of the faces has to be at least a quadrilateral. Even if we allow the outer face of
a triangulation in the plane to be larger, there exist good drawings which do not contain such a triangulation
as a sub-drawing. Thus we raise the following question: What is the complexity of deciding whether or not
a good drawing D(Kn) contains a triangulation as a sub-drawing?
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[10] J. Kynčl. Simple realizability of complete abstract topological graphs in P. Discrete Comput. Geom.,
45(3):383–399, 2011.

[11] E. L. Lloyd. On triangulations of a set of points in the plane. In 18th Annual Symposium on Foundations
of Computer Science, pages 228–240, 1977.

[12] C. Nicolás. The empty hexagon theorem. Discrete and Computational Geometry, 38(2):389–397, 2007.

[13] S. Pan and R. B. Richter. The crossing number of k11 is 100. Journal of Graph Theory, 56(2):128–134,
2007.

[14] R. B. Richter and C. Thomassen. Relations between crossing numbers of complete and complete bipartite
graphs. American Mathematical Monthly, 104(2):131–137, 1997.

9


