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Abstract

In this paper we consider the flip operation for com-
binatorial pointed pseudo-triangulations where faces
have size 3 or 4, so-called combinatorial 4-PPTs. We
show that every combinatorial 4-PPT is stretchable
to a geometric pseudo-triangulation, which in general
is not the case if faces may have size larger than 4.
Moreover, we prove that the flip graph of combina-
torial 4-PPTs with triangular outer face is connected
and has diameter O(n?).

1 Introduction

Given a graph of a certain class, a flip is the op-
eration of removing one edge and inserting a differ-
ent one such that the resulting graph is again of the
same class. For the class of maximal planar (sim-
ple) graphs, any combinatorial embedding (clockwise
order of edges around each vertex) has only faces of
size 3 and hence is called a combinatorial triangu-
lation. Flips in combinatorial triangulations remove
the common edge of two triangular faces and replace
it by the edge between the two vertices not shared by
the faces, provided that these two vertices where not
already joined by an edge. Combinatorial triangula-
tions have a geometric counterpart in triangulations
of point sets in the plane, which are maximal plane
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geometric (straight-line) graphs with predefined ver-
tex positions. In this geometric setting there is also a
flip operation, for which a different restriction applies:
An edge can be flipped iff the two adjacent triangles
form a convex quadrilateral (otherwise the new edge
would create a crossing).

Flips in (combinatorial) triangulations have been
thoroughly studied. See [4] for a survey. A prominent
question about flips is to study the flip graph. This
is an abstract graph whose vertices are the members
of the same graph class having the same number of
vertices, and in which two graphs are neighbors iff
one can be transformed into the other by a single flip.
For both, combinatorial triangulations and triangula-
tions (with fixed vertex positions), the flip graph is
connected. However, the different settings imply lin-
ear and quadratic diameter, respectively (see [4] for
references).

Triangulations have a natural generalization in
pseudo-triangulations. They have become a popu-
lar structure in Computational Geometry within the
last two decades, with applications in, e.g., rigid-
ity theory and motion planning. See [7] for a sur-
vey. A pseudo-triangle is a simple polygon in the
plane with exactly three convex vertices (i.e., vertices
whose interior angle is smaller than 7). A pseudo-
triangulation T of a finite point set S in the plane
is a partition of the convex hull of S into pseudo-
triangles such that the union of the vertices of the
pseudo-triangles is exactly S. Triangulations are a
particular type of pseudo-triangulations, actually the
ones with the maximum number of edges. Those
with the minimum number of edges are the so-called
pointed pseudo-triangulations, in which every vertex is
pointed, i.e., incident to a reflex angle (an angle larger
than 7).

Flips can also be defined for the class of pseudo-
triangulations of point sets in the plane. The flip
graph for general pseudo-triangulations is known to
be connected, as well as the subgraph induced by
pointed pseudo-triangulations. The currently best
known bound on the diameter is O(nlogn) for both
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flip graphs [2, 3].

In a pseudo-triangulation, the pseudo-triangles can
have linear size. Hence, in contrast to triangulations,
the flip operation can no longer be computed in con-
stant time. One way to bypass this issue is to con-
sider only pseudo-triangulations in which the size of
the pseudo-triangles is bounded by a constant. Ket-
tner et al. [5] showed that every point set admits a
pointed pseudo-triangulation with face degree at most
four (except, maybe, for the outer face). We call such
a pseudo-triangulation a 4-PPT.

On the one hand, 4-PPTs behave nicely for prob-
lems which are hard for general pseudo-triangulations.
For instance, they are always properly 3-colorable,
while 3-colorability is NP-complete to decide for gen-
eral pseudo-triangulations [1]. On the other hand,
known properties of general pseudo-triangulations re-
main open for 4-PPTs. For instance, it is not known
whether the flip graph of 4-PPTs is connected, even
for the basic case of a triangular convex hull.

The aim of this paper is to make a step towards
answering this last question, by considering the com-
binatorial counterpart of 4-PPTs.

