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Abstract Let Sbe a set of points in general position in the plane. Together v@th
we are given a set of parity constraints, that is, every pafitis labeled either even
or odd. A graphG on Ssatisfies the parity constraint of a pope Sif the parity of
the degree op in G matchesiits label. In this paper, we study how well varioassts
of planar graphs can satisfy arbitrary parity constrai@pecifically, we show that we
can always find a plane tree, a two-connected outerplanghgoa a pointed pseudo-
triangulation that satisfy all but at most three parity deaists. For triangulations we
can satisfy about 2/3 of the parity constraints and we shatitithe worst case there
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is a linear number of constraints that cannot be fulfilledadidition, we prove that
for a given simple polygoil with polygonal holes oi8, it is NP-complete to decide
whether there exists a triangulationtéfthat satisfies all parity constraints.

Keywords triangulation- vertex degree parity pseudo-triangulationgeometric
graph
MSC Codes:05C10, 52C99

1 Introduction

Computing a simple graph that meets a gidegree sequends a classical problem
in graph theory and theoretical computer science, datiny tmthe work of Erdds
and Gallai [8]. A degree sequence is a veater (di,...,dn) of n positive numbers.
It is realizableif and only if there exists a simple graph whose nodes havegaly
this sequence of degrees. Erdds and Gallai gave necesshsufiicient conditions
for a degree sequence to be realizable, and several algsritve been developed
that generate a corresponding abstract graph.

An extension of this problem prescribes not only a degreee®eed, but also
gives a seB c R? of n points in general position (i.e., no three points are ceHin,
wherep; € Sis assigned degres. It is well known that a degree sequerttis real-
izable as a tree if and only ' ; di = 2n— 2. Tamura and Tamura [22] extended this
result to plane (straight line) spanning trees, giving2in?logn) time embedding
algorithm, which in turn was improved by Bose et al. [6] toioyl O(nlogn) time.

In this paper we study a relaxation of this problem, where e@ace exact de-
grees with degree parity: odd or even. Although parity a@iiss are significantly
weaker than actual degree constrains, they still chaiiaeteertain (classes of) graphs.
For example, Eulerian graphs are exactly those connectgthgwhere all vertices
have even degree, and a classical theorem attributed toéytstates that a maximal
planar graph is 3-colorable if and only if all vertices haveredegree, see the solution
of Problem 56 in [17, p. 421]. A given graph might satisfy oalgubset of the parity
constraints. So we study how well various classes of plaregtg can satisfy arbi-
trary parity constraints. A preliminary version of this wdras been presented at the
Algorithms and Data Structures Symposium (WADS) in BamffAugust 2009 [1].

Definitions and notationLet S c R? be a set of points in general position. We
denote the convex hull @by CH(S). The points ofS have parity constraints, that
is, every point ofSis labeled eitheevenor odd, for ease of explanation we refer to
even and odd points. We denotetyyandn, the number of even and odd points3n
respectively. Throughout the paper an even point is deghlryes, an odd point byo,
and a point that can be either By A graphG on Smakes a poinp € S happyif the
parity of deg(p) matches its label. Ip is not happy, then it isnhappy Throughout
the paper a happy point is depicteddyan unhappy point bp, and a point that can
be either bye.



Results.Clearly, not every set of parity constraints can be fulfillEdr example, in
any graph the number of odd-degree vertices is even. Hemeaumber of unhappy
vertices has the same parity as For the class of plane trees, the aforementioned
results on degree sequences immediately imply:

Theorem 1 On every point set 8 R? with parity constraints, there exists a plane
spanning tree that makes) all but two points happy if =0, (ii) all but one point
happy if iy is odd, and(iii ) all points happy if g > 2 is even. O

We show that we can always find a two-connected outerplarsghgfwhich is a
Hamiltonian cycle with additional edges in the interior,ebnem 2) and a pointed
pseudo-triangulation (Theorem 3) that satisfy all but asttleree parity constraints.
(Pointed pseudo-triangulations are a generalizationiafigulations; see Section 3
for a definition and [21] for a recent survey on that topic.Bkection 4 we consider
triangulations. On the one hand, we show in Section 4 thattbgist point sets
and parity assignments such that the number of unhappyesrgirows linearly in
n for every triangulation ors. On the other hand, we can guarantee to satisfy about
2/3 of the parity constraints (Theorem 5). This can be showngusgsults obtained
from exhaustive computations on small point sets, and-+adtevely—by a simple
inductive construction, that, however, involves a somewlaborate case distinction.
Finally, in Section 5 we prove that if we are given a simpleygohH with polygonal
holes onS, it is NP-complete to decide whether there exists a trisattgpni ofH that
satisfies all parity constraints.

Related work.Many different types of degree restrictions for geometragpips have
been studied. For example, for a givenSet R? of n points, are there planar graphs
on Sfor which the maximum vertex degree is bounded? There glémad path, and
hence a spanning tree, of maximum degree at most two. Fartrer there is always
a pointed pseudo-triangulation of maximum degree five [d8)ough there are point
sets where every triangulation must have a vertex of degre&. Another related
question is the following: we are given a &t R? of n points, together with a planar
graphG onnvertices. Is there a plane straight-line embedding oh S? Outerplanar
graphs are the largest class of planar graphs for which sh&ways possible, in
particular, Bose [5] showed how to compute such an embeddi@gnlog?n) time.
Alvarez [4] considers the addition of extra (Steiner) psitat make a triangulation of
a planar point set 3-colorable (i.e., all inner verticesshaven degree). For sets wikh
interior points he proves thatk + 2) /3| Steiner points suffice. Fernandez Delago et
al. [9] issue triangulations of convex point sets with alttiees of even degree. They
give the number of such triangulations and show that thetgodpven triangulations
obtained by exchanging the edges inside a hexagon is cathddtey further prove
the NP-completeness of the problem of extending a geonggtajeh to a 3-colorable
triangulation by adding edges.

