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Abstract

We show that the number of straight-edge triangulations exhibited by any sgiahfts in general position in
the plane is bounded from below B3/(2.33").
0 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A triangulation of a finite planar point s&tis a maximal non-crossing straight-edge graph with vertex
setS. Efficiently counting the number of triangulations $fs an intriguing open problem. The currently
fastest method is based on the recent concept of triangulation path [1], which follows a divide and conquer
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Fig. 1. Double circle, conjectured to minimize the number of triangulations. 3-segments are dashed.

approach. But still the running time shows exponential growth and in general computations are limited
to n < 40 wheren denotes the cardinality . It is an open problem whether it is possible to count the
number of triangulations of a given point set in polynomial time. A well-known method to enumerate all
triangulations ofS is based on the reverse-search technique of Avis and Fukuda [7]. Here the running
time is at least proportional to the number of triangulations .of

So far no good asymptotic upper or lower bounds for the number of triangulations of point sets with
respect to their cardinality are known. On maximizing the number of triangulations there exist point
sets with as many ag'8°(°9™) triangulations [13,16]. The currently best upper bound is much larger,
although it has recently been improved from approximately* 28pto 59'~©(°90) ' see [16].

In the opposite direction we conjecture that, for fixed cardinatitythe minimum number of
triangulations is always obtained by a special structure, the so-called double circle, see Fig. 1. The double
circle containsh = |n/2] extreme points forming a regulérgon. The remainingn /2] interior points
are placed sufficiently close to the edges of khgon, such that the set of interior edges, that are not
crossed by any other edge, forms a star shaped region.iglbdd an additional interior point can be
placed in a way that the number of triangulations is still minimized, i.e., the double circle is well defined
in this case, too. See [10] for a detailed discussion.)

For a set ofz points in convex position it is well known that the number of triangulations is given
by C,_», whereC, = ®(4"n~%/?) denotes thath Catalan number. By an inclusion-exclusion argument
[10,14] the number of triangulations of the double circle can be shown tﬁ:fb:%(—l)""' (’;)Ch_2+i.

Asymptotically the sum gives/l—zn_@)(log(")) [16] and thus the double circle constitutes the first known
structure with @C,) triangulations. From exhaustive computations [4,18] it is known that the double
circle is the only point set (i.e., order type) which minimizes the number of triangulatioms<dk1.

These results have to be seen in contrast to related structures, where more information has already
been obtained. For example it is known that the number of crossing-free perfect matchings as well as the
number of crossing-free spanning trees is minimized by point sets in convex position [13]. For special
point sets (so-called wheels) an interesting relation between the number of triangulations and the number
of pointed pseudo-triangulations is given by Randall et al. [15]. Most recently it has been shown that, in
fact, point sets in convex position also minimize the number of pointed pseudo-triangulations [3].

Surprisingly, up to now no good general lower bound on the number of triangulations is known,
although it is commonly assumed that there are ‘always exponentially many’ triangulations. In this paper
we quantify this ‘common assumption’. More preciselyrigt) be the minimum number of triangulations
that every set ofi points in the plarfeexhibits. In [12] it is shown that any triangulation @npoints

4 All point sets considered in this paper are assumed to be in general position, i.e., no three points are collinear. Note that the
general position assumption is crucial to avoid trivialities.
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contains at least: — 4)/6 edges that can be flipped simultaneously. This immediately yields a first lower
boundr (n) > 2—9/6 > 1.12".

We will present a general scheme based on induction, leading to the inequality ¢ - " for
constants > 0 andt > 1. The best value for achieved up to now is = 2.33 for sufficiently largen.
The main result of this paper can be stated as follows.

Theorem 1. Let ¢(n) denote the least number of straight-edge triangulations of any setpaints in
general position in the plane. Thetn) > 0.092. 2.33" for n > 1212

The proof of the theorem will be given in the remaining sections. To the knowledge of the authors this
constitutes the first non-obvious lower bound.