A combinatorial pseudo-triangulation [6] is a topo-
logical embedding of a planar simple graph together
with an assignment of labels reflex/convex to its an-
gles such that (1) every interior face has exactly three
angles labeled convex, (2) all the angles of the outer
face are labeled reflex, and (3) no vertex is incident
to more than one reflex angle.

Note that this labeling fulfills the same proper-
ties as actual reflex/convex angles in a (geometric)
pseudo-triangulation. This analogy with the geomet-
ric case goes on by calling pointed vertices in a com-
binatorial pseudo-triangulation those which, indeed,
are incident to one angle labeled reflex. Then, com-
binatorial pointed pseudo-triangulations are those in
which every vertex is pointed. Combinatorial pointed
pseudo-triangulations with face degree at most four
(except, maybe, for the outer face), will be called com-
binatorial 4-PPTs.

2 Properties

Lemma 1 Let G be a combinatorial 4-PPT and H
be a subgraph of G with |V (H)| > 3. Then H has at
least 3 vertices whose reflex angle is contained in the
outer face of H (corners of first type in [6]).

Corollary 2 In any combinatorial 4-PPT of the in-
terior of a simple cycle with b vertices, of which c
have the reflex angle inside the cycle, the number t of
triangular faces is given by t = b — 2c — 2.

A combinatorial pseudo-triangulation has the gen-
eralized Laman property if every subset of x non-
pointed vertices and y pointed vertices, where z+y >

2, induces a subgraph with at most 3z + 2y — 3 edges.
Both this property and the number of reflex angles
from Lemma 1 are related to the stretchability of a
combinatorial pseudo-triangulation into a geometric
one. A face of a combinatorial pseudo-triangulation
is called degenerate if it contains edges which appear
twice on the boundary of this face.

Proposition 3 [6, Corollary 2] The following prop-
erties are equivalent for a combinatorial pseudo-
triangulation G: (1) G can be stretched to become
a pseudo-triangulation. (2) G has the generalized
Laman property. (3) G has no degenerate faces and
every subgraph of G with at least three vertices has at
least three corners of first type.

Since, by definition, combinatorial 4-PPTs have no
degenerate faces, we can use Proposition 3 to conclude
the following.

Theorem 4 FEvery combinatorial 4-PPT can be
stretched to become a 4-PPT with the given assign-
ment of angles. Furthermore, combinatorial 4-PPTs
have the generalized Laman property.

Note that there exist non-stretchable combinato-
rial pointed pseudo-triangulations with faces of size
at most 5. See Figure 1. There and in the forthcom-
ing figures, arcs denote angles labeled as reflex.

Figure 1: A non-stretchable combinatorial pointed
pseudo-triangulation [6].

3 Flips

In the following we focus on combinatorial 4-PPTs
with a fixed triangular outer face. For such a com-
binatorial 4-PPT, Corollary 2 implies that there is
only one interior triangular face. Before defining flips
between combinatorial 4-PPTs, we make some obser-
vations about their geometric counterpart.

Geometric 4-PPTs with triangular convex hull also
have only one interior triangle. Furthermore, every
edge of the triangle (except for those being part of the
convex hull) is flippable [7]. Observe that the removal
of the edge e to be flipped merges the triangle and
the 4-face adjacent at e into a 5-face, which might
be degenerate if the triangle and the 4-face share two
edges. See Figure 2. Note that this is the only case
in which the triangle and the 4-face can share three
vertices, as there are no multiple edges in geometric
graphs.
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Figure 2: Geometric flip of an edge of a triangle. In

the lower case, removal of the flipped edge gives a
degenerate 5-face.

