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Abstract

We consider a variant of monotone simultaneous em-
beddings (MSEs) of directed graphs where all graphs
are directed paths and have distinct directions of
monotonicity. In contrast to the known result that
any two directed paths admit an MSE, there exist ex-
amples of three paths that do not admit such an em-
bedding for any possible choice of directions of mono-
tonicity. We prove that if an MSE of three paths exists
then it also exists for any possible choice of directions
of monotonicity. We provide a polynomial-time al-
gorithm that, given three paths, decides whether an
MSE exists. Finally, we provide a polynomial-time
algorithm that answers the existence question for any
given number of paths and predefined directions of
monotonicity.

1 Introduction

Let {Gi = (V,Ei)|1 ≤ i ≤ k} be a set of k distinct
planar graphs sharing the same vertex set. A simul-
taneous embedding of these graphs is a set of their
planar drawings {Γi|1 ≤ i ≤ k} such that each vertex
of V is represented by the same point in the plane in
each of the drawings. Simultaneous embeddings were
introduced as a model for visual comparison of differ-
ent relations of the same object set, as well as for a
visualization of dynamic changes of a single relation.
Bläsius, Kobourov, and Rutter [3] give an overview
of known results for simultaneous embeddings with
various restrictions on how edges are embedded.

Simultaneous embeddings were also studied for up-
ward planar digraphs. A directed graph (digraph,
for short) is called upward planar if it admits a
planar drawing where the edges are represented by
curves, monotonically increasing in a common direc-
tion (called upward). Upward drawings are motivated
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by a desire for a clearer expression of a hierarchy
among a set of objects. An upward simultaneous em-
bedding of k upward planar digraphs with the same
vertex set is a simultaneous embedding of the graphs
such that each graph is drawn upward planar. Gior-
dano, Liotta, and Whitesides [6] gave a characteri-
zation of upward simultaneous embeddable digraphs
with respect to the same direction. Giordano et al. [5]
showed that any two upward planar digraphs admit
an upward simultaneous embedding, where the direc-
tions of upwardness differ by 90◦.

In this paper we study upward simultaneous em-
beddings for more than two graphs and different di-
rections of upwardness. Let ~v be a vector in R2.
A drawing of a directed graph is called ~v-monotone,
if it is an upward drawing with ~v as the direction
of upwardness. Let 〈~v1, . . . , ~vk〉 (k > 1) be a se-
quence of vectors and let 〈G1, G2, . . . , Gk〉 be a se-
quence of k distinct upward planar digraphs shar-
ing the same vertex set. A 〈~v1, . . . , ~vk〉-monotone si-
multaneous embedding (〈~v1, . . . , ~vk〉-MSE, for short)
of 〈G1, G2, . . . , Gk〉 is an upward simultaneous em-
bedding of 〈G1, G2, . . . , Gk〉 such that the embedding
Γi of Gi is ~vi-monotone. A monotone simultane-
ous embedding (MSE, for short) of 〈G1, G2, . . . , Gk〉
is a 〈~v1, . . . , ~vk〉-MSE for some sequence of vectors
〈~v1, . . . , ~vk〉. Note that MSEs require no special re-
striction on the shape of the edges (despite that they
respect their direction of monotonicity). We study
two closely related problems. First, given a sequence
〈G1, G2, . . . , Gk〉 of upward planar digraphs, we ask
whether it admits an MSE. Second, given also vec-
tors 〈~v1, . . . , ~vk〉, we study whether 〈G1, G2, . . . , Gk〉
admits a 〈~v1, . . . , ~vk〉-MSE.

While any number of planar graphs admits a (gen-
eral) simultaneous embedding [9], this is not the case
for MSEs, and existence of an MSE strongly depends
on the choice of the directions of monotonicity; see
Section 3. Intuitively, it is clear that the choice of
such directions becomes more restricted as the order
among the vertices of the graphs becomes more strict.
We look at the core of this problem by assuming that
each of our graphs is a simple directed spanning path
(i.e., directed from one end of the path to the other)
of the common vertex set V . We remark that our
results imply a series of results on general upward
planar digraphs, assuming that an order in which the
vertices of each graph appear in the orthogonal pro-
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jection on the direction of its monotonicity is fixed.
For non-fixed directions, Pampel [10, p. 71] shows
that given a set of paths whose vertices are elements
of a common vertex set V , it is NP-complete to de-
cide whether there exists an embedding such that each
path is monotone in some direction.