2. Recurrencerelations

Throughout this paper, It be a set ofi points in the plane in general position wittextreme points.
Let E(S) be the set of interior edges (straight-line segments) spanned by poisit¢hat is, the set of
edges spanned by excluding thei edges forming the boundary of the convex hullSofTwo edges of
E(S) are said to cross each other if they properly intersect in their interior.

Letz(S) be the number of triangulations Sfand fore € E(S) letz,(S) be the number of triangulations
of S that contain the edge Moreover letS, andS. be the two subsets ¢f contained in the two closed
halfplanes bounded by the straight-line supported.lBecause is an interior edge we ge¢s. |, |S)| > 3
and symmetricallyS.|, |S/| <n — 1, where|A| denotes the cardinality of a point sét Note that since
the two points spanning are counted in both subsets we hasg + S| =n + 2, see Fig. 2.

SupposesS is a set ofz > 4 points that achieves'S) = ¢(n). We haver (S) > ¢.(S) > ¢(S.) - t(S)) >
t(|S.]) - t(|S)]). For any givem’” with 3< n’ <n — 1 we can find an appropriate segmerd E(S) such
that|S,| =n" and|S)| =n 4+ 2 —n’. Therefore we get

Lemmal. Forn >4andalln’,n” > 3withn'+n" =n+2we have(n) > t(xn’) -t (n").

(a) (b)

Fig. 2. (a) Segmert splitting the point set into subsets of cardinalities 6 and 7. (b) Three pairwise crossing segments splitting
6:7,6:7 and 5:8.
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A solution of the recurrence relation of Lemma 1 is given by
1
t(n)}—z-f” forn>4 ()
T

for any constant > 1. The inequality of Lemma 1 is rather loose, since only triangulations including a
certain edge are considered. A generalization of Lemma 1 can be achieved by the following observation,
cf. Fig. 2(b). Assume that, ¢” € E(S) are two mutually crossing edges and7g{(S) andT7,-(S) be the

sets of triangulations of includinge’ ande”, respectively. Thef, (S)N T, (S) = @, i.e., no triangulation

of S belongs to both sets. Thus H(S) containsk > 2 pairwise crossing edges, also calledressing

family of sizek (k-family for short), we can apply the recurrence of Lemmiatitnes, but no longer have
control over the cardinalities of the resulting subsets.

Lemma?2. LetS be a set ofi points which admits a set #f> 2 pairwise crossing edges. Then there exist
valuesn), n/, 1 <i <k, withn), n/ >k +1andn, +n! =n +2such that (S) > Y*_, 1 (n}) - 1(n).

Note that the lower bound om, n! stems from the fact that any involved segment is crossed by at
leastk — 1 other segments, giving— 1 points on each side of its supporting line.
Solving the above recurrence relation gives

1
t(n) > — -1 forn>2k. (2)
kt?

Asymptotically this is similar to Eq. (1), but for the task of determininépr small instances this leads

to an improvement as will be pointed out in the following subsection. Moreover Eq. (1) can be seen as
the case& = 1 of EqQ. (2). Note that pairwise crossing segments are only needed for sets of cardinality
larger thanthe induction base, not for instances of the induction base itself.

2.1. Getting started

To make use of Eg. (2) we need to determine both the range of the induction base and the value of
7 the recurrence relation (2) can ‘start’ with. Let us first assume a fixed range for the induction base,
saya < n < b. Assume that within this range a lower bound for), denoted byt~ (n), is given, that
is, t(n) =t~ (n) for a <n < b. From EQ. (2) we can compute a lower bound tofor some fixed
cardinalityn, denoted byt (n), by t(n) > (k - t~(n))Y"=2. Thus from the induction base we get

