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Abstract

A directed path whose edges are assigned labels “up”, “down”, “right”, or “left” is called four-directional, and
three-directional if at most three out of the four labels are used. A direction-consistent embedding of an n-vertex
four-directional path P on a set S of n points in the plane is a straight-line drawing of P where each vertex of P
is mapped to a distinct point of S and every edge points to the direction specified by its label. We study planar
direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for
convex point sets.

1 Introduction
In 1974, Rosenfeld proved that every tournament has a spanning antidirected path [17] and conjectured that there
exists an integer n0 such that every tournament with more than n0 vertices contains every oriented path as a spanning
subgraph. A tournament is a digraph whose underlying undirected structure is a complete graph and an oriented path
is a digraph whose underlying undirected structure is a simple path. An oriented path is antidirected if the directions
of its edges alternate. During the following decade several simplifications of Rosenfeld’s conjecture had been shown
to be true. Alspach and Rosenfeld [4] and Straight [18] settled the conjecture for oriented paths with either a single
source or a single sink. Forcade [12] proved the conjecture to be true for every tournament whose size is a power of two.
Reid and Wormald[16] showed that any tournament of size n contains every oriented path of size 2n/3 and Zhang [20]
improved this result to n− 1. Finally, in 1986, the conjecture was established by Thomason [19].

More than two decades later, with the expansion of Geometric Graph Theory and Graph Drawing, a geometric
counterpart of Rosenfeld’s conjecture was considered. The subject of this study is an upward geometric tournament,
that is, a tournament drawn on the plane with straight-line edges so that each edge points in the upward direction. It
was asked whether an upward geometric tournament contains a planar copy of any oriented path [9]. Despite several
independent approaches to attack the problem by different research groups, this question is still unsolved. However, it
was answered in the affirmative for several special cases of paths and tournaments. We use the following definitions to
list these results. A vertex of a digraph which is either a source or a sink is called a switch. An oriented path whose
edges are all oriented in the same direction is called monotone. For the following cases it was shown that every upward
tournament contains a planar copy of each oriented path: the vertices of the tournament are in convex position [9],
the oriented path has at most 3 switches [9], the oriented path has at most 5 switches and at least two of its monotone
subpaths contain a single edge [5], the oriented path where every sink is directly followed by a source [9]. It was also
shown that each oriented path of size n is contained in any upward geometric tournament of size n2k−2, where k is the
number of switches [5]. This result was later improved to (n−1)2+1 in [15]. Recently, with the help of a computer,
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we could verify that every upward geometric tournament of size 10 contains a planar copy of any oriented path as a
spanning subgraph. This was done by exhaustive testing of all distinct directed order types, that is, all order types [3]
with an additional combinatorial upward direction.

The question whether any upward geometric tournament contains a planar copy of any oriented path was originally
stated in terms of so-called point set embeddings. Here we are given a set S of n points in the plane and a planar
n-vertex graph G, and we are asked to determine whether G has a planar straight-line drawing where each vertex of G
is mapped to a distinct point of S. This problem has been extensively studied and many exciting facts were established,
see for example [6, 8, 10, 11, 13]. In the upward counterpart of point set embeddings, G is an upward planar digraph and
the obtained drawing is additionally required to be upwards oriented. Such a drawing, if it exists, is called an upward
point set embedding. Upward point set embeddings have been studied for different classes of digraphs [5, 7, 9, 14].
Observe that the question whether any upward geometric tournament contains a planar copy of any oriented path is
equivalent to asking whether any oriented path has an upward planar embedding on any set of n points. We will refer to
the latter as the oriented path question.

The number of distinct plane embeddings of an (undirected) spanning path on a point set could provide us some
additional evidence for the oriented path question. It is not difficult to see that if S is a set of n points in convex position,
then it admits n2n−3 distinct plane spanning path embeddings. Further it is known that this is the minimum number of
distinct plane spanning path embeddings that a point set can admit, i.e., convex point sets minimize this number [1].
Comparing this lower bound with the number of distinct oriented paths, which is 2n−1, it sounds even surprising that
every oriented path has an upward planar embedding on every convex point set [9]. In order to approach the oriented
path question in its general form, we aim to understand better how the nature of the problem changes when in addition
to planarity of a path one requires its upwardness. To this end, we generalize the oriented path problem with respect to
the number of considered directions (see Section 2 for a rigorous definition). Observe that, instead of considering an
oriented path, one can consider a monotone path with labels on edges that declare whether an edge is required to point
up or down. In this work we study monotone paths with four possible labels on the edges: up, down, left, and right. We
call such paths four-directional, and three-directional if at most three out of the four labels are used. An embedding of
such a path on a point set where each edge points into the direction specified by its label is called direction-consistent.
We study planar direction-consistent embeddings of three- and four-directional paths on convex point sets. Recall that
convex point sets are extremal in the sense that they minimize the number of plane embeddings of (undirected) spanning
paths. We provide a complete picture regarding four-directional paths and convex point sets. Our results are as follows:

• Every three-directional path admits a planar direction-consistent embedding on any convex point set.

