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Abstract

We study monotone simultaneous embeddings of upward planar di-
graphs, which are simultaneous embeddings where the drawing of each
digraph is upward planar, and the directions of the upwardness of differ-
ent graphs can differ. We first consider the special case where each digraph
is a directed path. In contrast to the known result that any two directed
paths admit a monotone simultaneous embedding, there exist examples of
three paths that do not admit such an embedding for any possible choice
of directions of monotonicity.

We prove that if a monotone simultaneous embedding of three paths
exists then it also exists for any possible choice of directions of mono-
tonicity. We provide a polynomial-time algorithm that, given three paths,
decides whether a monotone simultaneous embedding exists and, in the
case of existence, also constructs such an embedding. On the other hand,
we show that already for three paths, any monotone simultaneous embed-
ding might need a grid whose size is exponential in the number of vertices.
For more than three paths, we present a polynomial-time algorithm that,
given any number of paths and predefined directions of monotonicity, de-
cides whether the paths admit a monotone simultaneous embedding with
respect to the given directions, including the construction of a solution if
it exists. Further, we show several implications of our results on monotone
simultaneous embeddings of general upward planar digraphs. Finally, we
discuss complexity issues related to our problems.
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1 Introduction

Let {Gi = (V,Ei)|1 ≤ i ≤ k} be a set of k distinct planar graphs sharing the
same vertex set. A simultaneous embedding of these graphs is a set of their
planar drawings {Γi|1 ≤ i ≤ k} such that each vertex of V is represented by the
same point in the plane in each of the drawings. Simultaneous embeddings were
introduced as a model for visual comparison of different relations of the same
object set, as well as for a visualization of dynamic changes of a single relation.
If one restricts how the edges in the drawing must be realized, simultaneous
embeddings can be specialized as follows. In geometric simultaneous embeddings
all edges are required to be straight segments. In simultaneous embeddings with
fixed edges, there is no special restriction on the shape of the edges, but the
common edges of the graphs are required to be drawn in the same way in each
of the drawings. Bläsius, Kobourov, and Rutter [4] give an extensive overview
of the known results for these types of simultaneous embeddings.

Simultaneous embeddings were also studied for upward planar digraphs. A
directed graph (digraph, for short) is called upward planar if it admits a planar
drawing so that all its edges are represented by curves, monotonically increasing
in a common direction, which is traditionally called upward. Upward drawings
are motivated by a desire of a clearer expression of a hierarchy among a set
of objects. An upward simultaneous embedding of k upward planar digraphs
is a set of upward planar drawings of given graphs, such that each vertex is
represented by the same point in the plane in each of the drawings. However,
the choice of direction of “upwardness” to be common for all graphs does not
make any sense. It is easy to see that for any two graphs G1 = (V,E1) and
G2 = (V,E2), an upward simultaneous embedding with only one direction of
upwardness does not exist if G = (V,E1 ∪ E2) contains a directed cycle. Mo-
tivated by this simple fact, Giordano et al. [8] considered upward simultaneous
embeddings where the directions of upwardness are different. They showed that
any two upward planar digraphs admit an upward simultaneous embedding,
where the directions of upwardness differ by π/2. Giordano, Liotta, and White-
sides [9] gave a characterization of upward simultaneous embeddable digraphs
with respect to the same direction. Pampel [19, p. 71] considered upward simul-
taneous embeddings of directed paths where the directions of upwardness are
different and only a subset of vertices is common to all paths. This problem is
known as Strictly Monotone Trajectory Drawing. Pampel [19, p. 71]
showed that the problem is NP-hard even for paths with four vertices.

In this paper we study upward simultaneous embeddings for more than two
graphs and different directions of upwardness. We formalize the problem as
follows. Let ~v be a vector in R2. A drawing of a directed graph G = (V,E)
is called ~v-monotone if its edges are represented by (directed) curves which are
monotonically increasing in the direction of ~v. Let V = {~v1, . . . , ~vk} (k > 1) be a
set of vectors and let G = {G1, G2, . . . , Gk} be a set of k distinct upward planar
digraphs sharing the same vertex set. A V-monotone simultaneous embedding
of G is a set {Γ1, . . . ,Γk} of planar drawings such that: (1) Γi is a ~vi-monotone
drawing of Gi (1 ≤ i ≤ k) and (2) an equally labeled vertex is represented by
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the same point in all drawings of the set. A monotone simultaneous embedding
of G is a V-monotone simultaneous embedding for some set V of vectors.

Monotone simultaneous embeddings of a set of graphs is closely related to
so-called monotone drawings of graphs. In the latter a single graph is provided
as an input and it is asked to be drawn such that there exists a monotone (usu-
ally straight-line edge) path between each pair of vertices. Monotone drawings
of planar graphs have been studied in [1, 2, 14]. These drawings are motivated
by the desire to ease the visual tracking of a path between any two vertices.
While monotonicity of a path contributes to the ease of path-following, it does
not make a too significant difference, since a monotone path can be still rather
wiggly. One possibility to make a path “smoother” is to require that the slopes
of the edges of the path lie in a given small wedge. Notice that a wedge of
angle π would correspond to a monotone path. The smaller the wedge is, the
“smoother” the path becomes. We call this variant of monotone simultane-
ous embedding a wedge-monotone simultaneous embedding (or a W -monotone
simultaneous embedding, when W = {w1, . . . , wk} is a set of wedges, and wi,
1 ≤ i ≤ k is the wedge where the edges of graph Gi are required to lie).

We study the following problem. Given a set G of upward planar digraphs,
we ask whether it admits a monotone simultaneous embedding. In order to shed
light on this problem we also consider the following constrained version: Given
a set G of upward planar digraphs and a set V of vectors, with |G| = |V|, we
study whether G admits a V-monotone simultaneous embedding.

Observe that if a monotone simultaneous embedding of G exists, it is nat-
urally associated with a vector set V. However, these vectors are not required
to be radially ordered around the origin. In case of monotone simultaneous
embeddings of a sequence of graphs, this will be a requirement. But we return
to this point in the next section, after explaining how the sequences and sets of
paths are related.

We remark that determining whether a monotone simultaneous embedding
exists is more restricted than the Strictly Monotone Trajectory Draw-
ing problem (see e.g. [19]), since in the former each vertex is shared by all
of the paths. Observe that in a monotone simultaneous embedding of paths,
it holds that, if we draw the edges straight-line, the resulting drawing of each
path taken independently is intersection-free. Thus, if a monotone simultaneous
embedding of a set of paths exists, then a geometric simultaneous embedding
of these paths exists as well. In [5] it was shown that any two paths admit a
geometric simultaneous embedding, which also happens to be monotone. It was
also shown that there exists a set of three paths that do not admit a geometric
simultaneous embedding. This implies that the same three paths do not admit
a monotone simultaneous embedding. The same fact follows from the work of
Asinowski [3] on suballowable sequences, as will be explained in more detail in
Section 2.1.