2 The Dual Setting

We use the standard dual transform where a point
s = (xs, ys) is mapped to a non-vertical line ` : y =
xsx− ys and vice versa. See [4] for properties of this
transform. In this section we briefly recall some prop-
erties which are used in this paper; see Figure 1 for
an example. In the primal setting, we denote with S
a set of points; single points are denoted with s, and
lines are denoted with `. Notation-wise, we do not
distinguish between the primal and the dual setting.
For example, s is a point in the primal and a line in
the dual. As a special case, we denote vertical lines
in the dual with v.
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Figure 1: A point set (left) and its dual arrangement
of lines (right). The two vectors to the left are repre-
sented by the two vertical lines in the dual.

A well-known property is that a primal point s is
below a primal line ` if and only if the dual point ` is
below the dual line s. Furthermore, the infinite set of
dual points on a vertical line v : x = α corresponds to
the set of lines with slope α. Let S be a primal set of n
points and let π be the order in which S is traversed by
translating a line ` of slope α below S to a line above
S. Then in the dual, π is the order in which lines of
S intersect the vertical line v : x = α in the negative
y-direction. Consider now the lines that are normal
to `, i.e., the ones of slope (−1/α), and let π′ be the
order in which the dual lines intersect the vertical line
v′ : x = (−1/α). Then π′ also corresponds to the
order in which the points of S are projected on the
original line `.

Note that for any problem instance with a path Pi

and a vector ~vi, there exists a solution if and only if
there is a solution where Pi is replaced by its reverse
and ~vi by a vector in the opposite direction. There-
fore, we can assume that all vectors point in the posi-
tive y-direction. Further, we assume that the vectors
are sorted by the slope of their normals. We call such
a sequence of vectors adjusted.

Observation 1 Consider a point set S, a path P
containing the points of S, and a vector ~v of slope α.
Then there is a ~v-monotone embedding of P on S if
and only if the dual lines of S intersect the vertical
line v : x = (−1/α) in the same order as the points
of S appear along P .

Even though the vertical line v is not the exact dual
of the vector ~v, they correspond to each other. Hence,
constructing a set of points that allows an MSE for
a given sequence of vectors and paths is equivalent
to finding a set of n lines (dual to the points) that
intersect a set of vertical lines (corresponding to the
vectors) in a predefined order (given by the paths).

Our problem is strongly related to the circular se-
quence of a point set (see Goodman and Pollack [7, 8]
for details). Orthogonally projecting the points of a
point set S = {s1, . . . , sn} onto some line ` gives a
sequence of the indices of the points. When continu-
ously rotating `, two indices change their position ev-
ery time a supporting line of two points becomes nor-
mal to `. After having rotated ` by 180◦, the sequence
of indices is reversed and every two indices have
changed their relative position exactly once. This
sequence of index permutations defines the circular
sequence of a point set1. A sequence of index permu-
tations which fulfills these latter properties (i.e., every
pair changes its relative position exactly once and at
the end the initial index sequence is reversed) is called
an allowable sequence. Hence, a circular sequence is
an allowable sequence that stems from a projection of
a point set onto a rotating line. When initially ` has
slope 0, then the circular sequence corresponds to the
sequence of intersections of the dual line set S as en-
countered by sweeping the dual plane with a vertical
line. Thus, our problem is equivalent to the problem
of constructing a point set from some given snapshots
of its circular sequence. We note that circular se-
quences were also used in related work, e.g., by Gior-
dano, Liotta, and Whitesides [6]. Further, during the
reviewing process of this extended abstract, we have
been made aware of related work by Asinowski [2],
which partly overlaps with our results. He introduced
suballowable sequences, which are subsequences of al-
lowable sequences, and investigated their properties;
see also the remarks in Section 3.

3 Monotone Simultaneous Embeddings in the
Dual

It is well known that given any sequence of two paths
〈P1, P2〉 and two vectors 〈~v1, ~v2〉, there always exists
a 〈~v1, ~v2〉-MSE of 〈P1, P2〉; see for example [3, 5]. To
give some intuition for the more complex cases of

1Strictly speaking, the circular sequence is infinite, however,
a half-period, which corresponds to a rotation of ` by 180◦,
completely determines the sequence.
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three or more paths, we present the following algo-
rithm which utilizes the dual setting.