> mi (k-t_(n))l/(n_z). (3)

n
as<n<b
So it remains to determine a suitable ramgg n < b for the induction base. Intuitively speaking it
should be clear that we have to avoid point sets of too small cardinality, since they exhibit only very few
triangulations. Table 1 in the next section provides concrete values supporting this observation. In other
words, for an edge used in the relation (2) we have to guarantee tliatand|S| can be bounded
from below. To this end for Z ¢ < (n + 2)/2 we calle an ¢-segmentf min{|S.|, |S/|} = £. In a similar
way we define aii*-segment if miri|S.|, |S/|} > £. Note that our definition of-segments differs from
the standard definition df-set edges [9] orj-edges [5] in two ways. On one hand we also count the
points which span our segment and on the other Haaddiays corresponds to the subset with the smaller
cardinality.
Summarizing the obtained results we get the following central theorem.
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Theorem 2. Leta < b andk be integers. If for every witha < n < b we have (n) > % -7", and if for
every set ofi > b points there exists a crossing family of sizentirely consisting ofi*-segments, then
for all n > a the bound (n) > % - 7" holds.

To make use of Theorem 2 we have to guarantee that all sets of cardinality largér ¢bataink
pairwise crossing™-segments. Fat = 1 this is obviously the case fér> 2a — 2. Fork = 2 we get the
bound from the following lemma.

Lemma 3. For a point setS of cardinalityn > 9 there always exist two crossirig — 2] -segments.

Proof. For a pointp of S consider the set of segments frdig.S) having p as one endpoint. Sort these
segments by the circular order of their supporting lines arqurigly continuity it follows thatp exhibits
a (halving)#-segment if2 is even and two (neighboring in the circular ordé*;—}-segments if is odd.

For evenn we take the %-segment together with the next three segments clockwise and
counterclockwise, respectively. We thus obtain a set of sévesegments fop with £ > 5 —2. Similarly
for odd n we take two neighbors for eacili—l-segment (chosen in circular order opposite to the other
”—;l-segment) and get a set of gix-segments withf > % - 2.

Repeating this process for all pointsof S we get a set of 7/2 ¢*-segments for even (6n/2 for n
odd), too much for this set to be planar. Thus we must have two crogsirg?] *-segments. O

From Lemma 3 it follows that for 2-families the base has to cover a range.of, b = 2a + 2. For
k > 3 pairwise crossing segments the situation is more involved.

Lemma 4. For integersk and ¢, 3< k < £, let c(k) be the smallest number such that for any set of size
c(k) a crossing family of sizé exists. Then for any set of sizen > c(k) + 2¢? — 2¢k — 5¢ + 3k + 3
there exists a crossing family of sizentirely consisting of *-segments.

Proof. Any convex subset of of size Z — 2 contains a crossing family of size— 1 which entirely
consists off-segments. So assume that all convex subsets have size atdno8t 2

Consider the — 1 — k outermost convex layers ¢t We obtain them by iteratively taking all extreme
points of S, removing them, taking all extreme points of the remaining set and so on. Repédatthisk
times. In this way we get an onion-like structure which consists of at rfst- 3)(¢ — k — 1) =
202 — 2tk — 5¢ + 3k + 3 points. The remaining sét. of at leastc(k) points exhibits a crossing family
of sizek, each segment having at least 1 points ofS,. on each side of its supporting line. In addition,
each of theZ — k — 1 convex layers (note that they are ‘arousd) adds at least one point on either side
of a segment, thus all segments éret-1) + (¢ — k — 1)™ = £+-segments. O

To determine bounds far(k) several known relations might be used. For example we could take the
Erdos—Szekeres Theorem on convex sets [17]: amonqzr;ﬂj_ﬁ?) + 2 points there are at least points

in convex position, providing a crossing family of sizg |, that is,c(|5]) < (22‘:25) + 2. This gives
¢(3) < 37. In [6] the existence of crossing families of sige /12 for every set oft points is proven. For
k = 3 this gives the weaker bounrd3) < 108 but for largek it is superior to the bounds in [17]. In [4]
it is shown that every sef of n > 10 points admits a crossing family of size 3. Since there exist sets of

9 points without 3-families we hauwg3) = 10. From Lemma 4 we thus obtain for 3-families:
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Lemma 5. For any setS of sizen > 2¢2 — 11¢ + 22 there exists a crossing family of si3eentirely
consisting o’ *-segments.