One motivation for our work on parity restrictions stemaniira bi-colored vari-
ation of a problem stated by Erdés and Szekeres in 1935ete th numbef ES(k)
such that any se8 c R? of at leastf ES(k) bi-colored points in general position has a
monochromatic subset &fpoints that form an empty convéxgon (that is, &-gon
that does not contain any points 8in its interior)? It has been shown recently [2]



that every bi-colored point set of at least 5044 points dastan empty (not neces-
sarily convex) monochromatic quadrilateral. The proofsusenong others, a result
that for any point set there exists a triangulation whereast half of the points have
odd parity. Any increase in the guaranteed share of oddygawihts translates into a
lower minimum number of points required in the above statdmdore specifically,
from our Proposition 2 one can conclude that the above rhsids for any set of at
least 2080 points.

2 Outerplanar Graphs

After trees as minimally connected graphs, a natural nexq & to consider two-
connected graphs. In particular, outerplanar graphs géretrees both in terms of
connectivity and with respect to treewidth. In this sectiemconsider two-connected
outerplanar graphs, which are the same as outerplanargvefpha unique Hamil-
tonian cycle [7], in other words, simple polygons augmentét a set of pairwise
non-crossing diagonals.

The following simple construction (see Fig. 1) makes alldiunost three points
happy. Pick an arbitrary poimt Setp; = p and denote by, ..., p, the sequence of
points fromS, as encountered by a counterclockwise radial sweep arpustdrting
from some suitable direction (ffis on CH'S) towards its counterclockwise neighbor
on CH(S)). The outerplanar grap® consists of the closed polygonal chdn=
(P1,---,pn) plus an edgep; for every odd poinp; € {ps,..., pn—1}. All points are
happy, with the possible exception pf p2, and pn. Fig. 1 shows an example of a
point setSwith parity constraints and an outerplanar graptsauoich that all but two
points are happy.

Pn

pe g P2

Fig. 1 Constructing a two-connected outerplanar graph with at those unhappy vertices.

Theorem 2 For every set - R? of n points with parity constraints, there exists a
two-connected outerplanar graph on S that makes all but atiinwee points happy.
O

It is straightforward to construct a point set and a labebungh that all two-
connected outerplanar graphs have at least three unhappg:pOonsider a set of
odd cardinality with all points in convex position (i.e.| pbints are on the boundary



of the convex hull of the set). Label all points odd. Suppbs¢ we are given a two-
connected outerplanar gra@with the minimal number of unhappy vertices. We
add edges until the resulting graph is a maximal outerplgregsh — in our case a
triangulation of the convex point set. Since every suchngidation has at least two
vertices of degree 2, these vertices can not be odd, isinceG is two-connected.
We therefore have at least two unhappy vertices. The renmairgrtices can not all
be odd, since there can only be an even number of odd vertitmwe, the best
two-connected outerplanar graph in that setting has thrbappy vertices.

3 Pointed Pseudo-Triangulations

Pseudo-triangulations are related to triangulations bapgeudo-trianglen addi-
tion to triangles. A pseudo-triangle is a simple polygonhwéactly three interior
angles smaller tham. A geometric graph is calledointedif every vertexp has
one incident region whose anglefats greater thamt. See [21] for a recent survey
on pseudo-triangulations. In the following we describe @ursive construction for
a pointed pseudo-triangulatia®? on Sthat makes all but at most three points®f
happy.

At any time in our construction we have only one recursivepsaoblem to con-
sider. This subproblem consists of a point Sevhose convex hull edges have al-
ready been added t&?. The current graph?? is a pointed graph that subdivides
the exterior of CHS") into pseudo-triangles such that all points outside(8Hlare
happy.Z” contains no edges inside C8f). We say that S* ihopefulif at least one
point on CHS") is made happy by the current version&f. Otherwise, we say that
S isunhappy

We initialize our construction by settir§f = Sand adding CKIS) to &2. Now we
distinguish four cases.

(1) S* is hopeful. Let v be a
point on CHS") that is cur-
rently happy, letp and q be
its neighbors, and le8 be the
(possibly empty) set of points
from Sthat lie in the interior of
the triangleqvp. Then CHS U
{p,q}) without the edgenqdefines a convex chafdfrom pto g, in a way thatC
andv together form a pseudo-triangle. 8f = 0, thenC = pg.) Removev from
consideration by addin@ to 2. If |Sf| > 5, recurse oi%* \ {v}. Otherwise, there
are at most three unhappy points in the remaining triangle.

(2) S is unhappy and has no interior
points. Choose one poinp on CH(S")
and triangulate Ck5*) by adding edges
from p. There are at most three unhappy
points, namelyp and its two neighbors.
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(3) S* is unhappy and has exactly one in-
terior point, p;. Pick an arbitrary poinp
on CH(S") and draw a line througp and
pi. This line intersects exactly one edge
of CH(S"). LetO denote a pseudo-triangle :
defined bye, p, and p;. Add O to 22, P p
which splits CHS") into two sub-polygons. Triangulate the sub-polygon that
containsp; by adding edges frorp; to all other vertices, except to its neighbors.
Note that this sub-polygon is convex singeis a reflex vertex of] (areflex ver-
texof [0 has an angle larger thaninterior to[1). Similarly, triangulate the other
sub-polygon by adding edges frgmn There are at most three unhappy poimts:
pi, and a neighbor of.

(4) S* is unhappy and has more than one

interior point. Let § be the set of ®
interior points. First add the edges of ® 9
CH(S) to 2. Then connect each point 6 > ®

on CH(S") tangentially to CHS) in
clockwise direction, thereby creating a
“lens shutter” pattern. Each point on C8) is now happy. If|S| > 3, then re-
curse orS. Otherwise, there are at most three unhappy points.

Theorem 3 For every point set 8 R? with parity constraints, there exists a pointed
pseudo-triangulation on S that makes all but at most thréetpof S happy. O

Note that, as for two-connected outerplanar graphs, an adtbar of points in
convex position, all labeled odd, provides an example ofiatfget that has at least
three unhappy vertices in every pseudo-triangulation.

