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Abstract

We study flip graphs of triangulations whose maximum vertex degree is bounded by
a constant k. Specifically, we consider triangulations of sets of n points in convex
position in the plane and prove that their flip graph is connected if and only if
k > 6; the diameter of the flip graph is O(n2). We also show that for general point
sets, flip graphs of triangulations with degree ≤ k can be disconnected for any k.
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1 Introduction

An edge flip is a local and constant-size operation that transforms one triangu-
lation into another. It exchanges a diagonal of a convex quadrilateral, formed
by two triangles, with its counterpart. The flip graph FT (S) of triangulations
of a planar point set S has a node for every triangulation of S, and two nodes
are adjacent if there is a flip that transforms the corresponding triangulations
into each other. One of the first and most fundamental results concerning
edge flips in triangulations is the fact that flips can be used repeatedly to
convert any triangulation into the Delaunay triangulation [6,8]. Hence FT (S)
is connected for any planar point set S.

The flip distance between two triangulations is the minimum number of
flips needed to convert one triangulation into the other. The diameter of FT (S)
is an upper bound on the flip distance. For a set S of n points in the plane it is
known that the maximum diameter of FT (S) is Θ(n) if S is in convex position,
and Θ(n2) if S is in general position. However, the computational complexity
of computing the flip distance between two particular triangulations is not
known, even for convex sets [5]. In higher dimensions the flip graph does not
even have to be connected [7].

Of interest are also subgraphs of flip graphs which correspond to particular
classes of triangulations. Houle et al. [4] consider triangulations which contain
a perfect matching of the underlying point set. They show that this class of
triangulations is connected via flips, that is, the corresponding subgraph of the
flip graph is connected. Related results exist for order-k Delaunay graphs: for
general point sets the graph of order-k Delaunay graphs is connected via edge
flips for k ≤ 1, but there exist examples for k ≥ 2 that cannot be converted
into each other without leaving this class [2]. If the underlying point set is in
convex position, then [2] also shows that the resulting flip graph is connected
for any k ≥ 0. The flip operation has been extended to other planar graphs,
see [3] for a very recent and extensive survey.

There are point sets for which every triangulation has a vertex of degree
n− 1. However sets of points in convex position always have triangulations of
maximum degree 4. So the question arises if the flip graphs of triangulations
whose maximum degree is bounded by a constant k are connected for certain
values of k. For sets of points in convex position (for sufficiently large n) we
prove that the flip graphs of triangulations of maximum degree k = 4, k = 5,
and k = 6 are not connected, and that they are connected for any k > 6. For
general point sets we show that flip graphs of triangulations with degree ≤ k
can be disconnected for any k. See [1] for a full version of the paper.



2 Point sets in convex position

First we study the flip graphs of bounded-degree triangulations of a set S of n
points in convex position in the plane. These are the same as the (bounded-
degree) triangulations of a convex n-gon, or the maximal outerplanar graphs
with n vertices. Let k denote the maximum vertex degree of a triangulation T
on S. If S has n ≥ 5 points, then k must be at least 4. We call a triangulation
with k ≤ 4 a zigzag triangulation, as shown in Fig. 1(a). Every point set S
in convex position has Θ(n) different zigzag triangulations. For n ≥ 7 one
cannot flip even a single edge in such a zigzag triangulation without exceeding
a vertex degree of 4.

For k = 5 consider the triangulation depicted in Fig. 1(b). Only the dashed
edges can be flipped, but there are Θ(n) rotationally symmetric versions of
these triangulations, none of which can be reached from any other without
exceeding a vertex degree of 5. For k = 6 consider the triangulation depicted
in Fig. 1(c). No edge of this triangulation can be flipped but again there are
Θ(n) rotationally symmetric versions of this triangulation, none of which can
be reached from any other without exceeding a vertex degree of 6.

Theorem 2.1 Let S be a set of n points in convex position and let T be
a triangulation of S with maximum vertex degree k > 6. Then T can be
flipped into any given zigzag triangulation of S in O(n2) flips while at no time
exceeding a vertex degree of k.

Proof (Sketch) We first introduce some notation. Let D be the dual graph
of T , without a vertex for the exterior face; clearly, D is a tree. We distinguish
three different types of triangles in T : ears, which have two edges on the convex
hull of S, path triangles, which have one edge on the convex hull of S, and
inner triangles, which have no edge on the convex hull of S. The ears of T
are dual to the leaves of D and inner triangles of T are dual to branching
vertices of degree three. A path in D is any connected sub-graph of D that
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Fig. 1. Triangulations with maximum degree k = 4 (a), k = 5 (b), and k = 6 (c).
Maximal degree vertices are shown in grey.



consists only of vertices of degree two; any vertex of a path is dual to a path
triangle. A path that is adjacent to at least one leaf is called a leaf path. An
inner triangle that is adjacent to at least two leaf paths is referred to as merge
triangle. Consider a path in D of length at least two. If the convex hull edges
of its dual path triangles are adjacent on the convex hull of S then they form
a fan, if the convex hull edges of every second path triangle are adjacent on
the convex hull of S then they form a zigzag. Flipping every second edge of a
zigzag is called an inversion. A fringe triangulation is a triangulation which
has no fans that consist of more than five triangles, where each fan is adjacent
to an inner triangle, and where every leaf path is dual to a zigzag.

We first convert T into a fringe triangulation with O(n) flips. If T is not
a fringe triangulation, then it has at least one fan. We can convert this fan
into an inner triangle and a zigzag which ends in an ear. Particular care must
be taken if the fan is adjacent to another fan or to an inner triangle. In the
latter case we cannot completely remove the fan, but we can ensure that it
consists of at most four triangles. If such a small fan is adjacent to a zigzag
we can remove it by inverting and extending the zigzag at most three times.

Each fringe triangulation has a light merge triangle, that is, a merge tri-
angle with two vertices of degree < k. To prove this, we create a graph D′ by
removing all leafs and leaf paths from D. Each triangle 4′ which is dual to a
leaf vertex of D′ is a merge triangle in T . We now create a second graph D′′ by
removing each leaf of D′. Since D is a tree, both D′ and D′′ are trees as well.
Hence D′′ has at least two leaves. Let 4′′ be dual to a leaf of D′′. Any child of
4′′ in D′ is a light merge triangle. We remove such a light merge triangle by
merging its adjacent zigzags with O(n) flips, resulting in a fringe triangulation
that has one fewer inner triangles. After repeating this step O(n) times we
have converted T into a zigzag triangulation. Finally, T can be “rotated” into
any other zigzag triangulation of S, again with O(n) flips. 2

3 Point sets in general position

Let S now be a set of points in general position. Consider two triangulations
T1 and T2 of S, both with maximum vertex degree at most k: is it possible to
flip from T1 to T2 while at no time exceeding a vertex degree of k? Consider the
example depicted in Fig. 2. The shaded parts indicate zigzag triangulations
and the dark vertices have degree 8, thus k = 8 in this example. In the left
triangulation only edges of the zigzags can be flipped without exceeding vertex
degree 8, hence it is impossible to reach the triangulation on the right. This
example can be easily modified for any constant k > 3. Therefore, for any
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Fig. 2. Two triangulations which cannot be flipped into each other.

k there exist point sets where the flip graph of triangulations, respecting the
maximal vertex degree, is not connected.

Concluding remarks. Our concept of constant maximum degree transfor-
mation can clearly be extended to other classes of geometric graphs. Some
first results for pseudo-triangulations can be found in the full paper [1].
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