Similar to the geometric case, we consider flips of
an edge e of the (unique) interior triangular face T in
a combinatorial 4-PPT (with triangular outer face):
Consider the 4-face F' sharing e with T. A flip of e
consists in replacing e by another edge e’ such that
(1) € splits (TUF)\e into a triangular face 77 and a
4-face F' and (2) the result is a combinatorial 4-PPT.
In particular, and in contrast to the geometric case, in
the combinatorial setting we have to explicitly avoid
multiple edges and thus to ensure that the edge ¢’
we insert is not already contained in the combinato-
rial 4-PPT (as an edge outside TUF'). The following
lemma shows that every interior edge of the interior
triangular face can be flipped.

Lemma 5 In a combinatorial 4-PPT, every edge e
of an interior triangular face that is not an edge of
the outer face is flippable. Furthermore: (1) If the
removal of e results in a degenerate 5-face, then there
is a unique valid flip for e. (2) If removing e results
in a non-degenerate 5-face, then there are at least two
valid flips for e.

Observe that, given a combinatorial flip between
two combinatorial 4-PPTs, by Theorem 4 we know
that both of them can be stretched into geometric 4-
PPTs with straight edges. However, it might not be
possible to use the same geometric embedding for the
vertices in both of them.

4 Flip graph connectivity

Lemma 6 For a given combinatorial 4-PPT with tri-
angular outer face and for any edge b of this outer
face, there is a sequence of flips resulting in a combi-
natorial 4-PPT whose interior triangular face is inci-
dent to b.

Once the interior triangular face is incident to an
edge b of the outer face, the next step will be flipping
away interior edges incident to one endpoint of b.

Lemma 7 Given a combinatorial 4-PPT with tri-
angular outer face, in which the interior triangular
face T is incident to the edge b of the outer face, there
is a sequence of flips resulting in a combinatorial 4-
PPT in which the endpoint v of b = uv has no interior
incident edges.

Proof. We describe a flip sequence that flips all in-
ner edges incident to v. This flip sequence can be
partitioned into two phases and some cases. Let the
vertices neighbored to the vertex v be ordered radi-
ally around v, starting with u. In each case, let the
vertices in that order be u = wy, ..., w.

Phase 1: During this phase, the inner triangular face
T has wv as a side, i.e., T = vuw;. We distinguish
three different cases:

Case 1: wvw; is the only inner edge incident
to v, i.e., k = 2. If T is incident to only one 4-face
F (i.e., TUF is degenerate), we can flip the edge vw,
and are done. Otherwise, let the 4-face F' incident to
vwy be vwysws. See Figure 3. The reflex angle inside
I is either at s or wy. If it is at s, we flip vw; to wys,
obtaining the 4-face vwgsw,. Otherwise, the reflex
angle is at wy and we flip vw; to wiws, obtaining the
4-face vwowyws. Either way, the degree of v is 2 and
we are done.

v v

U = wo w2 wo w2

Figure 3: Phase 1, Case 1: Only one interior edge is
incident to v.

Case 2: at least two inner edges are incident
to v and there does not exist an edge wows. See
Figure 4. Since the reflex angle of v is at the outer face
we can replace the edge vw; by wows. This reduces
the degree of v by one. The inner triangular face is
again adjacent to wov, and we remain in Phase 1.

v

ST

U = wo wo

—>»

Figure 4: Phase 1, Case 2: Several interior edges are
incident to v and wows, does not exist.
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Case 3: at least two inner edges are incident
to v and there exists an edge wows. See Figure 5.
If the two inner edges of T' are incident to a single
4-face, we have a degenerate case; we flip the edge
wowi to wyws, making vwywsy the inner triangular
face. Otherwise, let the 4-face F' incident to vw; be
vwiswy; we flip vw; to vs (this is possible since if
vs already existed, it would have to cross the cycle
uwyswy). Either way, the flip does not reduce the
degree of v, but the inner triangular face is now inside
the 3-cycle vwows. We switch to Phase 2.

v v
5 >
) } C
= 0
v
5

o

U = Wo w
v
>

—>

2
>

U = Wwo wo

Figure 5: Phase 1, Case 3: The possible transitions
to Phase 2.