Recall that in monotone simultaneous embeddings, as defined above, there
is a restriction on how the edges are drawn, that is, they are required to be
represented by monotone curves in some direction. This fact makes monotone
simultaneous embeddings completely different from simultaneous embeddings
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of undirected graphs, for which it is known that any number of planar graphs
admits a simultaneous embedding [18]. As we have already mentioned, for
monotone simultaneous embeddings this is not the case, and the existence of a
monotone simultaneous embedding strongly depends on the choice of the direc-
tions of monotonicity. Intuitively, it is clear that the choice of such directions
becomes more restricted as the order among the vertices of graphs becomes
more strict. We first look at the core of this problem by assuming that each
of our graphs is a simple directed spanning path (i.e., directed from one end
of the path to the other) of the common vertex set V . Then we prove several
implications of our results on general upward planar digraphs.

We start with introducing some tools in Section 2, namely relations to circu-
lar sequences of point sets and the dual representation of the considered problem.
Our main results are concentrated in Sections 3-5 and are as follows.

• In Section 3.1 we consider sets of three directed paths. In contrast to sets
of two paths which always admit a monotone simultaneous embedding
(see also [5, 8]), there exist sets of three paths which do not admit such an
embedding [3, 5]. We show that, if a monotone simultaneous embedding
for three directed paths exists, then it also exists for any set of predefined
directions. We also show that this result is tight with respect to the
number of paths, i.e., it does not hold for four or more paths. Further, we
provide an example of three paths for which any monotone simultaneous
embedding requires a grid of exponential (w.r.t. the number of vertices)
size. We also discuss the implication of this result for wedge-monotone
simultaneous embeddings.

• In Section 3.2 we consider larger sets of paths. We show that, given any
set P = {P1, . . . , Pk} of paths and a set V = {~v1, . . . , ~vk} of vectors, we
can decide in polynomial time whether P admits a V-monotone simul-
taneous embedding, including the construction of a solution if it exists.
Together with the results from Section 3.1, this implies that, for k = 3,
the existence of a monotone simultaneous embedding (without predefined
directions) can be decided in polynomial time, which answers a question
posed by Asinowski in [3]. In case of existence, such an embedding can be
constructed in polynomial time as well.

• In Section 4 we derive several implications of the aforementioned results on
upward planar digraphs. Based on work of Giordano et al. [9], we first show
that, given a set of k upward planar digraphs, the question whether they
admit a monotone simultaneous embedding can be reduced to the same
question for k paths, under the condition that the order of the vertices of
the graphs in the projection on their direction of monotonicity is fixed.
We then state several results on monotone simultaneous embeddings of
upward planar digraphs that are implied by this fact.

• Finally, in Section 5 we discuss the complexity of monotone simultaneous
embeddings of k paths (on the same vertex set V ) when the directions of
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monotonicity are not predefined. We show that the construction problem
becomes intractable for k > 3 and give reasons why the complexity of
the decision problem does not directly follow from the NP-hardness of
deciding stretchability of pseudo-line arrangements [22]. Also, we consider
a generalization of monotone simultaneous embeddings of paths and show
NP-hardness of this version of the problem.

We conclude in Section 6 with several open problems.

2 Preliminaries

2.1 Relation to circular sequences

The problem of monotone simultaneous embedding is strongly related to the
circular sequence of a point set (see Goodman and Pollack [10, 12] for details).
The circular sequence of a point set was also used in the related work by Gior-
dano, Liotta, and Whitesides [9]. Let ` be any line and S = {s1, . . . , sn} be
a labeled set of points. Consider the orthogonal projection of S on `. This
gives a permutation of the indices of the points. Continuously rotate ` coun-
terclockwise. Every time a supporting line of two points (i.e., the line defined
by these two points) becomes normal to `, two indices change their position
(we omit details concerned with collinear point triples and parallel supporting
lines). After having rotated ` by 180◦, the initial permutation of indices is re-
versed. Every pair of indices changed their relative position exactly once. This
sequence of permutations defines the circular sequence of a point set S, which
we denote by Σ(S).1 An arbitrary periodic sequence of index permutations
(not connected to any point set) which fulfills these properties (i.e., every pair
changes its relative position exactly once per half-period) is called an allowable
sequence. Hence, a circular sequence is an allowable sequence that stems from a
projection of a point set on a rotating line. In our problem we are given a set of
permutations (paths) and the question is whether there exists a point set such
that its circular sequence contains the given set of permutations.2 In a related
work, Asinowski [3] considered similar questions for allowable sequences: He in-
troduced suballowable sequences, which are subsequences of allowable sequences,
and investigated their properties; see also the remarks in Section 3. The follow-
ing observations stem from properties of both, circular and allowable, sequences
and most of them can also be found in (or derived from) [3].

Observation 1. A set {P1, . . . , Pk} of directed paths on a common set of n
vertices admits a monotone simultaneous embedding if and only if there exists
a set S of n labeled points, such that for each i = 1, . . . , k, the circular se-
quence Σ(S) contains a permutation of indices defined either by Pi or by its
reverse path.

1The circular sequence is infinite. However, a half-period, which corresponds to a rotation
of ` by 180◦, completely determines the sequence.

2Since we consider only a half-period Σ of a circular sequence, we allow that, instead of
the original, the reversed permutation appears in Σ.
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Note that only for a circular sequence Σ one can construct a point set S such
that Σ = Σ(S). This fact gives us a necessary condition for the existence of
monotone simultaneous embeddings. This necessary condition is the target of
the remainder of this section, for which we need further preparation. Consider
a set P of paths on a vertex set V = {v1, . . . , vk}. We denote by I(i, P ) the
index of vi in path P ∈ P. A set of vectors which are all directed to the same
half-plane is called adjusted. Given two indices i and j, we denote by Padj

ij

the set of paths which results from reversal of some of the paths of P so that
I(i, P ) < I(j, P ) for each P ∈ P. If P = Padj

ij for some indices i, j, 1 ≤ i, j ≤ n,
then P is called adjusted. Recalling Observation 1, and noticing that in an
adjusted set of paths some indices i and j do not switch their position, we get
the following.

Observation 2. If an adjusted set of k paths admits a {~v1, . . . , ~vk}-monotone
simultaneous embedding, then vectors {~v1, . . . , ~vk} are also adjusted.