4 Triangulations

The final and maybe most interesting class of planar graplshwie consider are
triangulations. If the point s&lies in convex position, then all pseudo-triangulations
of Sare in fact triangulations. Thus, Theorem 3 also holds fangulations of convex
point sets. Moreover, we may select any three pgingsr that are consecutive along
CH(S), which we do not remove when the set is hopeful. When no paiatsbe
removed, we complete the triangulation by adding edggsTbis immediately gives
the following result.

Corollary 1 For every point set 8 R? in convex position with parity constraints,
and any three points,p,r that are consecutive alonGH(S), there exists a trian-
gulation on S that makes all points of S happy, with the p&essikception of p, q,
andr. O

In the following we present lower and upper bounds on the ramolb happy
vertices for general point sets. For example, for pointekssnall cardinality we can
investigate the number of happy vertices with the help obilger type data base [3].
For any set of 11 points with parity constraints we can alwengsa triangulation that
makes at least 7 vertices happy, cf. Table 1 in Section 4.2.



4.1 A Lower Bound on Unhappy Vertices

The figure below shows a double circle for 10 points with gas@tnstraints, such that
at least 5 points can not be made happy. This is in fact thegmifyt configuration for
n= 10 (out of 14 309 547 [3]) with this property. double circleof even sizen = 2h

is a point set withh extreme vertices (i.e., vertices on the convex hull bouy)dar
which each of the remaininginterior points is placed sufficiently close to a different
edge of the convex hull.

For each interior point, the edges to

..... Q
the two adjacent vertices on the con- -8 ™
vex hull boundary are unavoidable; they e
are part of every triangulation. These un- © o
avoidable edges form a polygon. There- : e’
fore, triangulating the interior of the dou- Ol 0

ble circle is equivalent to triangulating a
simple polygon.

Optimal triangulations (w.r.t. minimization of the numbarunhappy vertices)
of arbitrary simple polygons can be computeddm?®) time by adapting the well-
known dynamic-programming approach of [11, 14] (devisedtfe minimum-weight
triangulation problem), where each triangle that can bé&ernt to a chosen edge
(called thebase edgedefines two subproblems. As by combining two subproblems
the parity of their common vertex might change, optimalipagolutions are stored
for all four different parity patterns at the base edge oflapsablem.

This algorithm allows examining the double circle withoxpkcitly generating
geometric representations. Based on the double circle n&tiewted large examples
with a repeating parity pattem= ((e€/0e)3eg0e)’eg(0e)°)3) of length 108, starting
at an extreme vertex and proceeding counterclockwise. Weskaw that for these
configurations any triangulation has at leag108+ 2 unhappy vertices. Our proof
uses computer aid. An extensive discussion of the proof sndnderlying parity
pattern can be found in the master’s thesis of one of the axif20].

The proof works by induction over the size of the subproblechia inspired by
the dynamic-programming approach of combining two subgpofg that are sepa-
rated by a triangle and for which the minimum number of unlyapgrtices has al-
ready been determined. Consider a double circle ofrsizéo| - s, labeled withsrep-
etitions ofg. We call a sequence of points labeled by such a repetitio+irestance
Add the unavoidable edges and remove the convex hull edgéthé resulting poly-
gon be called aouble circle polygon

Consider a diagonal from thei-th vertex in ag-instance to thg-th vertex in the
k-th following o-instance in counterclockwise direction, see Fig. 2. (Fer0, the
two vertices are taken from the sameénstance. These diagonals will form tfieed-
size subproblempsWe denote byfij (k) the minimum possible number of unhappy
vertices in a triangulation of the polygon formed thyand the vertices between the
endpoints ofl in counterclockwise order (starting with the vertex st o). For small
values ofk, these numbers can be explicitly calculated with a dyngmigramming



recursion. We make a claim of the following form:

i (0) = Kij, forl<i<j<|al, )
fij (k) > cij +k, fork>1,1<i,j <o, @)

for constanti; andc;j. We definexj; = « if the segment between the vertex and
the vertex af intersects the exterior of the double circle polygon, ije=,i+ 2 andi
is odd.

Our goal is to prove (2) by induction on the number of verticesveen the end-
points ofd. In a triangulation that gives the value &f(k), for k > 1, consider the
triangle incident to the base eddelt can partition the subproblem in three ways,
see Fig. 2: its apexn is either in the startingr-instance or in the ending-instance
(together with one of the endpoints df, or in some intermediate-instance. We
must take the minimum of these cases. When disregardingtfmmaent the parity of
d’s end vertices, we get:

7 (K) = Mini < <)o [fimy (0) + Fmyj (K)] = My <5 [Kimmy + Ty ()]
fi?(k) = MiMm<my<j|fimy (K) + fm,j (0)] = MiN1<my< [ fim, (K) + Kmyjl
£3(K) = MiNy<mg< (.01 <k[ fimy (1) + g (K—1)]

fij (k) = min{ £ (k), £ (k), 3 (k)}.

fmlj Kimy

—

jt

Fig. 2 The different types of subproblems formed by triangles witkir base adl.

The simplified hypothesis (2) which we want to prove by indutover the size
of the subproblem s thdt; (k) > k- cjj for some constart;j. The induction hypoth-
esis (1, 2) gives

i (K) > Min; <, <|o( [Kimy + K+ Cmy ],
fi?(k) > MiNg<m,<j[K+ Cim, + Kmyj],

fi?(k) > minlgmgg\a\,ogkk“ + Cimg + K— 1+ Cmgj].



To provefij (k) > k+c;j for k> 1 it therefore suffices to show that

Kim; + K+ Cmyj > K+ Gjj vVmy,i <my < g
K+ Cim, + Kmyj > K+ Gij Vimp, 1 <mp < |
| + Cimg + K — | + Cmgj > k+Gij Vg, 1<mg < |0, Vk,I.

These inequalities obviously allow us to disregard thealdeid andk. We only need
to compare the constants.