Phase 2: During this phase, the inner triangular face
is vwiwsy, and w; stays fixed for the whole phase.
Further, we know that w; was enclosed by a 3-cycle
(at the transition to this phase), which implies that
there are no edges from w; to w; for any i > 2. We
decrease the degree of v in the following manner.
Case 1: there is a 4-face F incident to vw,.
There cannot be an edge w;ws since w; was enclosed
by a 3-cycle. Further, the reflex angle of F' is not
at v. Hence, we can flip vws to wiws, which reduces
the degree of v and we remain in Phase 2, with vw,ws
being the new inner triangular face.

Case 2: there is no 4-face incident to vws, i.e.,
k = 2. This case is symmetric to Case 1 of Phase 1.
The edge vw; is flipped in one of the two described
ways, reducing the degree of v to 2 and thus ending
the process. ([

Theorem 8 The graph of flips in combinatorial /-
PPTs with n vertices and triangular outer face is con-
nected with diameter O(n?).

Proof. Given such a combinatorial 4-PPT, follow the
steps in Lemmas 6 and 7, then use induction for the
combinatorial 4-PPT obtained by removing v. This
leads to the unique canonical combinatorial 4-PPT
with triangular outer face, where two of the vertices
in the outer face are adjacent to all other vertices,
while the third one has degree 2. See Figure 6.

Figure 6: A canonical combinatorial 4-PPT.

Furthermore, the number of flips needed in Lemmas 6
and 7 is at most linear in the number of vertices of
the combinatorial 4-PPT. O

The presented basic case of combinatorial 4-PPTs
with triangular outer face is extendible to an arbi-
trarily sized outer face, to labeled vertices, and also
to the general case of combinatorial 4-PPTs with an
arbitrarily sized outer face on labeled vertices. Elabo-
rating on these extensions would go beyond the scope
of this extended abstract, though. Details (and omit-
ted proofs) can be found in a forthcoming full version.
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A Omitted proofs

Lemma 1 Let G be a combinatorial 4-PPT and H
be a subgraph of G with |V(H)| > 3. Then H has at
least 3 vertices whose reflex angle is contained in the
outer face of H (corners of first type in [6]).

Proof. W.lo.g., we may assume that H consists of a
single connected component. Let H' be the maximal
subgraph of G that has the same outer face as H.
Hence, if the claim holds for H' it also holds for H,
and we only need to consider inner faces of size 3 or 4.
For the subgraph H’, let us denote with n the number
of vertices, e the number of edges, ¢t the number of
inner faces of size 3, ¢ the number of inner faces of
size 4, b the number of boundary angles and ¢ the
number of convex boundary angles in the outer face
of H'. Note that b > 3 and that b > n is possible.
Let us double-count the edges. On the one hand,
the number of angles equals twice the number of
edges; since there are n reflex angles and 3t 4 3¢ + ¢
convex angles, we get that 2e = 3t + 3¢ + ¢ + n.
On the other hand, from Euler’s formula we have
e = n+t+ g — 1. Eliminating e from these two
equations, we get that the number of reflex angles
isn =t+q+ 2+ c. Now we can express the number n
of reflex angles as b—c+¢q, and obtain b—c = t+2+c¢,
which is at least 3 if ¢ > 0. Either in this case or if
c =0, we get that b — ¢ > 3, as desired. ([l

Corollary 2 In any combinatorial 4-PPT of the in-
terior of a simple cycle with b vertices, of which c
have the reflex angle inside the cycle, the number t of
triangular faces is given by t = b — 2¢c — 2.

Proof. Consider again the proof of Lemma 1. If the
subgraph H is a simple cycle, then every vertex of H
has exactly one boundary angle. Hence the number of
vertices which have the reflex angle inside the cycle is
equal to the number ¢ of convex boundary angles. O

Lemma 5 In a combinatorial 4-PPT, every edge e
of an interior triangular face that is not an edge of
the outer face is flippable. Furthermore: (1) If the
removal of e results in a degenerate 5-face, then there
is a unique valid flip for e. (2) If removing e results
in a non-degenerate 5-face, then there are at least two
valid flips for e.