Until now we only talked about sets of paths. In order to relate a set of
paths to a circular sequence we need to consider an order among the elements
of a set of paths. Thus, we will denote by 〈P〉 an ordering of the elements of P.
Analogously to circular sequences, if for any triple of paths Pa, Pb, Pc ∈ 〈P〉,
where a < b < c, there exists a pair of vertices vi, vj ∈ V with I(i, Pa) < I(j, Pa)
and I(i, Pb) > I(j, Pb) for which it holds that I(i, Pc) < I(j, Pc), we say that
the sequence 〈P〉 of paths is non-allowable. It is allowable otherwise. More
generally, a set P of paths is called allowable if its elements can be ordered to
form an allowable sequence of paths. See Figure 1 for an example. The set of
paths in Figure 1 (a) is not adjusted. Reversing Pb results in an adjusted set
of paths, shown in Figure 1 (b). The corresponding sequence 〈Pa, P ′b, Pc, Pd〉 of
paths (as given by the depicted order) is non-allowable. Moving Pd to the front
results in an allowable sequence of paths, see Figure 1 (c). Note that it may
make sense that a sequence of paths contains the same path twice. (We will see
that this is the case if the sequence of paths is associated with a sequence of
vectors.)

Proposition 3. Let P be an adjusted set of k paths on the same set of n vertices.
An allowable sequence 〈P〉 of paths – if it exists – is unique up to reversal and
can be constructed within O(kn2) time.

Proof. The fact that, if there exists 〈P〉 which is an allowable sequence of paths
then it is unique up to reversal, follows from the basic properties of allowable
sequences (see [3, 10]).

In the following, we provide a constructive algorithm similar to the one
discussed in [3, page 4751] in order to be able to analyze its running time.

Let i and j be two arbitrary indices. We partition P into two sets P1 =
{P ∈ P : I(i, P ) > I(j, P )} and P2 = {P ∈ P : I(i, P ) < I(j, P )}. In an
allowable sequence 〈P〉 the elements of P1 (resp. P2) appear consecutive. Thus,
an allowable 〈P〉 is either 〈P1〉 concatenated with 〈P2〉 or the other way around.
We assume that the former happens, in the latter case the arguments are similar.
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Figure 1: (a) The set {Pa, Pb, Pc, Pd} of paths is not adjusted. (b) Revers-
ing Pb to get P ′b leads to an adjusted set {Pa, P ′b, Pc, Pd}. (c) The sequence
〈Pd, Pa, P ′b, Pc〉 is allowable while the sequence 〈Pa, P ′b, Pc, Pd〉 is non-allowable.

Consider two indices k and l, that change their relative position among the
elements of P1 (resp. P2). Then they cannot change it in P2 (resp. P1) as well.
The collection P1 (resp. P2) can be partitioned recursively by the pair (k, l).
Since the indices k and l change their relative position among the elements
of P1 (resp. P2), we have to arrange the resulting two partitions in a way that
the second (resp. first) partition have the same relative position of k and l as
the elements of P2 (resp. P1). If at some recursive step we cannot apply this
partition operation, this implies that no allowable sequence 〈P〉 exists.

For the running time of this algorithm, note that in O(kn) time, all paths
can be preprocessed such that checking whether I(i, P ) < I(j, P ) can be done in
constant time. Then each step of the above recursion takes O(k) time. Together
with the fact that there are O(n2) pairs of indices that can switch their position,
we obtain a total running time of O(kn+ kn2) = O(kn2).

We are now ready to state a necessary condition for the existence of mono-
tone simultaneous embeddings that stems from the properties of circular se-
quences.

Lemma 4. Let P be a set of k paths on a set of n vertices. If P admits
a monotone simultaneous embedding then for every pair of indices (i, j), 1 ≤
i, j ≤ n, the set Padj

ij is allowable.

Proof. Assume that P admits a monotone simultaneous embedding. We will
show that for any possible choice of indices 1 ≤ i, j ≤ n, the set Padj

ij is allowable.
Let S be a set of points representing vertices of the paths in P, in a {~v1, . . . , ~vk}-
monotone simultaneous embedding of P. Let i and j be two arbitrary indices.
Rotate S and vectors {~v1, . . . , ~vk} until the line supporting i and j is vertical
and i appears before j in the positive y-direction. Let S′ be the resulting
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point set. Reverse those vectors of {~v1, . . . , ~vk} that point in the negative y-
direction and also the corresponding paths of P. Let {~v′1, . . . , ~v′k} and P ′ denote
the resulting vectors and paths, respectively. In P ′, index i appears before
index j in each of the paths. Thus we have that P ′ = Padj

ij . Moreover, for
any path Pa ∈ P ′, the permutation defined by Pa is an element of Σ(S′) (the
corresponding element of Σ(S′) is created when points of S′ are projected on

the line given by ~v′a). Thus, the constructed Padj
ij is allowable.

Lemma 4 and Proposition 3 imply the following.

Corollary 5. If a set P of k paths with n vertices admits a monotone simul-
taneous embedding, then for every i, j, 1 ≤ i, j ≤ n, there exists an ordering
〈Padj

ij 〉 of Padj
ij which is allowable. The sequence 〈Padj

ij 〉 can be computed within

O(kn2) time.

We observe that Corollary 5 allows us to restrict considerations to allowable
adjusted sequences of paths. Any question that can be resolved in polynomial
time for an allowable adjusted sequence of k paths is also polynomial-time solv-
able for a set of k paths.

Recall that, if an allowable sequence 〈P1, . . . , Pk〉 of paths admits a mono-
tone simultaneous embedding, where Pi is embedded monotone in direction ~vi
for 1 ≤ i ≤ k, then the sequence 〈~v1, . . . , ~vk〉 of vectors is ordered around the ori-
gin. Thus, for 〈P1, . . . , Pk〉 it makes sense to talk about 〈~v1, . . . , ~vk〉-monotone
simultaneous embeddings, where the vectors appear in this order around the
origin. Moreover, a monotone simultaneous embedding of a sequence of paths is
refined to be a 〈~v1, . . . , ~vk〉-monotone simultaneous embedding. To emphasize
the difference with the previous definition, in monotone simultaneous embed-
dings of a set of paths, no order was required on the vectors.

2.2 The Dual Problem

We will work on the problem of monotone simultaneous embedding in the dual
plane by using the standard duality transform where a point s = (xs, ys) is
mapped to a non-vertical line l : y = xsx − ys and vice versa. See [7] for
properties of the dual transform. In this section we briefly recall some properties
of the transform which are used in this paper; see Figure 2 for an example. We
denote by S a set of points in the primal (or a set of lines in the dual setting,
respectively). Similarly, in the primal setting, single points are denoted by s,
and lines are denoted by l. As a special case, we denote vertical lines in the
dual by φ. Notation-wise, we do not distinguish between the primal and the
dual setting. For example, s is a point in the primal and at the same time a
line in the dual.