Let us now take the happiness of end vertices of the diagotmbiccount. Sim-
ilar as above forfjj (k) let fi?h(k) define the least number of unhappy vertices in the

subproblem withk+ 1 o-instances and with both end vertices happy, ancﬂiﬁl%(tk),

fi?”(k) and f{i"(k) be defined analogously with the first, the second and both end v
tices unhappy, respectively (where the first vertex isiato). Similarly, we extend
the notion for fixed-size subproblem minimar", k", k" andk/i. By convention,
we do not include the number of unhappy end vertice§i(k) and k. Further
note that some of the fixed-size subproblems may not existjualities containing
them do notimpose a valid subproblem and therefore needenchidécked (for these,
let the corresponding value be¢). When combining two subproblems, they have a
common vertex at the apex,. If it is happy in one subproblem and unhappy in the
other, the combined degree is odd. Hence, we increment théeuof unhappy ver-
tices if vy is labeled even (recall th&g, has not been counted before). Otherwise, if
Vi has the same state of happiness in both subproblems, theéremhaegree is even.
Therefore, we increment the number of unhappy verticeg i labeled odd. Further,
the addition ofd changes the happiness of its end vertices. For, éj‘.bwe therefore
have to consider the combinations of subproblems that halvappy vertices atand

j. LetL(m) = 1 if the m-th label ino is odd and_(m) = 0 otherwise. We now have
to prove for, e.g.f"

K#n“lh+ cud +L(my) > c:,:
Kimy +Cmyj +1—L(m) > ¢} ,
Vm,i<m <|o 3
Ki‘r‘rﬁ‘l+cﬁj+l—L(ml)zcﬂh t 1< 0] ©)
Kell 4 L(my) > dn
uu uu hh
uu Cim2 IJKW:{_+ ::Emzi S Cihjh
Vimp, 1 <mp < 4
CilszrK#]lzjjJrl*L(mg)chh Mg, 2 M < )
cim -+ K, +L(mp) > i
uu uu hh
uu Cimsh—l’; Cngi"' IEEm3§ S CHh
Vmg, 1 < mg <|0]. (5)
uh uu hh )
fim; thcnhj —ri]_ul_ L(ms) > Cihjh
Cimg + Cmyj + L(Ms) > €]

The inequalities forf, f\" and f are analogous.

As mentioned above, a dynamic-programming recursion cplioily calculate

fAN(k), £(k), f4"(k), and f4(k) for small values ok. This gives us the values of
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Ki?q and it allows us to guess the values for the constgfitsor all combinations of
happiness labelg, g. For these guesses, we explicitly calculated the exacesdtr
k < 4 using the dynamic-programming approach. Once theseamsstre found, we
just have to check the inequalities (3-5), again using a caenprogram.

However, it turned out that this setup did not lead to a vafiabp We have to
refine the inductive claim (1, 2) by treating also the dasel as a “fixed-size” prob-
lem:

fij (0) = kij, forl1<i<j<|aol, (6)
fij (1) = Ki,\GHja for1< IvJ < |O'|, (7)
fij (k) > cij +k, fork>2,1<i,j <|a], (8)

The inequalities have to be modified accordingly. For examwk have to add
assertions for the two following inequalities (again siifigd, without taking into
account the statgs q of the boundary vertices).

Kim + Cm—|o|,j — 1 > Gjj vm,jo| <m< 2|o|
Cim — 1+ Km|o|+j = Cij vml<m<|ol.

In both inequalities we have to subtract 1 on the left sideabee the non-fixed-
size subproblem has now sike- 1 and the fixed-size subproblem extends over two
o-instances. These assertions cover all pairs of subpraiileahare joined in the sec-
ond and in the penultimaie-instance, respectively (and therefore there|atesuch
assertions of each type). Takief§f? := £1%(3) — 3 (wheref,® has been calculated
beforehand using the dynamic-programming algorithm)naiualities in this mod-
ified setting are now satisfied, establishing that our patygdh n = s- |o| = 108s
vertices makes at least- 2 vertices unhappy:

Theorem 4 The maximum number of unhappy vertices in the best triatigngof
all point sets of size n with parity constraints@n). O

Open Problem 1 in [2] asks for the maximum const@aatich that for any point
set there always exists a triangulation wheme- o(n) points have odd degree. While
for the question as stated we still believe that 1 is possible, the above construction
shows (using the double circle) that for general parity t@msts we have < %.

The upper bound oacan be improved t@g by removing the nine even extremal
vertices ofo and flipping the labels of the neighboring vertices. Thengiaations of
the resulting smaller polygo® with 99s vertices are in one-to-one correspondence
with those triangulations of the original polygéhin which the removed vertices
form ears (degree-2 vertices) and are thus happy. Sinceritieal polygonP with
108s vertices has no triangulation with more than $®appy vertices, it is clear

thatP’ has no triangulation with more than ©8appy vertices.

4.2 A Lower Bound on Happy Vertices

As already mentioned, using the order type data base [3] we inaestigated point
sets of small cardinality by computer. L&fT, A ) be the number of unhappy vertices
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in a triangulation of a point seSfor parity constraintd . The second row of Table 1
shows the values max.,max, miny u(T,A). For all-odd and all-even, respectively,
the max -term is replaced by parity constraints such that all vegisave to be odd
(even), as shown in the subsequent rows of Table 1. Simitarlgll-inner-odd and
all-inner-even all the inner vertices have to be odd (evandl, for the extremal ver-
tices we take the worst parity constraints.

Ln [3[4]5]6[7[8[]9[10]11)]
worst parity constraints|| 3 | 4 | 3 | 4| 4| 4| 4| 5 4
all odd 312(13|2|3|2|3] 2 3
all even 0|4 |12|4|2|4|4] 4 4
all inner odd 3/!3[3[3|3[3|3]3 3
all inner even 314|344 41| 4 5 4

Table 1 Maximum number of unhappy vertices in the best triangutaimd a set ofn points with the
described parity constraints,< 11.

Itis noteworthy that the all-inner-even cases already tjieavorst bounds among
all parity constraints. (In line with this observation, thad labeling that we chose
for the double-circle in the previous section had indeedralér vertices even.) In
contrast, the all-inner-odd case never causes more thah&py vertices.

The results of Table 1 allow a simple construction for a lob@und on the num-
ber of happy vertices.

Proposition 1 For every set 3 R? of n> 12 points with parity constraints, there
exists a triangulation on S that makes at le8sf; | — 1 points happy.