Let v1 and v2 be the two vertical lines along which
the order for the paths is defined in the dual. Let the
dual lines be labeled in increasing order of appearance
in P1, and let I(i, P2) be the index of si in P2 (the
function I gives us the order π used before in the form
of indices). Let the line si pass through the point
(xv1 ,−i) and (xv2 ,−I(i, P2)). This gives us a primal
point set allowing a 〈~v1, ~v2〉-MSE of 〈P1, P2〉.

In contrast to two paths, it is not always possible to
find an MSE for three paths. Consider a sequence P of
at least three paths on a vertex set V for an adjusted
sequence of vectors. If for a triple of paths Pa, Pb,
Pc ∈ P, where a < b < c, there exists a pair of vertices
si, sj ∈ V with I(i, Pa) < I(j, Pa), I(i, Pb) > I(j, Pb),
and I(i, Pc) < I(j, Pc), we say that the path sequence
P is non-allowable. From the dual line arrangement
it is easy to see that there is no point set that allows a
〈~v1, . . . , ~vk〉-MSE of a non-allowable path sequence P,
as the dual lines si and sj would have to cross between
va and vb and also between vb and vc. In the more
general setting of allowable sequences, the three paths
cannot be snapshots of any allowable sequence; see [2,
Observation 2]. For self-containment, we re-state this
observation in the terminology of the work at hand.

Observation 2 Let P = 〈P1, . . . , Pk〉 be a sequence
of paths that is non-allowable. Then, for any sequence
of adjusted vectors 〈~v1, . . . , ~vk〉, the sequence P does
not admit a 〈~v1, . . . , ~vk〉-MSE.

Now consider an (unordered) set Q of paths and
assume that there exists a point set S, a sequence of
vectors 〈~v1, . . . , ~vk〉, and a sequence P of the elements
of Q such that P allows a 〈~v1, . . . , ~vk〉-MSE. We rotate
S and the vectors such that the supporting line of two
arbitrary points sa, sb ∈ S is vertical. Adjusting the
vectors and reversing the corresponding paths, we ob-
tain an MSE with an adjusted sequence P ′ of vectors
where the relative order of sa and sb is the same in
each path of P ′. We call a sequence or set of paths for
which there exists such a pair (sa, sb) adjusted. If an
adjusted sequence P ′ has a 〈~v1, . . . , ~vk〉-MSE for some
sequence of vectors 〈~v1, . . . , ~vk〉, these vectors are all
directed towards the same half-plane and are ordered
radially (and thus, adjusted after a rotation). There-
fore, if for a general path sequence P its adjusted
path sequence P ′ is non-allowable, we can apply Ob-
servation 2 to P ′, by this obtaining that P does not
allow a 〈~v1, . . . , ~vk〉-MSE for any sequence 〈~v1, . . . , ~vk〉
of vectors. The following proposition generalizes this
observation to sets of adjusted paths. This result has
also been discussed in [2, page 4751].

Proposition 3 Let Q be a set of k adjusted paths
on the same vertex set. If an ordering 〈P1, . . . , Pk〉
of the paths in Q forms an allowable path sequence

then this ordering is unique. Moreover, if the sequence
〈P1, . . . , Pk〉 admits a 〈~v1, . . . , ~vk〉-MSE, then the rel-
ative order of the adjusted vectors 〈~v1, . . . , ~vk〉 is fixed
up to rotation and reflection.

Observation 2 and Proposition 3 imply necessary
conditions for sequences and sets of paths to admit
an MSE. However, these conditions are not sufficient.
The proof of the following theorem uses a classical
result by Ringel [11] on the stretchability of pseudo-
line arrangements based on Pappus’ Theorem.

Theorem 4 ([2, Proposition 8]) There are allow-
able path sets of k ≥ 3 paths that do not admit an
MSE.

On the positive side, an MSE for three paths does
not strongly depend on the choice of the vectors:

Theorem 5 If for an adjusted sequence of three
paths there exists a sequence of three adjusted vectors
that admits an MSE of these paths, then any sequence
of three adjusted vectors admits such an MSE.