• There exists a four-directional path P and a one-sided1 convex point set S such that P does not admit a
planar direction-consistent embedding on S. On the other hand, a four-directional path always admits a planar
direction-consistent embedding for special cases of one-sided point sets, namely so-called quarter-convex point
sets.

• Given a four-directional path P and a convex point set S, it can be decided in O(n2) time whether P admits a
planar direction-consistent embedding on S.

Our study is also motivated by applications similar to those of upward point set embeddings, i.e., any situation where a
hierarchical structure must be represented and additional constraints on the positions of vertices are given. Our scenario,
where instead of two directions the edges can point into four directions, allows for a more detailed control over a
drawing.

The remainder of the paper is organized as follows. In Section 2, we give the necessary definitions. In Section 3, we
prove several preliminary results which are utilized in our main Section 4, where the existence of a planar direction-
consistent embedding of a three-directional path on a convex point set is shown. All results on four-directional paths are
concentrated in Section 5.

1A convex point set is called one-sided if all of its points lie on the same side of the line through its bottommost and topmost points.
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2 Definitions
Graphs The graphs we study in this paper are directed and we denote by (u, v) an edge directed from u to v. A
directed edge when drawn as a straight-line segment is said to point up or being upward, if its source is below its sink.
Similarly we define the notions of pointing down, left, and right. Our study concentrates on directed paths each edge
of which is assigned one of four labels U,D,L,R, which means that (when the path is embedded on a point set) this
edge is required to point up, down, left, or right, respectively. For simplicity, we will denote such a path containing
vertices v1, . . . , vn by P = d1, . . . , dn−1, where di ∈ {U,D,L,R}, 1 ≤ i ≤ n− 1. Let T ⊆ {U,D,L,R}. If di ∈ T ,
1 ≤ i ≤ n − 1, then P is called T -path and |T |-directional path in order to emphasize the number of directions it
contains. We denote by Pi,j = di, . . . , dj , 1 ≤ i ≤ j ≤ n− 1, a subpath of P . In addition, we define Pi,i−1 = vi.

Point sets We say that a set S of points in the plane is in general position if no three points are collinear and no two
points have the same x- or y-coordinate. All point sets mentioned in this paper are in general position. Let S be a
convex point set. We denote by `(S), r(S), t(S), b(S) the leftmost, the rightmost, the topmost, and the bottommost
point of S, respectively. A subset of points of S is called (clockwise) consecutive if its points appear consecutively as
we (clockwise) traverse the convex hull of S.

A convex point set S is called left-sided (resp. right-sided) if t(S) and b(S) (resp. b(S), t(S)) are clockwise
consecutive on S. Further, S is called one-sided if S is left-sided or right-sided. Finally, S is called strip-convex if (i)
the points b(S) and `(S) are either consecutive or coincide, and (ii) the points t(S) and r(S) are either consecutive or
coincide. For p, q ∈ S, the points of S which lie between the vertical lines through p and q (including them) are said to
be vertically between p and q.

Embeddings Let P be an n-vertex path (labeled) with vertex set V (P ) and S be a set of n points in general position.
An embedding of P on S is an injective function E : V (P )→ S. If the edges of P are drawn as straight-line segments
connecting corresponding end-vertices, the embedding E yields a drawing of P . We say that the embedding E is planar
if this drawing is planar. We say that E is direction-consistent if each edge points to the direction corresponding to its
label. Planar direction-consistent embeddings are abbreviated by PDCE. During the construction of an embedding, a
point p is called used if a vertex has already been mapped to it. Otherwise, p is called free. Throughout the paper we
consider embeddings of n-vertex paths on sets of n points, unless explicitly stated differently.