Proof Given a point sef, select an extreme vertgxand radially sort the remain-
ing n— 1 vertices aroungb. We call every twelfth vertex in this order a separating
vertex. The lines througlp and every separating vertex around it split gro@s
of eleven points (possibly less in the last group). Constitue convex hull bound-
ary for each of these groups. We show that there always existengulation of

D = CH(S) \ U; CH(Gj) such that all separating vertices are happy. Consider a sep-

arating vertexg, and let its two neighboring groups 6% andG;,1. Further, lett

andt’ be the predecessor and successay iofthe order aroung, respectively, see

Fig. 3. We distinguish two cases.

(1) The separatoq is inside the trianglept't. If g is labeled odd, we draw edges
between each of these four vertices, see Fig. 3(1g)isifabeled even, e be a
neighbor oft on CH(G;) that is visible fromg, that is, the line segmenyg does
not intersect the interior of C&;). Draw the quadrilatergbt’tg (or pt'gt) and
draw the edges from to all of them, see Fig. 3(1b—1c).

(2) The quadrilaterapt’'qt is convex. Draw the quadrilateral and the egggelf, after
triangulating the rest db, g is unhappy, exchange the edgeby the edgét’ to
makeq happy.

According to Table 1 we can make all but at most four verticgsdy in each group of
11.Letn=k (mod 13. We haver%‘ full groups containing at least 7 happy vertices
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Fig. 3 Construction for the lower bound using the order type datelvasults. The gray regions depict
the convex hulls of groups of eleven points. The three difiecases to handle the separating vertices are
shown.

each, andX — 1 happy separating vertices. The vergeand thek remaining vertices
after the last full group might be unhapp¥hus, we have at leastizk + =k — 1 =
8% — 1= 28| {;| — 1 happy vertices. -

Proposition 2 For any point set S of size n with all vertices labeled oddrglexists
a triangulation making at least0| {5 | — 2 vertices happy.

Proof The proof uses the same technique and notation as the onemdgtion 1.
Instead of one vertegwe now use two verticesandb between groups of 11 points
and show that we can always make batandb odd, see Fig. 4. We consider three
different cases.

Fig. 4 Two vertices between two groups can be made odd. Examplésefalifferent cases are shown, as
well as the two possibilities for Case (3.1). The dashedstfor Case (3.2.2) depicts the flipped edge.

(1) If a, b, p, t, andt’ are in convex position, after triangulating the exteraandb
can be made happy due to Corollary 1.

1 Depending ork we could perform better for the vertices of the last group,this would only give a
marginal improvement of the additive factor, while makihg bound dependent én
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(2) If both, a andb, are inside of the trianglpt’t, removeb and makea even as in the
proof of Proposition 1, Case (1b) or (1c). Abcgain. It is now inside a triangle
that is incident ta. Draw the edges betwedrand all the vertices of the triangle.
Botha andb are now odd.

(3) Ifw.l.o.g. a, t, p, andt’ form a convex quadrilateral, we distinguish between two
subcases.

(3.1) Supposé is inside of the trianglatt’. Removeb and makea even like in the
proof of Proposition 1, Case (2). Then addigain and draw the edges to the
vertices of the triangle containing it. One of these vegiisa that now becomes
odd.

(3.2) Vertexb is inside the trianglgt’t. There exists a vertexnext tot on CH(G;)
that is visible tob. Form a (not necessarily convex) 5-gon by adding the
quadrilateral in a radial order aroubd

(3.2.1)If aiis a reflex vertex, draw the edtfg that is outside of the 5-gon. Draw the
edgesat andtt’, as well as the edges frobto p, t, andt’.

(3.2.2)If ais a convex vertex of the 5-gon, triangulate the extericaif even, draw
all edges fronb to the vertices of the 5-gon. #is odd, draw the edge between
t" anda’s neighbor (which is eitheror g). Add all edges fronb to the remaining
vertices. Sincéd is of degree four, one of the edges incident to it carflipped
(i.e., the edge is removed and the other diagonal of thetheguonvex 4-gon is

added). After the flipb has degree 3 aralremains happy.
The bound calculated in Proposition 1 improves to40 — 2 happy vertices for all-
odd constraints, using the all-inner-odd result from Tdble O

Proposition 1 uses exhaustive enumeration by computeramgy To gain more
insight into the underlying structure of the problem we preasn the following a
computer-free proof and obtain a slightly different bouBdth, Proposition 1 above
and Theorem 5 below, give the same asymptotic fact(%, diut vary in the additive
constants. Combining the two statements results in a loaend of 6 3 | + | % | +
L”I—élj + 1 happy points fon > 11. Based on the proof of Theorem 5, the authors
of [19] already obtained a bound %J — 3 for triangulations with all points labeled
even. The following simple observation will be useful fooping Theorem 5.

Observation 1 For every set S R? of four points in convex position with parity
constraints and every @ S there exists a triangulation on S that makes at least two
of the points from ${p} happy. O

Theorem 5 For every set 8 R? of n> 11 points with parity constraints, there exists
a triangulation on S that makes at Ieatégj — 6 points of S happy.

Proof Pick an arbitrary poinp on CH(S), setp; = p, and denote bypy,..., pn

the sequence of points fro§ as encountered by a counterclockwise radial sweep
aroundp. Consider the closed polygonal chdn= (p,..., pn) and observe th&®
describes the boundary of a simple polygon (Fig. 5). Withgr denote the coun-
terclockwise angle between the edgepsandqr aroundq. A point p;, 2<i < n, is
reflexif the interior angle oP at p; is reflex, that is/pj_1pipi-1 > 1T, otherwise p;

is convex Thus,ps, p2, andp, are convex.
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We construct a triangulation on S as follows. As a start, we take the edges of
CH(S) and all edges d?, and denote the resulting graphhy If P is convex thefy
forms a convex polygon. Otherwise C§) is partitioned into two or more faces by
the edges oP. Thinking of p as a light source and &f as opaque, we call the face
of Tp that containg thelight faceand the other faces dp dark faces Dark faces
are shown gray in figures.