Proof. Suppose we have a set of lines and three verti-
cal lines that correspond to an MSE. Recall the sphere
model of the projective plane. Consider a plane and
a sphere in E3 such that the center point is not in
the plane. Every line that intersects the plane in one
point and passes through the center of the sphere in-
tersects the sphere in two antipodal points, and every
line through the center of the sphere intersects the
plane, except if the line is parallel to the plane. The
union of the points on the sphere defined in this way
by lines parallel to the plane represents the line at
infinity `∞. Hence, we are given a bijective mapping
from every point in the plane to two antipodal points
on the sphere (not on `∞). In this mapping, a line in
the plane corresponds to a great circle on the sphere.
Consider now a dual line arrangement corresponding
to a valid MSE being drawn in the plane. If we ap-
ply the projective transformation that corresponds to
rotating the sphere such that the great circle corre-
sponding to v1 equals `∞, we get a different set of
lines in the plane, with two vertical lines and such
that the slopes of the lines have the same order as
the lines along v1. Equivalently, v1 is the vertical line
v1 : x = −∞. In the primal, v1 corresponds to a vec-
tor ~v1 with slope 0. Now, we can scale and translate
our transformed set of lines such that we have the
vectors ~v2 and ~v3 in any position we want. �

Theorem 6 Given a sequence 〈~v1, . . . , ~vk〉 of vectors
and a sequence of paths, it can be decided in polyno-
mial time (w.r.t. the input size) if a 〈~v1, . . . , ~vk〉-MSE
of the paths exists. If such an embedding exists, it
can be constructed in polynomial time.
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Proof. The problem can be formulated as a linear
program that can be solved in polynomial time w.r.t.
the input size: Let yi,j be the y-coordinate of the
intersection of the line vi with the line sj . Then, for
every path Pi and every pair (sl, sm) of neighbored
elements in Pi, we have the constraint yi,l > yi,m, or,
equivalently, yi,l ≥ yi,m + 1 (since any solution can
be scaled along the x-axis). Further, let qi be the
distance between the vertical lines vi and vi+1. To
produce straight lines, we have the constraint (y2,j −
y1,j)/q1 = (y(i+1),j−yi,j)/qi) for all 1 ≤ j ≤ n and all
2 ≤ i < k (recall that k is the number of paths). �

In [2], Asinowski asks whether deciding realizability
of a suballowable sequence with three terms, which,
in our terminology, is equivalent to the existence of an
MSE for three paths, is a tractable problem. Combin-
ing Theorem 5 with Theorem 6, we can answer this
question in the affirmative.

Corollary 7 Given a set of three paths, it can be
decided in polynomial time (w.r.t. the number of ver-
tices) whether there exists an MSE of the paths. In
case of existence, such an MSE can be constructed in
polynomial time as well.

4 Conclusion

In this paper we considered MSEs of sequences of
paths, with both predefined and arbitrary directions
of monotonicity. We proved that if an MSE for
three paths exists, then it also exists for an arbitrary
choice of directions with the same circular order and
presented a polynomial-time construction algorithm.
Further, we showed that the existence question for an
arbitrary number of paths, but with predefined direc-
tions, can be solved in polynomial time as well.

A full version of this paper can be found at
ArXiv [1]. There, we also discuss MSEs for k > 3
paths and arbitrary directions, as well as implications
of the MSEs of directed paths for MSEs of upward
planar digraphs. We show that even if an MSE of
three given paths exists, it might require an exponen-
tial (in the number of vertices) ratio of the smallest
and largest distance between points of the embedding.
Further, we show that starting from k = 4, not only
the relative circular order of the directions but also
the actual choice of the slopes influences monotone si-
multaneous embeddability. We also consider the com-
plexity of the problem for k > 3 paths and arbitrary
directions. In contrast to Theorem 6, the construc-
tion problem gets hard for arbitrary directions, since
the constructed embedding might require a represen-
tation using coordinates of exponential size. However,
showing hardness of the decision question remains an
open problem for k > 3.

It might also be interesting to look at a prob-
lem that is between the settings with predefined

and arbitrary directions. Let 〈α1, . . . , αk〉 be a set
of wedges centered at the origin. If a sequence of
paths 〈P1, . . . , Pk〉 admits a 〈~v1, . . . , ~vk〉-MSE such
that ~vi ∈ αi, we say that 〈P1, . . . , Pk〉 admits an
〈α1, . . . , αk〉-MSE. What is the complexity of deciding
whether 〈P1, . . . , Pk〉 admits an 〈α1, . . . , αk〉-MSE?
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