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Abstract Let Sbe a set ofn points in general position in the plane. Together withS
we are given a set of parity constraints, that is, every pointof S is labeled either even
or odd. A graphG on Ssatisfies the parity constraint of a pointp∈ S if the parity of
the degree ofp in G matches its label. In this paper, we study how well various classes
of planar graphs can satisfy arbitrary parity constraints.Specifically, we show that we
can always find a plane tree, a two-connected outerplanar graph, or a pointed pseudo-
triangulation that satisfy all but at most three parity constraints. For triangulations we
can satisfy about 2/3 of the parity constraints and we show that in the worst case there
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is a linear number of constraints that cannot be fulfilled. Inaddition, we prove that
for a given simple polygonH with polygonal holes onS, it is NP-complete to decide
whether there exists a triangulation ofH that satisfies all parity constraints.

Keywords triangulation· vertex degree parity· pseudo-triangulation· geometric
graph
MSC Codes:05C10, 52C99

1 Introduction

Computing a simple graph that meets a givendegree sequenceis a classical problem
in graph theory and theoretical computer science, dating back to the work of Erdős
and Gallai [8]. A degree sequence is a vectord = (d1, . . . ,dn) of n positive numbers.
It is realizableif and only if there exists a simple graph whose nodes have precisely
this sequence of degrees. Erdős and Gallai gave necessary and sufficient conditions
for a degree sequence to be realizable, and several algorithms have been developed
that generate a corresponding abstract graph.

An extension of this problem prescribes not only a degree sequenced, but also
gives a setS⊂ R

2 of n points in general position (i.e., no three points are collinear),
wherepi ∈ S is assigned degreedi . It is well known that a degree sequenced is real-
izable as a tree if and only if∑n

i=1di = 2n−2. Tamura and Tamura [22] extended this
result to plane (straight line) spanning trees, giving anO(n2 logn) time embedding
algorithm, which in turn was improved by Bose et al. [6] to optimal O(nlogn) time.

In this paper we study a relaxation of this problem, where we replace exact de-
grees with degree parity: odd or even. Although parity constrains are significantly
weaker than actual degree constrains, they still characterize certain (classes of) graphs.
For example, Eulerian graphs are exactly those connected graphs where all vertices
have even degree, and a classical theorem attributed to Whitney states that a maximal
planar graph is 3-colorable if and only if all vertices have even degree, see the solution
of Problem 56 in [17, p. 421]. A given graph might satisfy onlya subset of the parity
constraints. So we study how well various classes of planar graphs can satisfy arbi-
trary parity constraints. A preliminary version of this work has been presented at the
Algorithms and Data Structures Symposium (WADS) in Banff, in August 2009 [1].

Definitions and notation.Let S⊂ R
2 be a set ofn points in general position. We

denote the convex hull ofS by CH(S). The points ofS have parity constraints, that
is, every point ofS is labeled eitherevenor odd; for ease of explanation we refer to
even and odd points. We denote byne andno the number of even and odd points inS,
respectively. Throughout the paper an even point is depicted by , an odd point by ,
and a point that can be either by. A graphG onSmakes a pointp∈ S happy, if the
parity of degG(p) matches its label. Ifp is not happy, then it isunhappy. Throughout
the paper a happy point is depicted by, an unhappy point by , and a point that can
be either by? .
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Results.Clearly, not every set of parity constraints can be fulfilled. For example, in
any graph the number of odd-degree vertices is even. Hence, the number of unhappy
vertices has the same parity asno. For the class of plane trees, the aforementioned
results on degree sequences immediately imply:

Theorem 1 On every point set S⊂ R
2 with parity constraints, there exists a plane

spanning tree that makes(i) all but two points happy if no = 0, (ii) all but one point
happy if no is odd, and(iii ) all points happy if no ≥ 2 is even. ⊓⊔