Proof. We have to distinguish two cases. The first
case is when the removal of e results in a degenerate 5-
face (TUF)\e. Then, there is only one choice of ¢’ in
order to split (TUF)\e as required. Furthermore, the
corresponding edge ¢’ could not be already an edge,
since it was not in the interior of TUF and it cannot
go through the exterior of TUF due to planarity. See
Figure 7. Hence, this choice is always valid.

The second case is that of (TUF)\e being non-
degenerate. We show that flipping towards an edge

Figure 7: Flip operation for an edge of a triangular
face when the 5-face is degenerate.

which has the reflex vertex as an endpoint is always
valid. See Figure 9. Denote by v1,...,vs the bound-
ary vertices of (TTUF)\e, in counterclockwise order
and with v; being the reflex vertex. The edge ¢ we
intend to insert is then either vivs or vivs. Let us
focus on the first case, the other one being handled
analogously. If ¢/ = wvjvs is not valid, there has to
be already an edge between v; and v3 in the exterior
of TUF. But then at most two vertices of the 3-cycle
v1v2v3 have their reflex angle outside that cycle, con-
tradicting Lemma 1. See Figure 8.

V1 U1
v3 U3

Figure 8: Flipping towards an edge incident to the
reflex vertex is always valid.

It remains to prove that in the non-degenerate case
there are at least two valid flips for e. Figure 9 shows
the possible flips when TUF is non-degenerate. Solid
arrows indicate flips which are always valid, while dot-
ted arrows indicate flips which might be valid or not.

If e is not incident to the reflex vertex, then there
are two valid flips towards edges incident to that re-
flex vertex. If e is incident to the reflex vertex, there
is always a valid flip towards the other diagonal e’
incident to that vertex. For a second valid flip, we
show that the two remaining diagonals cannot simul-
taneously give invalid flips. Let the edge to flip be
e = vyvuz (the other case is analogous). In order for
both vyv4 and vsvs to give invalid flips, the combina-
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Figure 9: Flip operation for an edge of a triangular
face in a combinatorial 4-PPT in the non-degenerate
case.

torial 4-PPT must have both edges vovs and wzvs in
the exterior of the 5-face vy, ..., vs. This is impossible

U1

Figure 10: In a non-degenerate 5-face, the two diago-
nals not incident to the reflex vertex cannot both give
invalid flips.

since it would imply a crossing. See Figure 10. (]

Lemma 6 For a given combinatorial 4-PPT with tri-
angular outer face and for any edge b of this outer
face, there is a sequence of flips resulting in a combi-
natorial 4-PPT whose interior triangular face is inci-
dent to b.

Proof. Consider the dual of the original combinato-
rial 4-PPT and choose a path from the interior trian-
gular face to the outer face, Fy =T — F; — F —
-+« = Fy, = Fyuter, such that it reaches the outer face
through the edge b in the statement. That is, if e;
is the edge separating faces F; and F;;; in the path,
then ep_1 = b.

We define the sequence of flips in a way that, af-
ter the i-th flip, the interior triangular face T is inci-
dent to e;, which then separates 1" from F;;;. Thus,

after k£ — 1 flips T will be incident to Fy = Fouter
through e;_; = b, as required.

At the i-th flip we consider TUF; and we have to
flip an edge e shared by T' and Fj, inserting a valid
edge ¢’ such that the new triangular face T” is incident
to e;. Two cases arise:

First, if TUF; is degenerate, then there are two
edges shared by T and F; and for each of them there is
a unique valid flip, by Lemma 5. In this case, flipping
the edge which does not share a vertex with e; yields
the desired result. See again Figure 7.

Second, if TUF' is non-degenerate, then there is
only one edge shared by T and Fj;, for which there
are two valid flips, by Lemma 5. See Figure 9. For
any instance of TUF and for any choice of e;, at least
one of the two valid flips makes the new triangular
face T’ being incident to e;. O