Operations with paths, point sets, and embeddings Let T ⊆ {U,D,R,L} and consider a T -pathP = d1d2 . . . dn−1.
Let S be a set of n points and let E be a direction-consistent embedding of P on S. Observe that E describes a direction-
consistent embedding of another path P I on the same point set S. Path P I is called the reverse path of P , and is
constructed by reversing the directions of the edges of P and changing the labels to their opposite. Thus, formally
P I = I(dn−1) . . . I(d2)I(d1), where I(U) = D, I(D) = U , I(R) = L, and I(L) = R. This embedding of P I on
S is denoted by EI . For example, if P = UUDRL, then P I = RLUDD. Observe also that (P I)I = P .

Observation 1. Let E be a PDCE of a path P on a point set S. Then EI is a PDCE of P I on the same point set S.

Let P , S, and E be as above. The embedding E yields a straight-line drawing Γ of P . Consider the rotation of Γ
counterclockwise by π/2. This rotated drawing represents a direction-consistent embedding, denoted byR(E), of a
new path, denoted by R(P ), on the rotated point set, denoted by R(S). This new path R(P ) is formally defined as
follows: R(P ) = R(d1)R(d2) . . .R(dn−1), whereR(U) = L,R(D) = R,R(R) = U , andR(L) = D. We use the
notationRk for k applications ofR. Thus,R4(P ) = P andR4(S) = S. Also, if P is an {U,D,L}-path and S is a
right-sided point set thenR2(P ) is an {U,D,R}-path andR2(S) is a left-sided point set. Note that P I 6= R2(P ).

Observation 2. Let E be a PDCE of a path P on a point set S. ThenR(E) is a PDCE ofR(P ) on the point setR(S).

Finally, we define the operation of mirroring. Let P , S, E , and Γ be as before. Consider a vertical mirroring of Γ
through a vertical line not separating the points of S. This mirrored drawing represents a direction-consistent embedding,
denoted byM(E), of a new path, denoted byM(P ), on the mirrored point set, denoted byM(S). This new path
M(P ) is formally defined as follows: M(P ) = M(d1)M(d2) . . .M(dn−1), where M(U) = U , M(D) = D,
M(R) = L, andM(L) = R.
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Algorithm 1: BACKWARD EMBEDDING

Input: {U,D,L,R}-path P = d1, . . . , dn−1, convex point set S of size n
Output: Function E : V (P )→ S
for i← n− 1 downto 1 do1

switch di do2

case U : E(vi+1)← t(S) case D: E(vi+1)← b(S) case L: E(vi+1)← `(S) case R:3

E(vi+1)← r(S)

S ← S\{E(vi+1)}4

E(v1)← v ∈ S //S contains only one element5

return E6

Observation 3. Let E be a PDCE of a path P on a point set S. ThenM(E) is a PDCE ofM(P ) on the point set
M(S).

3 Preliminaries
In this work we prove that every n-vertex three-directional path P admits a PDCE on any set of n points in convex
position. As an overview, we sketch the basic idea of the proof. First, we show that it is possible to construct a
PDCE of an {U,D,R}-path on a one-sided point set, while controlling the position of one of its end-points (Lemma 2
and Lemma 3). Then we show that we can embed a two-directional {U,R}-path on a strip-convex point set S while
controlling the positions of both end vertices of the path (Lemma 4). We use these results to show that an {U,D,R}-path
admits an embedding on any convex point set (Lemma 5). For this, we separate a given convex point set into one-sided
point sets and a strip-convex point set and go through a case distinction on the labels of the edges which correspond to
the separation of the point set. Finally, we show that an embedding of any three-directional path can be reduced to
the embedding of an {U,D,R}-path (Theorem 1). We discuss the direction-consistency of constructed embeddings in
detail in the flow of the proofs. However, the planarity of the embedding always follows from a single simple principle
that is described by the following lemma and which is based on Lemma 3 of Binucci et al. [9].

Lemma 1. An embedding of an n-vertex path on a convex point set is planar if and only if for each i, 1 < i < n, path
P1,i is mapped to a consecutive subset of S.

Proof. Let E be an embedding of P on S. Lemma 3 in [9] states that if E is planar then for any i, 1 < i < n, both
P1,i−2 and Pi+1,n−1 are mapped to consecutive subsets of S.

For the reversed direction, assume for the sake of contradiction that E is not planar. This means that there exists a
smallest j such that (vj , vj+1) is crossed by another edge (vk, vk+1), for k > j. Vertex v1 lies on S either between vk
and vj or between vj and vk+1, since j is the smallest index such that (vj , vj+1) is crossed. In both cases, E(P1,j) is
not a consecutive subset of S, which is a contradiction.