We show that we can always find a two-connected outerplanar graph (which is a
Hamiltonian cycle with additional edges in the interior, Theorem 2) and a pointed
pseudo-triangulation (Theorem 3) that satisfy all but at most three parity constraints.
(Pointed pseudo-triangulations are a generalization of triangulations; see Section 3
for a definition and [21] for a recent survey on that topic.) InSection 4 we consider
triangulations. On the one hand, we show in Section 4 that there exist point sets
and parity assignments such that the number of unhappy vertices grows linearly in
n for every triangulation onS. On the other hand, we can guarantee to satisfy about
2/3 of the parity constraints (Theorem 5). This can be shown using results obtained
from exhaustive computations on small point sets, and—alternatively—by a simple
inductive construction, that, however, involves a somewhat elaborate case distinction.
Finally, in Section 5 we prove that if we are given a simple polygonH with polygonal
holes onS, it is NP-complete to decide whether there exists a triangulation ofH that
satisfies all parity constraints.

Related work.Many different types of degree restrictions for geometric graphs have
been studied. For example, for a given setS⊂R

2 of n points, are there planar graphs
on S for which the maximum vertex degree is bounded? There clearly is a path, and
hence a spanning tree, of maximum degree at most two. Furthermore, there is always
a pointed pseudo-triangulation of maximum degree five [13],although there are point
sets where every triangulation must have a vertex of degreen−1. Another related
question is the following: we are given a setS⊂R

2 of n points, together with a planar
graphG onn vertices. Is there a plane straight-line embedding ofG onS? Outerplanar
graphs are the largest class of planar graphs for which this is always possible, in
particular, Bose [5] showed how to compute such an embeddingin O(nlog2n) time.
Alvarez [4] considers the addition of extra (Steiner) points to make a triangulation of
a planar point set 3-colorable (i.e., all inner vertices have even degree). For sets withk
interior points he proves that⌊(k+2)/3⌋ Steiner points suffice. Fernández Delago et
al. [9] issue triangulations of convex point sets with all vertices of even degree. They
give the number of such triangulations and show that the graph of even triangulations
obtained by exchanging the edges inside a hexagon is connected. They further prove
the NP-completeness of the problem of extending a geometricgraph to a 3-colorable
triangulation by adding edges.

One motivation for our work on parity restrictions stems from a bi-colored vari-
ation of a problem stated by Erdős and Szekeres in 1935: Is there a numberf ES(k)
such that any setS⊂ R

2 of at leastf ES(k) bi-colored points in general position has a
monochromatic subset ofk points that form an empty convexk-gon (that is, ak-gon
that does not contain any points ofS in its interior)? It has been shown recently [2]
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that every bi-colored point set of at least 5044 points contains an empty (not neces-
sarily convex) monochromatic quadrilateral. The proof uses, among others, a result
that for any point set there exists a triangulation where at least half of the points have
odd parity. Any increase in the guaranteed share of odd parity points translates into a
lower minimum number of points required in the above statement. More specifically,
from our Proposition 2 one can conclude that the above resultholds for any set of at
least 2080 points.

2 Outerplanar Graphs

After trees as minimally connected graphs, a natural next step is to consider two-
connected graphs. In particular, outerplanar graphs generalize trees both in terms of
connectivity and with respect to treewidth. In this sectionwe consider two-connected
outerplanar graphs, which are the same as outerplanar graphs with a unique Hamil-
tonian cycle [7], in other words, simple polygons augmentedwith a set of pairwise
non-crossing diagonals.

The following simple construction (see Fig. 1) makes all butat most three points
happy. Pick an arbitrary pointp. Setp1 = p and denote byp2, . . . , pn the sequence of
points fromS, as encountered by a counterclockwise radial sweep aroundp, starting
from some suitable direction (ifp is on CH(S) towards its counterclockwise neighbor
on CH(S)). The outerplanar graphG consists of the closed polygonal chainP =
(p1, . . . , pn) plus an edgeppj for every odd pointp j ∈ {p3, . . . , pn−1}. All points are
happy, with the possible exception ofp, p2, and pn. Fig. 1 shows an example of a
point setSwith parity constraints and an outerplanar graph onSsuch that all but two
points are happy.

p

pn

p2

p

pn

p2

Fig. 1 Constructing a two-connected outerplanar graph with at most three unhappy vertices.