We summarize the discussion éffamilies fork < 3 in the following corollary. It can be seen that
there is a tradeoff between the size of the base range and the obtainable base of the exponential.

Corollary 1. Leta be some fixed, positive integer. The following independent relations hold

(1) If t(n) > 1" 2fora<n<2a—2thent(n) >t"?*foralln>a.
(2) If t(n) > 3r""2fora <n < 2a + 2thent(n) > "2 forall n > a.
(3) If t(n) > 3r" "2 for a <n < 2a® — 11a + 21thent(n) > "2 forall n > a.

3. Induction base

Let us again stress the fact that we are here in the remarkable situation that any improvement of lower
bounds for the number of triangulations for small sets will yield an improvement in the asymptotics of
lower bounds for (n). Therefore the present and the next section are devoted to derive a good induction
base.

Forn < 11, the minimum number of triangulations can be determined exactly by counting them in
an exhaustive way for each possible order type. A data base for all order types realizable as point sets
in the plane has recently been developed, see [2] for details. A similar project has been carried out
in [11], however they did not obtain realizations of the order types as point sets nor did they exclude
non-realizable ones. Thus their results seem less suitable for applications like counting triangulations.

The second column of Table 1 for valuesiof 10 is taken from [2,4] and is extended by the recently
obtained result forn = 11 [18]. The column shows exact lower bounds on the number of triangulations
of n points, that is, the value ofn), forn =3, ..., 11. The table reflects the known fact tlgpoints in
convex position, whose number of triangulations is given by the Catalan nudibersdo not lead to the
minimum. This is in contrast to other structures such as crossing-free matchings, crossing-free spanning
trees [13], and pointed pseudo-triangulations [3] where this happens to be true=Hdr the currently
best examples minimizing (and maximizing, respectively) the numbers of triangulations can be found on
the web [18].

Table 1

Values oft (n) for small instances and=1, ..., 4

n t(n) k=1 k=2 k=3 k=4
3 1 100000 200000 300000 400000
4 1 100000 141421 173205 200000
5 2 125992 158740 181712 200000
6 4 141421 168179 186121 200000
7 11 161539 185560 201235 213153
8 30 176273 197860 211693 222091
9 89 189882 209647 222149 231469

10 250 199408 217456 228761 237137

11 776 209457 226226 236651 244338
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The remaining entries of Table 1 give lower bounds fot) obtained by(k - r~(n))Y "2, cf. the
discussion for Eqg. (3). Note that entries< 2k still make sense since-families are only required for
sets larger than the induction base.

4. Extended induction base

In the following we give some recursive relations fot) to extend the induction base beyond- 11.
Let us point out that none of these relations leads to a direct improvement of the asymptotics of the lower
bound forz(n). Instead they are used to compute concrete values to haqundor (small, constant)
values ofn > 11.

From Lemma 1 we immediately get

t(n)> max {t@)-t(n+2—i)} forn>4. (4)
3<i<n-1

For the next relation we first need a lemma on the cardinality of the subsets of two crossing edges.

Lemma 6. For any setS of n > 6 points there always exist two mutually crossing edges which are either
two 3-segments or ong and oned-segment.

Proof. If two crossing 3-segments exist we are done, so for the remainder of the proof suppose that no
two 3-segments cross.

Let L(S) denote the second convex layerffthat is, the set of points and segments of the boundary
of the convex hull of the interior points &f. We first claim that all segments éf(S) are 3-segments.