We next show that Algorithm BACKWARD EMBEDDING is able to accomplish two tasks: to construct a PDCE of an
{U,D,R}-path on a left-sided point set, and to construct a PDCE of an {U,R}-path on a strip-convex point set. The
algorithm traverses the path backwards and places the vertex vi, 1 < i ≤ n, so that, wherever vertex vi−1 is placed,
edge (vi−1, vi) is guaranteed to be direction-consistent. The algorithm is a generalization of the algorithm constructing
a PDCE of an {U,D}-path [9].

Lemma 2. Let S be a left-sided point set and let P = d1, . . . , dn−1 be an {U,D,R}-path. Algorithm BACKWARD
EMBEDDING computes a PDCE E of P on S such that E(vn) is t(S), b(S), or r(S) ∈ {t(S), b(S)}, dependent on
whether dn−1 is U , D, or R, respectively.

Proof. Observe that the algorithm traverses the path backwards and decides the placement of vertex vi+1 based on the
label of the edge (vi, vi+1), i.e., di. If di = U (resp. D, L, R), vertex vi+1 is placed on the topmost (resp. bottommost,
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leftmost, rightmost) of the currently free points. Hence, when vertex vi is placed at the next step on any other free point,
edge (vi, vi+1) is guaranteed to be direction-consistent.

For the planarity, observe that the procedure picking the rightmost, the topmost, and the bottommost points of a
left-sided point set, creates a consecutive subset of S. Thus, for any i, 1 ≤ i ≤ n− 1, path Pi,n−1 (and therefore also
P1,i−1) is mapped to a consecutive subset of S. Hence, by Lemma 1, the created embedding is also planar.

The following lemma can be proven based on Lemma 2 and the operations of rotation of a point set and reverse of a
path.

Lemma 3. An {U,D,R}-path P = d1, . . . , dn−1 admits a PDCE on any right-sided point set S such that E(v1) is
b(S), t(S), or `(S) ∈ {t(S), b(S)}, dependent on whether d1 is U, D, or R, respectively.

Proof. Observe that the point setR2(S), i.e., S rotated by π, is a left-sided point set. Observe also thatR2(P ) is an
{U,D,L}-path. The reverse of R2(P ), i.e., R2(P )I , is again an {U,D,R}-path. Let E be a PDCE of R2(P )I on
R2(S), which exists by Lemma 2, such that the last vertex ofR2(P )I is mapped to t(R2(S)), b(R2(S)), or r(R2(S))
if the last edge ofR2(P )I has label U , D, or R, respectively. By Observation 1, EI is a PDCE ofR2(P ) onR2(S)
and finally, by Observation 2, R2(EI) is a PDCE of P on S. Moreover, observe that the first vertex of P is the last
vertex ofR2(P )I and that the first edge of P and the last edge ofR2(P )I have the same label. Observe also that the
topmost (resp. bottommost, leftmost) point of S is the bottommost (resp. topmost, rightmost) point ofR2(S). Hence,
we infer thatR2(EI)(v1) = b(S) if d1 = U ,R2(EI)(v1) = t(S) if d1 = D, andR2(EI)(v1) = `(S) if d1 = R.

Lemma 4. Let S be a strip-convex point set and let P = d1, . . . , dn−1 be an {U,R}-path. Algorithm BACKWARD
EMBEDDING computes a PDCE E of P on S such that (i) E(v1) is b(S) or l(S), and (ii) E(vn) is t(S) or r(S),
dependent on whether dn−1 is U or R, respectively.

Proof. Direction consistency of the embedding can be seen similarly to the first part of the proof of Lemma 2. For
the planarity recall that since S is a strip-convex point set, its rightmost and topmost points are either consecutive or
coincide. Since P is an {U,R}-path, Algorithm BACKWARD EMBEDDING picks at every step either the rightmost
or the topmost point of the remaining free points. Thus, the set of used points is a consecutive subset of S, and, by
Lemma 1, the embedding is planar. The position of vn follows trivially. For the position of v1 we observe the following.
If the algorithm picks b(S) (resp. `(S)) when searching for the topmost (resp. rightmost) free point then all other
points of S have already been used and therefore all the remaining vertices of P except for v1 have already been placed.
Hence, v1 is then placed on b(S) (resp. `(S)). Otherwise, if the algorithm picks `(S) (resp. b(S)) when searching for
the topmost (resp. rightmost) point of S, then the point which is clockwise after `(S) (before b(S)) has already been
used, since it is higher than `(S) (resp. to the right of b(S)). Therefore, after `(S) (resp. b(S)) has been used, b(S)
(resp. `(S)) becomes the leftmost (resp. bottommost) free point. Being simultaneously the leftmost and the bottommost
free point, b(S) (resp. `(S)) will be used as the last point by the algorithm.