In a next step, we insert further edges to ensure that abfaeconvex. The light
face is made convex by adding all edggs wherep; is reflex. Hence the light face
of Top might be split into a number of faces, all of which we refer tlight faces
in the following. We partition the dark faces into convexdaas follows. First, we
add all edges to connect the subsequende thfat consists of all convex points by
a polygonal path. Note that some of those edges may be eddeero€H(S) and,
hence, already be present. Next, we triangulate those deés that are not convex.
For now, let us say that these faces are triangulated aiibyjitilzater, we add a little
twist.

Our construction is based on choosing particular triartgaria for those faces
that share at least two consecutive edges WRithet us refer to these faces iaser-
esting while the remaining ones are calledinterestingThe interesting faces can be
ordered linearly alon®, such that any two successive faces share exactly one edge.
We denote this order b, ..., fn. Note thatf; is light for i odd and dark for even,
and that bothf; and fy, are light. Also observe thai is a vertex of every light face;
therefore, any interesting light face other tfarand f,,, has at least four vertices and
all uninteresting light faces are triangles. On the darle siitbwever, there may be
both interesting triangles and uninteresting faces withentloan three vertices. Sim-
ilar to above, we triangulate all uninteresting dark fadesnow, arbitrarily (a little
twist will come later). We denote the resulting graphTay

As a final step, we triangulate the interesting fatgs. ., f, of Ty in this order to
obtain a triangulation o with the desired happiness ratio. We always treat a light
face f; and the following dark facé ., 1 together (note thatis odd). The vertices that
do not occur in any of the remaining faces aeovedand the goal is to choose a
local triangulation forf; and f;, 1 that makes a large fraction of those vertices happy.
The progress is measured by theppiness ratio i, if h vertices among removed
vertices are happy. Note that these ratios are similar ttifnas. But in order to
determine the collective happiness ratio of two success®ps, the corresponding
ratios have to be added component-wise. In that view, faaimse, 22 is different
from 3/3.

DPn Do DPn Do
pP=Dp pP=nr

Fig. 5 The simple polygon bounded Ky, the initial graphToy (with dark faces shown gray), and the
graphT; in which all faces are convex (interesting light and darletashown light gray and dark gray,
respectively).
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We say that some set of points can be made happy “using a fadef can be
triangulated—for instance using Corollary 1 or Observatle—such that all these
points are happy. Two vertices aakgned if either both are currently happy or both
are currently unhappy. Two vertices that are not alignedcargrary. Denote the
boundary of a facd by df, and letdf; = (p, pj,...,px), for somek > j+2, and
0fir1=(pPk_1,---,Pr), for somer > k+ 1.

After treating f; and fi 1, we have removed all vertices up to, but not including,
the last two verticeg, _; andp; of fi, 1, which coincide with the first two vertices of
the next facefi, . Sometimes, the treatment ffand f; 1 leaves the freedom to vary
the parity of the vertey,_1 while maintaining the desired happiness ratio as well as
the parity ofp,. This means that the future treatmentfpf, and f;, 3 does not need
to take care of the parity i, _1. By adjusting the triangulation df and f; .1 we can
always guarantee that_1 is happy.

Therefore, we distinguish two different settings regagdime treatment of a face
pair: no choice (the default setting with no additional higlpm outside) and %
choice (we can flip the parity of the first vertgy of the face and, thus, always
make it happy). Note that the construction always starth wid choice, and that
Case (1.2.2) below changes ¥ dhoice. All cases except Case (2.2.3.3) then change
back to no choice.

No choice.We distinguish cases according to the number of verticds in

(2.1) k> j+ 3, that is, fi has at least five vertices. p, Pk—1 Pr—2
Then pj,...,pk—2 can be made happy usinfy, and "
Pk_1,---,Pr—3 can be made happy usinfg, ;. Out of
ther — j — 1 points removed, at leagk—2— j+1) + 7,
(r—3—(k—1)+1)=r—j—2are happy. As— j > 4, i
this yields a happiness ratio of at leagB2The figure p
to the right shows the case= k+ 1 as an example.

(1.2)k= j+2,that s, f; is a convex quadrilateral. We distinguish subcases aaqugrdi
to the number of vertices ify ;1.

(1.2.1)r > j+ 4, that is, fiy1 has at least four pr
vertices. Usingfi 4, all of pj,3,...,pr—2 can
be made happy. Then at least two out of  p,_3
Pj; Pj+1, Pj+2 can be made happy usinf.

Overall, atleast —2— (j+3)+14+2=r—
j—2outofr — j — 1 removed points are happy. p
Asr — j > 4, the happiness ratio is at leagt®2

(1.2.2)r = j+ 3, that is,
fiyr is a triangle. If  pr
both p; and pj41 can
be made happy using
fi, the happiness ratio is
2/2. Otherwise, regard- P
less of howf; is triangulated exactly one qfj andpj, 1 is happy, see the figure
to the right. This yields a ratio of/2 and #! choice forfi ,».

Pj+1
7

Pj+1
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1%t choice.Denote byf’ the other (tharf;) face incident to the edgs p;.1 in the cur-
rent graph. As all offy, ..., fi_; are triangulated already, is a triangle whose third
vertex (other thamp; andpj1) we denote byy'. Recall that in the ¥ choice setting
we assume that, regardless of héws triangulatedp; can be made happy. More
precisely, we assume the following in & ¢hoice scenario with a face pdir, f, 1 to
be triangulated: By adjusting the triangulations@f.. ., f;_1, we can synchronously
flip the parity of bothpj andp’, such that

(C1) All facesfi, fii1,..., fmas well asf’ remain unchanged,
(C2) the degree of all gb;-1,..., pn remains unchanged, and
(C3) the number of happy vertices amapyg. .., p;_1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Ukisgli choice flip, we
may suppose that' is happy. Then by (C3) the number of happy vertices among
{p2,....pj—1} \ {p'} does not decrease, in case we do tRechoice flip (again)
when processind;, fi; 1. We distinguish cases according to the number of vertices
in fi.