A well-known property of the duality transform is that the primal point s
is below a primal line l if and only if the dual point l is below the dual line s.
Further, the infinite set of points on the vertical line φ : x = α (as, e.g., φ1
in Figure 2) corresponds to the set of lines with slope α (indicated by the
directional vector v1 in Figure 2). Let S be a primal set of n points and let π be
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s1
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s4
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s5

s5
s1

s2

~v1

~v2

φ1 φ2

Figure 2: A point set (left) and its dual arrangement of lines (right). The
two vectors to the left are represented by the two vertical lines in the dual.
Observe the order of projection of the points on the vectors in the primal and
the corresponding order of the intersections with the vertical lines in the dual.

the order in which the points are traversed by translating a line of slope α below
all points in S to a line above all points of S. Then π is also the order in which
the dual lines of S intersect the vertical line φ : x = α in negative y-direction.
Consider now the lines that are normal to any line ` of slope α, i.e., the ones
of slope (−1/α). The traversal of S by a line of that slope corresponds to the
order in which the points of S are projected on `. Therefore, this is the order
in which the dual lines intersect the vertical line φ′ : x = (−1/α). Observe also
that, for α → 0, the order is given by the slope of the lines. So, we have the
following.

Observation 6. Consider a point set S, a directed path P containing the points
of S, and a vector ~v of slope α. The edges of P can be drawn resulting in a
~v-monotone drawing of P if and only if the dual lines of S intersect the vertical
line φ : x = (−1/α) in the same order as they appear either along P or along
its reverse.

The vector ~v and the vertical line φ in the previous observation are said to
correspond to each other. Recall that in the monotone simultaneous embedding
problem we are given a set {P1, . . . , Pk} of paths on the same vertex set V
and our goal is to determine the positions of vertices V , such that the edges of
each Pi can be drawn resulting in its ~vi-monotone drawing for some vector ~vi,
i = 1, . . . , k. Recall also that Corollary 5 allows us to consider only allowable
adjusted sequence of paths. The following observations will be repeatedly used
in the remainder of the paper.

Observation 7. An adjusted allowable sequence 〈P1, . . . , Pk〉 of paths on a
common set of vertices admits a monotone simultaneous embedding if and
only if there exists a sequence of k ordered vertical lines φ1, . . . , φk and a set
{s1, . . . , sn} of n non-vertical lines that intersect the vertical line φi, for each
i = 1, . . . , k, in the same order as the points {s1, . . . , sn} appear along Pi.
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For the constrained version of monotone simultaneous embeddings we have
the following.

Observation 8. An adjusted allowable sequence 〈P1, . . . , Pk〉 of paths on a
common set of vertices admits a 〈~v1, . . . , ~vk〉-monotone simultaneous embedding
if and only if there exists a set of n non-vertical lines {s1, . . . , sn} that intersect
the vertical line φi, for each i = 1, . . . , k, in the same order as {s1, . . . , sn}
appear along Pi, where φi is the vertical line in the dual corresponding to the
vector ~vi, i = 1, . . . , k.

3 Monotone Simultaneous Embeddings in the
Dual

3.1 Two and Three Paths

It is well known that given any sequence 〈P1, P2〉 of two paths and two vec-
tors 〈~v1, ~v2〉, there always exists a 〈~v1, ~v2〉-monotone simultaneous embedding of
〈P1, P2〉; see for example [4, 5, 8]. To give some intuition for the more complex
cases of three or more paths, we present the following approach which utilizes
the dual setting.

Let φ1 and φ2 be the two vertical lines along which the order for the paths
is defined in the dual. Let the dual lines be labeled in increasing order of
appearance in P1, and recall that I(i, P2) is the index of si in P2 (the function I
gives us the order π used before in the form of indices). Let the line si pass
through the point (xφ1

,−i) and (xφ2
,−I(i, P2)). This gives us a primal point

set allowing a 〈~v1, ~v2〉-monotone simultaneous embedding of 〈P1, P2〉.
In contrast to two paths, it is not always possible to find a monotone si-

multaneous embedding of three paths, even if there are no constraints on the
directions of monotonicity. This also shows that the necessary condition of
Lemma 4 is not sufficient. The proof of the following theorem uses a classical
result by Ringel [20] on the stretchability of pseudo-line arrangements based
on Pappus’ Theorem. Recall that an existence of monotone simultaneous em-
bedding of a set of paths implies an existence of their geometric simultaneous
embedding. Recall also that there exists a set of three paths that do not admit a
geometric simultaneous embedding [5]. Thus, the following theorem also follows
from [5].

Theorem 9 ([3, Proposition 8], [5, Theorem 3]). There are allowable path sets
of three or more paths that do not admit a monotone simultaneous embedding.

On the positive side, a monotone simultaneous embedding for three paths
does not strongly depend on the choice of the vectors:

Theorem 10. Suppose that a path set P = {P1, P2, P3} admits a {~v1, ~v2, ~v3}-
monotone simultaneous embedding. Then P admits a {~v′1, ~v′2, ~v′3}-monotone si-
multaneous embedding, for any vectors ~v′1, ~v

′
2, ~v
′
3, provided that their radial order

around the origin is the same as the one of ~v1, ~v2, ~v3.
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Proof. By Corollary 5, we can assume that sequence 〈P1, P2, P3〉 is allowable
and adjusted and hence, also the sequence {~v1, ~v2, ~v3} is adjusted. Further, we
can assume without loss of generality that ~v′1 is a vector with slope 0. By Obser-
vation 7, the dual vertical lines φ1, φ2, φ3, appear in this order from left to right.
Further, the dual lines s1, . . . , sn that correspond to the vertices, cross each φi in
the order as they appear on Pi. Recall the sphere model of the projective plane.
Consider a plane and a sphere in R3 such that the center point is not in the
plane. Every line that intersects the plane in one point and passes through the
center of the sphere intersects the sphere in two antipodal points, and every line
through the center of the sphere intersects the plane, except if the line is parallel
to the plane. The union of the points on the sphere defined in this way by lines
parallel to the plane represents the line at infinity `∞. Hence, we are given a
bijective mapping from every point in the plane to two antipodal points on the
sphere (not on `∞). In this mapping, a line in the plane corresponds to a great
circle on the sphere. Consider now the vertical lines φ1, φ2, φ3 that are crossed
by the non-vertical lines s1, . . . , sn. If we apply the projective transformation
that corresponds to rotating the sphere such that the great circle corresponding
to φ1 equals `∞, we obtain different lines φ′2, φ

′
3, s
′
1, . . . , s

′
n in the plane, cor-

responding to φ2, φ3, s1, . . . , sn, respectively. The order of intersections of the
transformed lines s′1, . . . , s

′
n on φ′i, i ∈ {2, 3}, is identical to the order of intersec-

tions of the original lines s1, . . . , sn on φi. Furthermore, the order of the slopes
of the transformed lines s′1, . . . , s

′
n is identical to the order of intersections of

s1, . . . , sn with φ1. Equivalently, φ′1 is the vertical line φ′1 : x = −∞ and hence,
φ′1 corresponds to a vector ~v′1 with slope 0 in the primal. Now we can scale and
translate the transformed lines φ′2, φ

′
3, s
′
1, . . . , s

′
n such that we have the vectors

~v′2 and ~v′3 in any position we want.