4 Three-directional paths
The following lemma is the key ingredient for the proof of a main result of this paper. We postpone its proof until we
have seen how the lemma is used.

Lemma 5. Let S be a convex point set with the property that t(S) is to the right of b(S). Any {U,D,R}-path admits a
PDCE on S.

Theorem 1. Any three-directional path admits a PDCE on a convex point set.

Proof. Consider the four different possibilities of a 3-directional path P .
Case 1: P is an {U,D,R}-path. Since S is in general position, t(S) is either to the right or to the left of b(S). In the
former case a PDCE of P on S exists by Lemma 5. For the latter case, observe that inM(S), point t(M(S)) is to
the right of b(M(S)). Moreover, P I is an {U,D,L}-path, andM(P I) is again an {U,D,R}-path. By Lemma 5,
there exists a PDCE E ofM(P I) onM(S). By Observation 3,M(E) is a PDCE of P I on S. Due to Observation 1,
M(E)I is a PDCE of P on S.
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t(S)
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C
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Figure 1: Illustration of the construction in Cases 1-3.

Case 2: P is an {U,D,L}-path. Observe that P I is an {U,D,R}-path. Let E be a PDCE of P I on S, which exists by
Case 1. Then EI is a PDCE of P on S.
Case 3: P is an {U,L,R}-path. Thus,R(P ) is an {U,D,L}-path. Due to Case 2, there exists a PDCE E ofR(P ) on
R(S). By Observation 2,R(E) is a PDCE of P on S.
Case 4: P is a {D,L,R}-path. Notice thatR(P ) is an {U,D,R}-path. Thus, for a PDCE E ofR(P ) onR(S), which
exists due to Case 1,R(E) is a PDCE of P on S. This concludes the proof of the theorem.

Proof of Lemma 5. Let S` denote the subset of S containing all points on the left of the line through b(S) and t(S),
and let m = |S`|. We distinguish several cases based on the labels dm and dm+1.
Case 1: dm = D, dm+1 ∈ {U,R} (see Fig. 1(a) for an illustration). We embed P1,m on Sl ∪ {b(S)} using
Algorithm BACKWARD EMBEDDING. By Lemma 2, vertex vm+1 is mapped to b(S). Then, we embed Pm+1,n−1 on
Sr ∪ {t(S), b(S)} in the way given by Lemma 3. Since `(Sr ∪ {t(S), b(S)}) = b(Sr ∪ {t(S), b(S)}) = b(S) and
dm+1 ∈ {U,R}, vertex vm+1 is mapped to b(S). Thus, the union of these embeddings is a PDCE of P on S.
Case 2: dm ∈ {U,R}, dm+1 = D (see Fig. 1(b)). We embed P1,m on Sl ∪ {t(S)} using Algorithm BACKWARD
EMBEDDING. By Lemma 2, vertex vm+1 is mapped to t(S) since r(Sl ∪ {t(S)}) = t(Sl ∪ {t(S)}) = t(S) and
dm ∈ {U,R}. Due to Lemma 3, we can embed Pm+1,n−1 on Sr ∪ {t(S), b(S)} such that vertex vm+1 is mapped to
t(S), since t(Sr ∪ {t(S), b(S)}) = t(S) and dm+1 = D. Thus, the union of these embeddings is a PDCE of P on S.
Case 3: dm = D, dm+1 = D (see Fig. 1(c)). Let Pa,b, 1 ≤ a ≤ m < m+ 1 ≤ b ≤ n− 1, be the maximal subpath
of P containing dm, dm+1 and only D labels. Let A be the a highest points of Sl ∪ {t(S)}. Observe that A exists
since a ≤ m. We embed P1,a−1 on A using Algorithm BACKWARD EMBEDDING. By Lemma 2, vertex va is mapped
to t(S), since da−1 ∈ {U,R} and r(A) = t(A) = t(S). Let C be the n − b lowest points of Sr ∪ {b(S)}. Since
|Sr ∪ {b(S)}| = n−m− 1, and b ≥ m+ 1, thus n− b ≤ n−m− 1, and therefore C exists. By Lemma 3, we can
embed Pb+1,n−1 on C such that vb+1 is mapped to b(S) since `(C) = b(C) = b(S) and db+1 ∈ {U,R}. Let B be
(S\(A ∪ C)) ∪ {t(S), b(S)}. We embed the D-path Pa,b on B, starting with va at t(S) and ending with vb+1 at b(S),
by sorting the points of B by decreasing y-coordinate. Merging the PDCEs for P1,a−1, Pa,b, and Pb+1,n−1, we obtain
a PDCE of P on S.
Case 4: dm, dm+1 ∈ {U,R}. Let Pi,j where 1 ≤ i ≤ m < m + 1 ≤ j ≤ n − 1 be the maximal subpath of P
containing dm, dm+1 and only U/R-labels. Thus di−1 =dj+1 =D, if they exist. Let α (resp. β) denote the number of
points of S lying to the left of b(S) (resp. t(S), including t(S)). We consider several cases based on how the indices i,
j are related to the indices α, β. The intuition behind this is to distinguish whether or not the points that are vertically
between b(S) and t(S) are enough to embed Pi,j .
Case 4A: i > α and j < β, i.e., the points vertically between b(S) and t(S) are enough to embed Pi,j (see Fig. 2).
Let A be the i lowest points of Sl∪{b(S)}; A exists since i ≤ m. By Lemma 2, we can embed P1,i−1 on A such that vi
is mapped to b(S). Let C be the n− j highest points of Sr ∪ {t(S)}; C exists since n− j < n−m. By Lemma 3, we
can embed Pj+1,n−1 on C such that vj+1 is mapped to t(S) since dj+1 = D. Let B be (S\(A ∪ C)) ∪ {b(S), t(S)}.
Since i > α, `(B) = b(B) = b(S), and since j < β, r(B) = t(B) = t(S). Thus, B is a strip-convex point set. By
Lemma 4, we can embed the {U,R}-path Pi,j on B such that vi lies on b(S) and vj+1 lies on t(S). By merging the
constructed embeddings of P1,i−1, Pi,j , and Pj+1,n−1, we obtain a PDCE of P on S.
Observe that if either i− 1 = α and dα = R or j + 1 = β and dβ = R or both, then the embedding can be constructed
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Figure 2: (a) Structure of the path in Cases 4A (above) and 4B (below). (b) Construction in Case 4A.
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Pa,b