(2.1)k > j+ 3, that is, f; has at least five vertices. Then p, Pk-1 pp—2
Pj+1:---,Pk—1 can be made happy usirfg If fi,qis a "
triangle (as shown in the figure to the right), this yields \P*
aratio of at least 83. Otherwise( > k+ 2), apart from f;
keepingpyx_1 happy, fi11 can be used to make all of i
Pw.- -, Pr—3 happy. At least — j — 2 out ofr — j — 1 p
vertices removed are happy, for a happiness ratio of at &dst

(2.2)k= j+2,thatis, f; is a convex quadrilateral. We distinguish subcases aaugrdi
to the size offj, 1.
Dr Dj+1

(2.2.1)r > j+5, that s, fi 11 has at least five ver-
tices. Triangulatef; arbitrarily and usefi;
to make all ofpj1,..., pr—3 happy. At least
r—j—2outofr— j—1 vertices removed are
happy, for a happiness ratio of at leagd3

(2.2.2)r = j+ 3, that is, fi11 is a triangle. Usef; to
makepj,1 happy for a perfect ratio of/2.

(2.2.3)r = j+4,thatis, fi,1 is a convex quadrilateral.
If pj+1 andpj,» are aligned, then triangulatirfy
arbitrarily makes them contrary. Usirfg.1 both
can be made happy, for a perfe¢B3atio overall.
Thus, suppose thatj,, and pj > are contrary.
We make a further case distinction according to
the position ofp; with respect tof; 1.




(2.2.3.1)2pj13pj+2pj < 1, that is, p, pj, Pj+2, Pj+3
form a convex quadrilateral. Add edgg pj2
and exchange edgep;;» with edgep;jpjs. In
this way, pj1 and pj;» remain contrary. Hence,
both pj;1 and pj,» can be made happy using
fi+1, for a perfect ratio of 33 overall.

(2.2.3.2) Zpjpj+1Pj+3 < m, that is, the
points pj,Pj+4,Pj+3,Pj+1 form a
convex quadrilateral. To conquer this
case we neeg p; 4 to be an edge of
Ti1. In order to ensure this, we apply
the before mentioned little twist: be-
fore triangulating the non-convex dark
faces, we scan through the sequence
of dark faces for configurations of points like in this casell@ dark quadrilat-
eral fi, 1 with dfi, 1 = (Pj+1,..., Pj+a) delicateif Zp;pj;1pj+3 < 1. For every
delicate dark quadrilaterd] 1 in f4, fs,..., fn_1 such thatf;_; is not delicate,
add the edge;_4pn, wWherepy is the first vertex offi_1. Observe that this is
possible agy, ..., Pj+1, Pj+3, Pj+4 form a convex polygorf*: py,...,pj+1 and
Pj+1, Pj+3, Pj+4 form convex chains being vertices f ; andfi 1, respectively,
andpj1 is a convex vertex of* because/p;j pj+1pj+3 < 1. Then we triangulate
the remaining non-convex and the uninteresting dark fadssarily to getT;.

To handle this case we joifi 1 with
f’ by removing the edges;1pj+4 and
P'pj+1 and adding the edgp; 3pj1,
which yields a convex pentagoft =
Pj+4; Pj+3, Pj+1, Pj, p’. Observe that
pj+1 and pj;» are aligned now. Thus,
makingpji2 happy usingd leavespj 1
unhappy. Ifp’ and p; are aligned, then
triangulatef* using a star fromp/, making pj;1 happy. Asp’ and p; remain
aligned, both can be made happy—possibly using thetbice flip—for a per-
fect 3/3 ratio. If, on the other hangy and p; are contrary, then triangulate
using a star fronpj 4, makingpj1 happy. Nowp’ andp; are aligned and both
can made happy—possibly using ttRédhoice flip—for a perfect 3/3 ratio.

(2.2.3.3)Neither of the previous two cases occurs and, p;+4 Dj+1
thus, pj, Pj+1, Pj+3; Pj+2 form a convex quadri- ¢ 3
lateral f*. Removepj1pj+2 and addpj,1pj43
and pjp;j-2. Note thatp; is happy because ofl
choice forfj, andp;j1 andpj,» are still contrary.
Therefore, independent of the triangulationfof P
at least two vertices out qdj, pj+1, pj+2 are happy. Moreover, usinfj’ we can
synchronously flip the parity of botpj,; and pj,3 such that (C1)—-(C3) hold.
This gives us a ratio of B and $! choice forfi ,».
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Putting things together.Recall that the first facé, and the last facé,, are the only
light faces that may be triangles. In case thats a triangle, we just accept thps
may stay unhappy, and usirig the remaining vertices removed, if any, can be made
happy. Similarly, from the last fack, up to three vertices may remain unhappy. To
the remaining face$s, ..., f,,_1 we apply the algorithm described above.

In order to analyze the overall happiness ratio, denotédfy) the minimum
number of happy vertices obtained by applying the algoritiescribed above to a
sequenc® = (py, ..., pn) of N> 3 points, starting in a no choice setting. Similarly,
denote byh;(n) the minimum number of happy vertices obtained by applyirey th
algorithm described above to a sequeRce (pi,...,pn) Of N > 3 points, starting
in a 15t choice setting. From the case analysis given above we detladellowing
recursive bounds.

a) hp(n) =0 andh;(n) =1, forn < 4.
b) ho(n) > min{2+ho(n—3),1+hi(n—2)}.
¢) hi(n) > min{3+ ho(n—4),2+4ho(n—2),2+ hy(n—3)}.

By induction onn we can show thdtg(n) > [(2n—8)/3] andhy(n) > [(2n—7)/3].
Taking the at most four unhappy vertices frdmand f,, into account yields the
claimed overall happiness ratio. O

5 Triangulations of Polygons

In contrast to triangulations of point sets, it is easy tostnrct arbitrarily large simple
polygons such that they can not be triangulated with at leasthappy vertex. In
the following, we consider complexity aspects of triangalg polygons with parity
constraints.

Itis a well-known and easy fact that there always exists pgroertex 3-coloring
of any triangulation of a simple polygon [18, p. 15]. Thersaals an interesting
connection between proper 3-colorings and the parity of/érdces.