In contrast to the statement of Theorem 10, with four paths, we can first
encounter the situation where the actual slopes and not just the relative radial
order of the vectors influence the existence of a monotone simultaneous embed-
ding. In other words, the statement of Theorem 10 is tight with respect to the
number of paths; see Proposition 14 in Section 3.2.

Moreover, even if a monotone simultaneous embedding of three paths exists,
an exponential (in the number of vertices) ratio of the smallest and largest
distance between vertices of the embedding might be unavoidable.

Proposition 11. There exists a set of three paths such that every monotone
simultaneous embedding needs a grid whose size is exponential in the number of
vertices of the paths.

Proof. Consider the example shown in Figure 3. Let the number of dual lines
be any natural number n = 3m+ 2, m > 0. The three specified paths are

P1 = 〈s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, . . .〉,
P2 = 〈s1〉 ◦ 〈s3, s6, s9 . . .〉 ◦ 〈s2〉 ◦ 〈s4, s5, s7, s8, s10, s11, . . .〉, and

P3 = 〈. . . , s11, s9, s8, s6, s5, s3〉 ◦ 〈s2〉 ◦ 〈. . . , s10, s7, s4〉 ◦ 〈s1〉.3
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The lines s1, . . . , sn cross the vertical lines φ1, φ2, φ3 in the order indicated
by the paths P1, P2, P3, respectively. In the figure only φ2 and φ3 are shown.
W.l.o.g., we assume unit distance between φ2 and φ3 and that s1 has slope 0.

s1, 0

φ2 → P2 = 〈s1, s3, s6, . . . , s2, s4, s5, s7, s8, . . .〉

P3 = 〈. . . , s8, s6, s5, s3, s2, . . . , s7, s4, s1〉 ← φ3

s4, 2m+4

s7, 4m+9
s2, 2m+2

s5, 4m+7

s6, 4m+8

s8, 8m+15

{m

s3, 2m+3

{ {m many 2m many

{{ m many2m many

Figure 3: Example for three paths where any monotone simultaneous embedding
requires a grid of exponential size. The dual lines are labeled with their index
(e.g., s2) and their slope (e.g., 2m+ 2).

In order to satisfy the order of s1, . . . , sn on φ1 (at the “far left” of the
example), the order of the slopes sl(si) of the lines si has to be such that
sl(si) < sl(sj), for each i < j. Because of the given order on φ2 there are m
lines intersecting φ2 between the intersections of s1 and s2 with φ2. The same
is true on φ3. Assuming at least unit distance between two intersections on
a vertical line, sl(s2) has to be at least 2m + 2. As sl(s2) has to be strictly
smaller than sl(s3), sl(s3) is at least 2m + 3 and analogously sl(s4) is at least
2m + 4. The line s5 has to intersect φ2 below the intersection of s4, and the
intersection of s5 with φ3 has to be above the intersection with s3. As a result,
sl(s5) ≥ sl(s3)+sl(s4), i.e., the slope of s5 is at least 4m+7. In general, sl(s3i) ≥
sl(s3i−1) + 1, sl(s3i+1) ≥ sl(s3i−1) + 2, and sl(s3i+2) ≥ 2·sl(s3i−1) + 3− 2(i− 1),
for 1 ≤ i ≤ m. Therefore, we get for the biggest slope on n = 3m + 2 lines,
sl(sn) ≥ 2m(2m + 3) + 2m − 1 = Ω(n2

n
3 ). This proves that the ratio between

minimal distance (unit distance) and maximal distance in the constructed point
set is exponential in n.

3Here we use ◦ as the concatenation operator, e.g., 〈si〉 ◦ 〈sj〉 = 〈si, sj〉.
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3.2 Fixed Vectors

In this section we restrict considerations to the setting where we are not only
given a set of paths, but also have predefined directions of monotonicity.

Theorem 12. Given a set ~v1, . . . , ~vk of vectors and a set P = {P1, . . . , Pk} of
paths on the same set of n vertices, it can be decided in polynomial time if a
{~v1, . . . , ~vk}-monotone simultaneous embedding of P exists. If such an embed-
ding exists, it can also be constructed in polynomial time.

Proof. By Corollary 5, if P admits a monotone simultaneous embedding, an
allowed adjusted ordering 〈P〉 of P exists and can be computed in polynomial
time. W.l.o.g. we can assume that 〈~v1, . . . , ~vk〉 is the ordering of adjusted vectors
corresponding to 〈P〉.

Let φ1, . . . , φk be the vertical lines in the dual plane corresponding to the
vectors in 〈~v1, . . . , ~vk〉. By Observation 8, in order to check whether 〈P〉 admits a
〈~v1, . . . , ~vk〉-monotone simultaneous embedding we need to check whether there
exist non-vertical lines s1, . . . , sn that cross φi as indicated by Pi, i = 1, . . . , k.
Let yi,j be the y-coordinate of the intersection of the line φi with the line sj .
Then, for every path Pi and every pair (sl, sm) of neighbored vertices in Pi,
we have the constraint yi,l > yi,m, or, equivalently, yi,l ≥ yi,m + 1 (since any
solution can be scaled along the x-axis). Further, let qi be the distance between
the vertical lines φi and φi+1. To ensure that s1, . . . , sn are straight lines, we
have the constraint (y2,j − y1,j)/q1 = (y(i+1),j − yi,j)/qi) for all 1 ≤ j ≤ n and
all 2 ≤ i < k. To conclude, we observe that the constructed linear program can
be solved in polynomial time.

Note that this result does not contradict Proposition 11: Although any
monotone simultaneous embedding of the example from Figure 3 needs a grid
of exponential (w.r.t. the number of vertices) size, the resulting coordinates still
admit a representation of only polynomial size.

In [3], Asinowski asked whether deciding realizability of a suballowable se-
quence with three terms, which, in our terminology, is equivalent to the existence
of a monotone simultaneous embedding for three paths, is a tractable problem.
Combining Theorem 10 with Theorem 12, we can answer this question in the
affirmative.

Corollary 13. Given a set of three paths, it can be decided in polynomial time
whether they admit a monotone simultaneous embedding. If such an embedding
exists, it can be constructed in polynomial time.