Let e = (p1, p2) be an edge of the boundary of the convex hullSofThen the two segments from
E(S) emanating fronp; and p,, respectively, minimizing the angles ¢are 3-segments. Since no two
3-segments cross they must have an endpmirih common, i.e., together with they form a triangle.
Similarly for a convex hull edge’ = (p», p3) adjacent taz we get a pointp,.. Note thatp,, # p. since
n > 6, and that both points belong 1a(S), cf. Fig. 3. If the segmentp., p./) is also part ofL(S) then
it is a 3-segment, since on one side(pf, p.) there lies onlyp,. Otherwise with the same argument the
convex chain of_(S) betweenp, and p., entirely consists of 3-segments, proving our claim.

Similarly consider the two adjacent 4-segments afhich minimize the angle te. Since the two
3-segments of have an endpoint in common it follows that these two 4-segments either cross each other

Fig. 3. Proof of Lemma 6: all 3-segments are drawn in red (bold).
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or also have an endpoint in common. In both cases at least one of them has to cross an edge of the secon
convex layerL(S), i.e., we have a crossing pair consisting of one 3- and one 4-segnent.

The supporting line of a 3-segment splitdn a way that the subset with larger cardinality contains
n — 1 points. Analogously we get a subsetmof 2 points for a 4-segment. Sinecé: — 1) > ¢ (n — 2),
Lemma 6 immediately leads to a Fibonacci-like relation

tmy>2tn—-1)+t(n—-2) forn>6. (5)

Note that from the existence of two crossing 3-segments we could directly détive: 2 - t(n — 1)
and thug (n) > 2". However, such structures need not always exist, consider the double circle of Fig. 1
for an example. Surprisingly up to now no simple prooff6r) > 2-t(n — 1) seems to be known.

Next considerP, the number of pairge, A), where A is a triangulation ofS, ande € E(S) is an
interior edge ofA. Since every triangulation of contains exactly 3 — 2h — 3 interior edges we
get P = (3n — 2h — 3) - £(S). Counting the number of pairs @? in an edge-based way leads to

P =2 ers t(S), yielding

ZeeE(S) 1.(S)

) = .
M) =3, —n_3

(6)
Our goal is now to find a general lower bound for the spim. ., 7.(S) which implies a lower bound
for ¢(S) and thus (n), respectively.

For a pointp € S let £, be the edges irE(S) that are incident top. We get}_, s, % (S) =
% Zpes ZeeEp t.(S). If pis one of theh extreme points of, then analogously as for Eq. (4) we get

n—1

ZEXT: Y (2D 1) tn+2—i) forn>4

ecE, i=3
p extreme
If p is an interior point ofS the situation is more involved. To simplify the argumentation assume that
|S| is even, the case whef§| is odd can be handled similarly.
Order the edges of, cyclically aroundp by supporting line, and number them in this order by
€_(nj2-1), ---» €1, €0, €1, . .., €n2—1 With eg € E, Some edge witI115;O| = |S;’o| = 5+ 1. The existence of
eo follows from continuity in the cyclical ordering. For the same reason for eachedgen /2 — 1) <
i <n/2—1,wegetmays, |, S, |} <min{5+1+[i|,n—1} and mir(|S, |, |S. |} > max{5+1—|i|, 3}.
From this we conclude for > 4 even

2
n
EINT:: E te(S)Et(Eﬁ—l)