Theorem 6 ([10,15])Given a triangulation TP) of a simple polygon P let u, v, and
w be any three consecutive vertices of P. Then, in a propéex@icoloring of T(P),
the vertices u and w have the same color if and only if v is odd.

This follows from the fact that in the sequence of vertices #re neighbors tein the
triangulation their colors must alternate. Fleischnel] @@ually proves this for the
more general case that allows inner vertices of even del§oeshesh and Moret [15]
describe a trivial algorithm for coloring a triangulatediygmn in linear time that
immediately follows from the above theorem. Indeed, Theoéeprovides an easy
way to check a necessary condition for a simple polygon todppity triangulated:
Start with two arbitrary colors for two adjacent verticaesgdgropagate the 3-coloring
along the boundary, using Theorem 6. A happy triangulatem exist only if this
results in a proper 3-coloring of the vertices (using alkethcolors).

We already mentioned at the beginning of Section 4.1 thatdimal triangula-
tion of an arbitrary simple polygon can be computed®im?®) time. In contrast, the
situation gets more involved if we consider polygons withelsoLetP be a simple



19

polygon, and letH,,...,Hyx be a set of mutually disjoint simple polygons that are
completely contained in the interior &f. Then the closure ofP\ Ui<i<kHi) is a
polygon with holes

Theorem 7 It is NP-complete to decide, for a given polygon H with holed aith
parity constraints, whether there exists a triangulatidntb such that all vertices
of H are happy.

Proof Following Jansen [12], we use a restricted version of thechipleteplanar
3-SATproblem [16], in which each clause contains at most threedlis and each
variable occurs in at most three clauses. The Boolean farisugiven as a graph,
known to be planar, whose vertices are the variables anddhses of the formula,
and a variable vertex is connected by an edge to a clausex\v#értke variable is
contained (negated or unnegated) in that clause. We refiresgane embedding of
that graph by gadgets.

/KAA

Fig. 6 A wire (a) that transfers RUE (b), and FRALSE (c), and a variable (d) in RUE (e) and RLSE (f)
state. The short edges are part of every triangulation.

The edgesof the plane formula are representedviyes (Fig. 6(a)—(c)), narrow
corridors which can be triangulated in two possible waysl #rereby transmit in-
formation between their ends. The vertices of the wires @veled even. Negation
can easily be achieved by swapping the labels of a singlexedir in a wire from
both even to both odd. The construction ofaiable (Fig. 6(d)—(f)) ensures that all
wires emanating from it carry the same state, that is, tHagahals are oriented in
the same direction.

To check clauses we use amr-gate (Fig. 8) with two inputs and one output
wire. TheOR-gate is a convex 9-gow ... Vg With three attached wires, and@op
(Fig. 7(a)) attached to the two top-most vertisgsvg. This loop has two possible
triangulations and gives more freedom for the two verticewhich it is attached:
by switching between the two triangulations of the loop thety of both vertices is
changed. All edges of the 9-gon are either on the boundatyeoinput polygon or
they are unavoidable: no other potential edge crosses drahthus they must belong
to every triangulation. This can be achieved by making theartsenough. Starting
at the leftmost vertex; (see Fig. 8(a)), the constraint sequence of the vertices in
counterclockwise order i3 = (oeoeeoede wheree stands for even andfor odd.

Fig. 8 shows triangulations of ther-gate for the four possible input configura-
tions of anoRr-gate, where the output isAESE if and only if both inputs are false.
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TRUE

WY el

Fig. 7 Aloop (a). Checking a clauseV bV c by joining two OrR-gates (b).

i

F T

T (b)) F (c)
Fig. 8 An oRr-gate with inputs ELSE, FALSE (a), TRUE, FALSE (b), FALSE, TRUE(c), and TRUE, TRUE
(d). The two inputs are at the bottom and the output is at tpeupght side. A lood is attached to the

two top-most vertices.

T (d) T

[(ndex [1[2[3[4[5[6[7[8]9]10~1]

At o|le|le|le|lo|e|e|o0]|oO 0
color {123 [12|2|1|3|2|3] 2#1
A |[o|le|e|e|o|le|le|le]e 0
color {123 |1|2]|1]|3]2]|1] 3#4£1

Table 2 Invalid colorings induced by the vertex constraints show rionexistence of a triangulation of
the or-gate with both inputs A.SE and the output RUE.

There may also be triangulations of ar-gate such that the output can beLBE
even if one input is RUE. The important part is that (i) when at least one input is
TRUE, there is a triangulation with outputRUE, see Fig. 8(b—d), and (ii) if both
inputs are BLSE, the output must also beAESE.

Suppose the inputs are bothiSE and the output is RUE. Remove the edges
outside of the 9-gon and adjust the labeling of the the 9-gmoraingly. We get
At = (oeeeoeeoo and for a different direction of the looj; = (oeeeoeegelf we
apply the test of Theorem 6 and try to 3-color the verticeshasvn in Table 2, we
get a conflict, and hence there is no triangulation with themparities.

Clauses with two literals can directly be realized by suctegiathree literals
require to cascade twor-gates (Fig. 7(b)). In both cases, we fix the output RUE
by simply removing the output wire and swapping the parityhef 6-th vertexs.

It is straightforward to combine the constructed elemeanta polygonH with
holes representing a given planar 3-SAT formula. O

6 Conclusion

In this paper we considered the construction of crossieg-freometric graphs on
point sets with constraints on the parity of the vertex degréor all but at most
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three vertices the constraints can be fulfilled when constrg outerplanar graphs
and pointed pseudo-triangulations. For triangulatioresshowed that there can be a
linear number of such vertices and gave a construction tlvsamaking Lz—g‘J -6
vertices happy. For polygons with polygonal holes, we pddte according decision
problem to be NP-complete.

For the case where all vertices are labeled odd, Propo&titvowed that one can
achieve a fractiori—g of happy vertices. There might be ways to further improve thi
constant factor. We even conjecture that this factor isdt,ith every planar point set
has a triangulation with at mokt even vertices, for some absolute constant
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