Consider again the linear program in the proof of Theorem 12. If the di-
rections of the monotonicity are not provided as a part of the input, i.e., the
distances qi are variables instead of constants, the presented encoding results
in a quadratically constrained program. Thus, the program from the proof of
Theorem 12 does not provide a means for answering the decision question for
the existence of a monotone simultaneous embedding of paths in polynomial
time. Moreover, the following proposition suggests that deciding the existence
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of a monotone simultaneous embedding might be harder for k ≥ 4 than it is for
k = 3; see also Section 5.

Proposition 14. There exists a set P = {P1, P2, P3, P4} of four paths and
two sets of vectors {~v1, ~v2, ~v3, ~v4} and {~v′1, ~v′2, ~v′3, ~v′4} with the same radial order
around the origin, such that P admits a {~v1, ~v2, ~v3, ~v4}-monotone simultaneous
embedding, but does not admit a {~v′1, ~v′2, ~v′3, ~v′4}-monotone simultaneous embed-
ding.

Proof. Consider the example shown in Figure 4. If we move the vertical lines
φ2 and φ3 towards each other while leaving φ1 and φ4 unchanged, then the
linear program does not have a solution and hence, no simultaneous embedding
is possible.

s1

s2

s3

s4

s1

s2

s3

s4

s3

s1

s4

s2

s3

s1
s4

s2

3 1 2

φ1 φ2 φ3 φ4

Figure 4: The embeddability of this example depends on the relative distance
between the vertical lines. The drawing shows the limit case, the bends in the
line show the intended order of intersection.

In the following we discuss the implication of Theorem 12 for wedge-mono-
tone simultaneous embeddings. Let v1 and v2 be two vectors such that the
clockwise angle between v1 and v2 is less than π. It is easy to see that if a
path P is both v1-monotone and v2-monotone then all the edges of P have their
slope in the clockwise wedge between v2 − π/2 and v1 + π/2. Recall that the
same path may appear twice (consecutively) in the adjusted sequence of paths.
Together with Theorem 12, this implies the following:

Corollary 15. Given a set of wedges W = {w1, . . . , wk} and a set P =
{P1, . . . , Pk} of paths on the same set of n vertices, it can be decided in poly-
nomial time whether P has a W -monotone simultaneous embedding. If such an
embedding exists it can be found in polynomial time.
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4 Implications for Upward Planar Digraphs

Up to this point we have considered monotone simultaneous embeddings of di-
rected paths. In this section we show how our results can be applied to provide
insight on monotone simultaneous embeddings of more general graph families.
More specifically, we consider upward planar digraphs, and upward planar di-
graphs with Hamiltonian paths. We list several definitions and known results
before stating the main result of this section. An st-digraph is a biconnected
acyclic digraph with exactly one source s and one sink t. A planar st-digraph
is an st-digraph that is planar and embedded in the plane with vertices s and
t on the boundary of the external face.4 A topological numbering of a digraph
is an assignment of numbers to its vertices, such that for every directed edge
(v, v′), the number assigned to v′ is greater than the number assigned to v. If
each vertex is assigned a distinct number, then we talk about topological order-
ing (see Figure 5(a)). Every planar acyclic digraph has at least one topological
ordering, and such an ordering can be computed in O(n) time [6].

1

5

6

3

2

4

8

76

2

1

4

5

8

76

2

1

4

5

(a) (b) (c)

G G′

33

Figure 5: (a) A digraph G with a topological ordering ρ defined by the labels at
the vertices. (b) An including planar st-digraph G′ of G that preserves ρ. (c)
An upward planar digraph with a topological ordering for which no including
planar st-digraph exists, that would preserve its ordering.

Let G be an upward planar digraph. A planar st-digraph that includes G
as a spanning subgraph is called including planar st-digraph of G. While ev-
ery upward planar digraph G can be augmented to a planar st-digraph G′ that
has G as a subgraph (see e.g. [6]), it is not generally true that an upward pla-
nar digraph G with a topological ordering ρ can be augmented to a planar
st-digraph G′ such that G′ still fulfills the topological ordering ρ of G (see Fig-
ure 5(c)). If the latter is true, we say that G′ preserves ρ (see Figure 5(b)).
However, as the following lemma by Giordano et al. [9] states, it can be tested
efficiently whether G′ exists.

4In the definition of a (planar) st-digraph in [9], the edge (s, t) is required to be an edge
of the st-digraph. As in our case s and t share a common face, (s, t) can always be added.
Therefore, the relevant results from [9] (restated in Lemma 16 and Theorem 17) apply also to
our setting.
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Lemma 16. ([9, Lemma 5]) Let G be an upward planar digraph with n vertices
and ρ be a topological ordering of G. There exists an O(n)-time algorithm that
tests whether there exists an including planar st-digraph of G that preserves ρ.

Let again G be an upward planar digraph and ~v be an arbitrary vector. In a
~v-monotone drawing of G, its vertices, when orthogonally projected on ~v, imply
a topological ordering of G. However, a general upward planar graph can have
exponentially many distinct topological orderings. This explains the additional
freedom contained in the problem of monotone simultaneous embeddings for
upward planar digraphs, since each digraph can appear in such an embedding
in many different ways, according to the number of its topological orderings.

Thus, to generalize our results for paths to upward planar digraphs, we have
to consider the restricted case where each upward planar digraph is provided
together with a topological ordering. More precisely, let G be an upward pla-
nar digraph and ρ its topological ordering. A ~v-monotone drawing of G, such
that the order in which its vertices appear in the orthogonal projection on ~v
coincides with ρ, is called (~v, ρ)-monotone. More generally, an upward drawing
of G is called ρ-constrained if it is (~v, ρ)-monotone for some vector ~v. In [9, 16],
ρ-constrained drawings of upward planar digraphs were considered for so-called
book embeddings, drawings where vertices are required to lie on a single ori-
ented line and edges are represented by curves monotonically increasing in the
direction of this line. In [9] ρ-constrained book embeddings were utilized to
construct a so-called upward point set embedding of an upward planar digraph
with a given mapping, that is an upward planar drawing where the positions
of the vertices of the graph are provided as a part of the input. The following
theorem is a restricted version of [9, Theorem 3].

Theorem 17 ([9]). Let G be an upward planar digraph with n vertices, ρ be
a topological ordering of G, and ~v be a vector. Assume that the vertices of G
are positioned in the plane such that their orthogonal projection on ~v coincides
with ρ. Then, the edges of G can be drawn as polygonal lines resulting in a
(~v, ρ)-monotone planar drawing if and only if G has an including planar st-
digraph G′ preserving ρ. Also, such a (~v, ρ)-monotone drawing of G (with at
most 2n− 3 bends per edge) can be computed in O(n2).