vc

Pc,e

vb+1
B

E

D

Pb+2,c−2

C

vb+2 vc−1

A

(c)

Figure 3: Constructions for (a) Case 4B, (b) Case 4C, and (c) Case 4D when Pb+2,c−2 is non-empty (if c = b+2 the set C is empty;
if a = c and b = e the sets B and D are not distinguished).

identically. In case dα = R, vertex vi is mapped to r(A) = b(S). In case dβ = R, vertex vj+1 is mapped to
`(C) = t(S). Thus, these embeddings can be merged with the above embedding of Pi,j on B.
Case 4B: i > α and j ≥ β. In this case dβ ∈ {U,R}. If dβ = R then the embedding is constructed as explained at the
end of Case 4A. In the following we assume dβ = U .
Let Pa,b, i ≤ a ≤ β ≤ b ≤ j be the maximal subpath of P containing dβ and only U -edges; see Fig. 2(a)(below) for
the structure of the constructed path. If a > i, da−1 = R. Otherwise, if a = i then da−1 = D, i.e., the {U,R}-path
Pi,a−2 is empty. Let A be the i lowest points of Sl ∪ {b(S)} (see Fig. 3(a)). Notice that A is a left-sided point set
and b(A) = b(S). We can embed P1,i−1 on A by Lemma 2 such that vertex vi is mapped to b(S). Let D be the
n − b highest points of Sr ∪ {t(S)}. By Lemma 3, we can embed Pb+1,n−1 on D such that vertex vb+1 is mapped
to t(S). Let B be the a − i leftmost points of (S\A) ∪ {b(S)}. If a = i then B is empty. Otherwise, since i > α,
`(B) = b(B) = b(S) and since a ≤ β, the points t(B) and r(B) are consecutive in B. Thus, B is a strip-convex point
set and by Lemma 4 we can embed the {U,R}-path Pi,a−2 on B such that vertex vi is mapped to b(S) and vertex va−1
is mapped to either t(B) or r(B). Let C = S\(A ∪B ∪ D) ∪ {t(S)}. We embed Pa,b on C by sorting the points by
increasing y-coordinate. Thus, vertex va is mapped to b(C) and vertex vb+1 is mapped to t(S). If a = i, vertex vi = va
is already mapped to b(S), thus at this step we only embed the vertices of the {U}-path Pa+1,b.
Next we merge the constructed PDCEs of P1,i−1, Pi,a−2, Pa,b, and Pb+1,n−1. If a = i, the edge di points upward since
vi is mapped to b(S). Otherwise, since va−1 is mapped to t(B) or r(B), va is mapped to b(C), B and C are separable
by a vertical line, and edge (va−1, va) points to the right and does not cross the remaining drawing.
Recall that this case considers the situation where i > α. In case i ≤ α, we know that dα ∈ {U,R}. If it happens that
dα = R, the construction can be accomplished identically by considering index α+ 1 everywhere in place of i. Here,
Lemma 2 guarantees a mapping of P1,α with vα+1 on b(S) since it is the rightmost point of A and dα = R.
Case 4C: i ≤ α and j < β. This case is symmetric to Case 4B. If dα = R the embedding is constructed as explained
at the end of Case 4A. Otherwise dα = U and we again identify the maximal {U}-subpath Pa,b of P containing dα.
The structure of the path in this case is shown in Fig. 4 and the embedding in Fig. 3(b).
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Also, similar to Case 4B, we can use this construction to embed a path where j ≥ β and dβ = R. For that, consider the
illustration of Fig. 3(b). We set D to contain only points to the right of t(S) and t(S), i.e., |D| = n− β + 1. We embed
Pβ,n−1 on D. By Lemma 3, we can map vβ to t(S), since dβ = R and t(S) is the leftmost point of D. The remaining
construction is identical.