eck)
p interior

5+1
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Table 2

Extended induction base: lower bounds for) andt(n), k=1, ...,4

n 1(n) > Eq. k=1 k=2 k=3 k=4
12 1026 (5) 2000 2144 2233 2298
13 1802 (5) 1977 2105 2185 2242
14 2828 (5) 1939 2055 2125 2177
15 6423 @) 1963 2070 2136 2184
16 14560 7) 1983 2084 2145 2190
17 35015 @) D09 2104 2162 2203
18 81947 (7) D28 2118 2172 2212
19 200206 (7) D50 2136 2187 2225
20 602176 (4) D95 2177 2226 2262
21 10 x 10° ) 2071 2148 2194 2227
22 21 x 108 (7 2071 2144 2188 2220
23 49 x 10° ) 2.082 2152 2194 2224
24 11 x 107 ) 2.089 2156 2196 2225
25 22 x 10 (7 2.086 2150 2188 2216
26 41 x 107 (7 2.076 2137 2173 2199
27 95 x 107 (7 2.086 2144 2179 2204
28 22 x 108 ) 2.095 2151 2185 2209
29 50x 108 (7 2101 2155 2188 2211
30 11x 10° ) 2.105 2158 2189 2212
31 27 x 10° (7 2.115 2166 2197 2219
32 6.4 x 10° (7 2.124 2173 2203 2224
33 15 x 100 (7) 2132 2181 2209 2230
34 35x 1010 ) 2.136 2183 2211 2231
35 83x 1010 (7) 2143 2188 2215 2235
36 19 x 101 (7) 2.149 2193 2220 2239
37 45x 1011 (7) 2154 2197 2222 2241
38 95 x 1011 (7) 2152 2193 2218 2236
39 21x 102 (7) 2.155 2196 2220 2238
40 49 x 1012 (7) 2158 2198 2221 2238

The first term is related tey. Each element of the sum bounds the number of triangulations for edges
fori=1,..., 5—1.1In a similar way we get

n—3
2

_ n+3 n+1 . . n—=5
ZINT>2-i_Omj|n{t( 5 —i—])-t( > —]){Ogjgmm{z,T}} forn > 5 odd

Combining the cases of extremal and interior points, respectively, together with Eq. (6) we get the
lower bound

(> (Y =03 /(2@ —2n-3).



144 O. Aichholzer et al. / Computational Geometry 29 (2004) 135-145

Since ) gy = Y n7 this expression is minimized whehn is minimized, that is forh = 3, yielding
1(8) > @3- ) gxr+(m—3) - > \7)/(6n — 18). Since this is true for any sétof cardinalityn we finally
get

> [ (33 +0-3-Y )/61-18] forn>4 (7)

To see that this is indeed a recursive inequality observeXhat; and )t denote expressions that
involve values of (k) only for k < n.

Formulas (4), (5) and (7) are used to compute lower bounds on the number of triangulations for
constant values af > 12. For anyn the maximum among the obtained values is taken. The results
for n < 40 are shown in Table 2 together with the number of the equation used to derive the bound,
and values ofc(n) for k = 1,...,4. Forn > 40 the best bounds fann) are always obtained from
relation (7). From Table 2 we see that foe= 2 and a base range of 17., 36 we getr > 2.1. Extending
Table 2 and fixingk = 2 we getr > 2.2 for a base range of 41 .,84 andr > 2.3 for a base range
of 231, ...,464. Finally a base of range 1212., 2426 and using 2-families provides> 2.330037.
Together with Corollary 1 this proves Theorem 1. For even larger ranges of the induction base, the base
of the exponential seems to converge to a value less tl3dn(the best value we got so farise 2.33817
for a base of 6635. ., 13272 withk = 2).

5. Discussion

Using the results of Sections 3 and 4, the extended induction base might be further expanded, e.qg.,
up to cardinalities of several millions. On the other hand crossing families of size 4 or more might be
considered, again leading to a larger induction base. Both would significantly increase the computational
complexity of the approach. For example to obtain a lower bound pf2.2 using 4-families the
induction base would already have a range of.27, 1313, cf. Table 2. Although for small values of
n crossing families of size larger than two seem to be promising, see Table 2, computer investigations
showed no improvements fér> 2. This is due to the large ranges of the induction base required for
k > 2. Infact fork = 1 the numerical results are only slightly worse than the results for 2-families. Using
3-families the best result has bee 2.2249 for a base range of 42., 3087.

Most promising lines of attack to improve erare to determine the exact lower bounds for sets of size
n =12 13 ... or to show the existence @ffamilies for k > 4 consisting of¢-segments for relatively
small point sets. Together with an improvement of Lemma 4 this would help to avoid huge induction
base ranges.
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