Let G = {G1, . . . , Gk} be a set of upward planar digraphs with topological

orderings O = {ρ1, . . . , ρk}, respectively, and let ~V = {~v1, . . . , ~vk} be a set of
vectors. We say that a simultaneous embedding Γ of G is (V,O)-monotone
if the drawing of Gi implied by Γ is (~vi, ρi)-monotone, for each i = 1, . . . , k.
More generally, a simultaneous embedding of G is O-constrained, if it is (V,O)-
monotone for some vectors V. If G = (V,E) is an upward planar digraph and
ρ is a topological ordering of G, the directed path P with vertex set V , which
traverses the vertices in the order indicated by the topological ordering ρ, is said
to be implied by ρ. Now we are ready to state the main result of this section.

Theorem 18. Let G = {G1, . . . , Gk} be a set of upward planar digraphs on the
same set of n vertices and let V = {~v1, . . . , ~vk} be a set of vectors. Consider

16



O = {ρ1, . . . , ρk} and P = {P1, . . . , Pk}, where ρi is a topological ordering of Gi
and Pi is the directed path implied by ρi, for i = 1, . . . , k.

The set G admits a (V,O)-monotone simultaneous embedding if and only if
the set P of paths admits a V-monotone simultaneous embedding, and each Gi,
i = 1, . . . , k, has an including planar st-digraph G′i that preserves ρi. In case of
existence, a (V,O)-monotone simultaneous embedding of G can be constructed
in O(kn2) time.

Proof. For the “only-if” part, let Γ be a (V,O)-monotone simultaneous embed-
ding of G. Recall that the vertices of Gi (i = 1, . . . , k), when projected on ~vi,
appear in topological ordering ρi, and therefore, by the definition of Pi, in the
order they appear in Pi. Thus, if we use the position of the vertices of Gi given
by Γ, and draw the edges of Pi straight-line, we obtain a ~vi-monotone draw-
ing of Pi. Observe that Γ implies a (~vi, ρi)-monotone drawing of Gi, thus, by
Theorem 17, Gi has an including planar st-digraph G′i preserving ρi.

For the “if” part, let Γ be a V-monotone simultaneous embedding of P and
let G′i be an including planar st-digraph of Gi, preserving ρi, i = 1, . . . , k.
The vertices of Pi (therefore of G′i) appear in the orthogonal projection on ~vi
in the same order as they appear in Pi, and therefore in the same order as
in ρi. With this placement of vertices, we can apply Theorem 17 k times, to
obtain a (~vi, ρi)-monotone drawing Γi of Gi, i = 1, . . . , k. For each vertex
vj , all corresponding points si,j of the drawings Γi, i = 1, . . . , k, are identical.
Therefore, the drawings Γ1, . . . ,Γk comprise a (V,O)-monotone simultaneous
embedding of G. Finally, the claimed running time for the construction follows
directly from Theorem 17.

In the following, using Theorem 18, we derive several implications of Theo-
rem 12 and Corollary 13 for upward planar digraphs.

Corollary 19. Given a set V = {~v1, . . . , ~vk} of vectors and a set G =
{G1, . . . , Gk} of upward planar digraphs together with topological orderings
O = {ρ1, . . . , ρk}, it can be decided in polynomial time (w.r.t. the input size)
whether a (V,O)-monotone simultaneous embedding of G exists. In case of ex-
istence, such an embedding can be constructed in polynomial time.

Proof. Let P = {P1, . . . , Pk}, where Pi is the path implied by ρi, i = 1, . . . , k.
By Theorem 18, G admits a (V,O)-monotone simultaneous embedding if and
only if (1) the set P of paths admits a V-monotone simultaneous embedding and
(2) each Gi, i = 1, . . . , k, has an including planar st-digraph G′i preserving ρi.
By Theorem 12, Condition (1) can be checked in polynomial time, and the
same is true for Condition (2) by Lemma 16. For the construction, the claimed
running time follows from Theorem 18.

Corollary 20. Given a set {G1, G2, G3} of three upward planar digraphs and
their topological orderings O = {ρ1, ρ2, ρ3}, it can be decided in polynomial
time (w.r.t. the input size) whether there exists an O-constrained simultaneous
embedding of {G1, G2, G3}. If such an embedding exists, it can be constructed
in polynomial time as well.
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Proof. Let Pi be the path implied by ρi, i = 1, 2, 3. By definition, {G1, G2, G3}
admits a {ρ1, ρ2, ρ3}-constrained simultaneous embedding, if and only if
there exist vectors ~v1, ~v2, ~v3 such that there exists a ({~v1, ~v2, ~v3}, {ρ1, ρ2, ρ3})-
monotone simultaneous embedding of {G1, G2, G3}. By Theorem 18, this is
equivalent to the facts that: (1) there exist vectors ~v1, ~v2, ~v3 such that the set
{P1, P2, P3} of paths admits a {~v1, ~v2, ~v3}-monotone simultaneous embedding,
and (2) each Gi, i = 1, . . . , k, has an including planar st-digraph G′i preserving
ρi. Conditions (1) and (2) can be checked in polynomial time by Corollary 13
and Lemma 16, respectively. By Theorem 10, vectors {~v1, ~v2, ~v3} can be chosen
arbitrarily. Thus, the time complexity of the construction follows directly from
Theorem 18.

Observe that if an upward planar digraph is Hamiltonian5, then it has a
unique topological ordering. This topological ordering can be found in O(n)
time. Thus, from Corollary 19 and Corollary 20, we derive the following.

Corollary 21. Given a set V = {~v1, . . . , ~vk} of vectors and a set G =
{G1, . . . , Gk} of Hamiltonian upward planar digraphs, it can be decided in poly-
nomial time (w.r.t. the input size) whether a V-monotone simultaneous embed-
ding of G exists. If such an embedding exists, it can be constructed in polynomial
time.

Corollary 22. Given a set G = {G1, G2, G3} of three Hamiltonian upward
planar digraphs, it can be decided in polynomial time (w.r.t. the input size)
whether G admits a monotone simultaneous embedding. In case of existence,
such an embedding can be constructed in polynomial time.

5 Complexity issues

5.1 Monotone Simultaneous Embeddings of Paths

In this section we discuss the relation of monotone simultaneous embeddings of
paths to stretchability of pseudolines and realizability of circular sequences.

Goodman, Pollack, and Sturmfels [13] showed that for each n there exist
order types with n elements such that any realization has coordinates that
are doubly exponential in the number of points. Suppose we are given such
a realization. Then, we can add a vertical line between every two consecutive
crossings as well as before and after all crossings, and derive a vector and a path
for each vertical line. Given these vectors and paths as an input, our linear
program will produce a solution whose binary representation is exponential in
the number of lines. This is, however, no contradiction to the fact that we have a
polynomial-time algorithm when we are given the relative distance of the vertical
lines: these distances will have a binary representation that is exponential in the
number of lines as well, and hence, the algorithm is still polynomial in the input

5We say that an upward planar digraph is Hamiltonian if it has a directed Hamiltonian
path.
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size. On the other hand, if we are only given the sequence of paths (i.e., the
circular sequence of the set), the size of a solution will be exponential in the input
size, and hence, there cannot be a polynomial-time algorithm for giving a set of
points (assuming a sufficiently strict model of computation). This fact, however,
does not imply intractability of deciding the simultaneous embeddability of a
sequence of paths, even though the possibly large representation of a realization
suggests ∃R-hardness (see [21], where these complexity topics are discussed,
and, e.g., [15], where similar issues arise).