vb+2 vj+1

dj+1 = D

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U,D,R}-path
vj+2

vb+2 vc−1

dc−1 = R

{U,D,R}-path
va−1

{U,R}-path
vb+1va

da−1 = R/D

{U}-path

db+1 = R

{U}-path
vc

de+1 = D/R

{U,D,R}-path
ve+2ve+1

Figure 4: Structure of the path in Cases 4C (above) and 4D (below).

Case 4D: i ≤ α and j ≥ β, dα = dβ = U . Let Pa,b, a ≤ α ≤ b, be the maximal {U}-subpath of P containing dα.
Similarly, let Pc,e, c ≤ β ≤ e, be the maximal {U}-subpath of P containing dβ . If there is no R-edge between dα
and dβ then a = c and b = e. If there is a single R-edge between them then c = b + 2. Otherwise, Pb+2,c−2 is a
{U,R}-path containing at least one vertex; see Fig. 4 for this case.
We embed the {U,D,R}-path P1,a−1 on the a lowest points, denoted by A, of S` ∪ {b(S)}. By Lemma 2, we can map
va to b(S), since the rightmost point of A is b(S) and da−1 ∈ {D,R}. By Lemma 3, we can embed Pe+1,n−1 on the
n− e− 1 highest points, denoted by E, of Sr ∪ {t(S)}, such that ve+1 is mapped to t(S), since it is the leftmost point
of E and de+1 ∈ {D,R}. Fig. 3(c) shows the case where Pb+2,c−2 is non-empty. However, it presents the idea of the
embedding in the remaining cases as well.
If a = c and b = e then Pa,e is a {U}-path. We embed it on S \ (A ∪ E) ∪ {b(S), t(S)}, by sorting the points by
increasing y-coordinate. This completes the construction of a PDCE of P on S. Otherwise, we let B (resp. D) be the
b− a+ 2 leftmost (resp. e− c+ 2 rightmost) points of S \ (A ∪E) ∪ {b(S), t(S)}. We embed Pa,b (resp. Pc,e) on B
(resp. D) by sorting its points by y-coordinates.
If c = b + 2, the {U}-paths Pa,b and Pc,e are joined by a single R-edge. Since vb+1 is to the left of vb+2 = vc,
the constructed embedding yields a direction-consistent embedding of the edge (vb+1, vb+2) and this completes the
construction of a PDCE of P on S. Otherwise, Pb+2,c−2 is an {U,R}-path that contains at least one vertex and
db−1 = dc−1 = R. We embed Pb+2,c−2 on the remaining free points, i.e., on the point set C = S \ (A ∪B ∪ D ∩ E).
By construction of B and D, the set C is separated from the remaining points by vertical lines. Thus, `(C) and b(C)
are either consecutive or coincide. Similarly, points t(C) and r(C) are either consecutive or coincide. Thus, C is a
strip-convex point set. By Lemma 4, we can embed Pb+2,c−2 on C such that vb+2 is mapped to one of `(C) or b(C),
and vc−1 to one of t(C) or r(C). As vb+2 is mapped to the highest point of B and vc is mapped to the lowest point
of D, we infer that the obtained embedding of P on S is planar. Since db+1 = dc−1 = R and by the fact that C is
separated from B and D by vertical lines, it is also direction-consistent. This concludes the proof of the lemma.

5 Four-directional paths
The proof of the following theorem is based on the counterexample showing that the path P = LULRDR does not
admit a PDCE on the convex point set shown in Figure 5.

Theorem 2. There exists a one-sided point set S and an {U,D,L,R}-path P such that there is no PDCE of P on S.

Proof. Consider the path P = LULRDR and the left-sided point set S of Fig. 5. Lemma 1 states that in order to
obtain a planar embedding of P on S, a subpath of P must be mapped to consecutive points of S. Fig. 6 illustrates a
complete case analysis based on this principle and shows that there is no PDCE of P on S.

A one-sided point set S is a special case of a convex point set, such that b(S) and t(S) are consecutive. However,
as Theorem 2 states, such a point set does not always admit a PDCE of every four-directional path. On the other
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Figure 5: Path P = LULRDR does not admit a PDCE on this point set.
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Figure 6: Illustration of the case analysis of the proof of Theorem 2.

hand, consider a one-sided convex point set S where one of the following pairs represents a clockwise consecutive
subset of S: (i) t(S) and `(S), (ii) r(S) and t(S), (iii) b(S) and r(S), (iv) `(S) and b(S). Such a point set is called
quarter-convex. It can be easily seen that every quarter-convex point set admits a PDCE of any four-directional path.
Actually, in case (i) an edge pointing right always points up and an edge pointing left always points down. Thus, the
problem of embedding a {U,D,R,L}-path is reduced to embedding a {U,D}-path, which always admits a PDCE on
any convex point set [9]. Similar reductions can be made for any other type of a quarter-convex point set. Therefore, we
state the following:

Observation 4. Any {U,D,L,R}-path has a PDCE on any quarter-convex point set.

Based on Lemma 1, it is easy to derive a dynamic programming algorithm to decide whether a four-directional path
admits a PDCE on a convex point set. This is formalized in the following theorem. A similar algorithm, described
in [14], tests whether an upward planar digraph admits an upward planar embedding on a convex point set.

Theorem 3. Let P be an n-vertex four-directional path and S be a convex point set. It can be decided in O(n2) time
whether P admits a PDCE on S.

Proof. Let v1, . . . , vn be the vertices of P and let t(S) = p1, . . . , pn be the points of S in counterclockwise order. Our
dynamic programming algorithm stores values E[i, j], which are all possible positions of vertex vi in a PDCE of P1,i−1
(the subpath of P including the first i vertices) on the points pj , . . . , pj+i−1, where j + i− 1 is taken modulo n if it is
greater than n. Notice that E[i, j] can contain at most two values, j and j + i− 1, since these are the only positions for
vi such that the path P1,i−2 satisfies the necessary condition of Lemma 1.

We compute the value E[i, j] as follows. Value E[i, j] contains j, if E[i− 1, j + 1] is non-empty and for at least
one of the positions of vi−1 given by E[i− 1, j + 1] the edge (vi−1, vi) is direction-consistent when vi is placed on pj
(see Fig. 7(a) for an illustration of this case). Value E[i, j] contains j + i− 1, if E[i− 1, j] is non-empty and for at
least one of the positions of vi−1 given by E[i− 1, j] the edge (vi−1, vi) is direction-consistent when vi is placed on
pj+i−1 (see Fig. 7(b)).
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vi−1

P1,i−1

pj+1

pj = vi
P1,i

(a)

vi−1

P1,i−1pj

pj+i−1 = vi

P1,i

(b)

Figure 7: (a) Case when E[i, j] contains j. (b) Case when E[i, j] contains j + i− 1.

The path P admits a PDCE on S if and only if at least one of the values E[n, j], 1 ≤ j ≤ n is non-empty. Finally,
we observe that we need O(n2) time to compute all the values E[i, j], 1 ≤ i, j ≤ n.

6 Conclusion
We investigated the question of finding a planar direction-consistent embedding on a convex point set for any given
four-directional path. We have shown that this is always possible for paths that are restricted to at most three out of the
four directions. To the contrary, we have provided an example showing that for paths using all four directions, this is
not always possible. We also presented an O(n2) time algorithm to decide embeddability for a given four-directional
path and convex point set.

The most challenging open problem is to determine whether any two- or three-directional path always admits a
planar direction-consistent embedding on any point set in general position.
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