With respect to deciding simultaneous embeddability, it is interesting to
observe the relation between the problem of stretchability of arrangements of
pseudo-lines and our setting. Obviously, an algorithm deciding stretchability
of pseudo-line arrangements also decides whether a simultaneous embedding of
a sequence of paths exists. On the one hand, deciding stretchability is known
to be NP-hard [22], and actually equivalent to the existential theory of the
reals [17]. On the other hand, NP-hardness of the stretchability problem does
not directly imply NP-hardness of the problem at hand. However, the problem
of deciding whether there exists a point set for a given allowable sequence can
easily be reduced to our problem: add a path for every index sequence of the
circular sequence (this corresponds to placing a vertical line directly to the right
of each crossing in the corresponding pseudo-line arrangement in the Euclidean
plane). If there exists a simultaneous embedding of this sequence of paths, then
the given allowable sequence can be realized.

Note that there is a significant difference between stretchability of a pseudo-
line arrangement and realizability of an allowable sequence. Goodman and
Pollack [10] give an allowable sequence on five elements that is not the circu-
lar sequence of any point set, while the smallest non-stretchable pseudo-line
arrangement in the projective plane has nine pseudo-lines [11] (i.e., Ringel’s
construction using Pappus’ Theorem). We are not aware of any work showing
hardness of deciding realizability of allowable sequences (it is not obvious to
us that, e.g., Shor’s construction [22] can also be used in the more constrained
setting using allowable sequences, in particular after the transformation to an
arrangement with no three pseudo-lines sharing a point).

5.2 A Closely Related Problem

The hardness of deciding stretchability of pseudo-lines in the projective plane
can be reduced in a straight-forward manner to the following problem closely
related to monotone simultaneous embeddings. Given a sequence 〈P1, . . . , Pk〉
of paths, each containing a subset of arbitrary size of a vertex set V , is there
a monotone simultaneous embedding such that the directions of monotonicity
appear radially around the origin? We call this problem General Mono-
tone Simultaneous Embedding (GMSE, for short). GMSE is more general
than our original problem in the sense that the paths might not contain all the
vertices. Since GMSE requires that the directions of monotonicity are radially
ordered, it might seem that GMSE is more restricted than our original problem.
However, this is not the case, because for the original monotone simultaneous
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embedding of a set of paths, only one ordering of the paths has to be consid-
ered, as was proven in Proposition 3. However, GMSE is more restricted than
the Strictly Monotone Trajectory Drawing problem, which was proven
to be NP-hard [19], since in the latter it is not required that the directions of
monotonicity are radially ordered.

Proposition 23. General Monotone Simultaneous Embedding (GMSE)
is NP-hard.

Proof. Take any x-monotone drawing of the pseudo-line arrangement in the
Euclidean plane such that every crossing is at its rightmost possible position.
Let P1 be a path that contains all points in the order given by the line ~v1 : x =
−∞. Sweep the arrangement in x-direction. At a crossing between the pseudo-
lines si and sj (suppose w.l.o.g. I(i, P1) < I(j, P1)), we add the paths 〈sj , si, sl〉
or 〈sl, sj , si〉 for all other elements sl, depending on whether the pseudo-line sl
is above or below the crossing sisj . This clearly encodes the orientation of
all triples, and therefore the pseudo-line arrangement in the projective plane
is unambiguously fixed. Also, since the crossings are drawn at their rightmost
possible positions, no further restrictions are imposed on the circular sequence
of the resulting set (if such a set exists). If two crossings are independent, we do
not care about their relative order, and this is also not captured by the relative
order of two paths in which two independent pairs are required to be swapped;
the relative order of the crossings is partial, and moving all crossings to the
right as far as possible corresponds to constraining the relative order for each
crossing in the highest level of the partial order. Hence, if and only if there exists
a monotone simultaneous embedding of the paths, the pseudo-line arrangement
is stretchable.

6 Conclusion

In this paper we considered monotone simultaneous embeddings of sets of up-
ward planar digraphs, with both predefined and arbitrary directions of mono-
tonicity, where we first concentrated on the special case of directed spanning
paths with the same vertex set.

We proved that if a monotone simultaneous embedding of three directed
paths exists, then it also exists for an arbitrary choice of directions with the same
circular order. We also presented a polynomial-time decision and construction
algorithm. Further, we showed that the existence question for an arbitrary
number of paths, but with predefined directions, can be solved in polynomial
time as well.

On the other hand, we showed that even if a monotone simultaneous embed-
ding of three given paths exists, it might require an exponential (in the number
of vertices) ratio of the smallest and largest distance between points of the em-
bedding. Further, we showed that starting from k = 4, not only the relative
circular order of the directions but also the actual choice of the slopes influences
monotone simultaneous embeddability.
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We also considered the complexity of the problem for k > 3 paths and arbi-
trary directions. In contrast to Theorem 12, the construction problem becomes
intractable for arbitrary directions, since the constructed embedding might re-
quire a representation using coordinates of exponential size. However, showing
hardness of the decision question remains an open problem for k > 3.

We further showed several implications of the simultaneous embedding of
directed paths to upward planar digraphs. However, we had to restrict consid-
erations to the setting where an upward planar digraph is provided together with
a topological ordering. The question which remains open is whether our results
can be extended to the case where the topological ordering is not provided as a
part of the input.

It might be interesting to study what happens if the same edge has to be
realized the same way in all of the drawings, i.e., monotone simultaneous em-
beddings with fixed edges. It seems clear that in this case, if two graphs share
an edge, they should have related directions of monotonicity.

Furthermore, it might also be interesting to consider a problem that is “be-
tween” the setting with predefined directions and the one with arbitrary direc-
tions. More specifically, let A = {α1, . . . , αk} be a set of wedges centered at the
origin. If a set P = {P1, . . . , Pk} of paths admits a {~v1, . . . , ~vk}-monotone si-
multaneous embedding, such that ~vi ∈ αi, we say that P admits an A-monotone
simultaneous embedding. As a generalization of monotone simultaneous embed-
dings with fixed directions, it would be interesting to study the computational
complexity of deciding whether a set P of paths admits an A-monotone simul-
taneous embedding.
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