Theorem 2 For every set S⊂ R
2 of n points with parity constraints, there exists a

two-connected outerplanar graph on S that makes all but at most three points happy.
⊓⊔

It is straightforward to construct a point set and a labelingsuch that all two-
connected outerplanar graphs have at least three unhappy points: Consider a set of
odd cardinality with all points in convex position (i.e., all points are on the boundary
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of the convex hull of the set). Label all points odd. Suppose that we are given a two-
connected outerplanar graphG with the minimal number of unhappy vertices. We
add edges until the resulting graph is a maximal outerplanargraph — in our case a
triangulation of the convex point set. Since every such triangulation has at least two
vertices of degree 2, these vertices can not be odd inG, sinceG is two-connected.
We therefore have at least two unhappy vertices. The remaining vertices can not all
be odd, since there can only be an even number of odd vertices.Hence, the best
two-connected outerplanar graph in that setting has three unhappy vertices.

3 Pointed Pseudo-Triangulations

Pseudo-triangulations are related to triangulations but usepseudo-trianglesin addi-
tion to triangles. A pseudo-triangle is a simple polygon with exactly three interior
angles smaller thanπ . A geometric graph is calledpointed if every vertexp has
one incident region whose angle atp is greater thanπ . See [21] for a recent survey
on pseudo-triangulations. In the following we describe a recursive construction for
a pointed pseudo-triangulationP on S that makes all but at most three points ofS
happy.

At any time in our construction we have only one recursive subproblem to con-
sider. This subproblem consists of a point setS∗ whose convex hull edges have al-
ready been added toP. The current graphP is a pointed graph that subdivides
the exterior of CH(S∗) into pseudo-triangles such that all points outside CH(S∗) are
happy.P contains no edges inside CH(S∗). We say that S* ishopefulif at least one
point on CH(S∗) is made happy by the current version ofP. Otherwise, we say that
S∗ is unhappy.

We initialize our construction by settingS∗ = Sand adding CH(S) to P. Now we
distinguish four cases.

?

v

?

?

? ?

?

v

?

?

? ?

q q

p p

(1) S∗ is hopeful. Let v be a
point on CH(S∗) that is cur-
rently happy, letp and q be
its neighbors, and letS′ be the
(possibly empty) set of points
from S that lie in the interior of
the triangleqvp. Then CH(S′∪
{p,q}) without the edgepqdefines a convex chainC from p to q, in a way thatC
andv together form a pseudo-triangle. (IfS′ = /0, thenC = pq.) Removev from
consideration by addingC to P. If |S∗| ≥ 5, recurse onS∗ \{v}. Otherwise, there
are at most three unhappy points in the remaining triangle.

p p
?

(2) S∗ is unhappy and has no interior
points. Choose one pointp on CH(S∗)
and triangulate CH(S∗) by adding edges
from p. There are at most three unhappy
points, namelyp and its two neighbors.
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p pp

?

?

(3) S∗ is unhappy and has exactly one in-
terior point, pi . Pick an arbitrary pointp
on CH(S∗) and draw a line throughp and
pi . This line intersects exactly one edgee
of CH(S∗). Let∇ denote a pseudo-triangle
defined bye, p, and pi . Add ∇ to P,
which splits CH(S∗) into two sub-polygons. Triangulate the sub-polygon that
containspi by adding edges frompi to all other vertices, except to its neighbors.
Note that this sub-polygon is convex sincepi is a reflex vertex of∇ (a reflex ver-
texof ∇ has an angle larger thanπ interior to∇). Similarly, triangulate the other
sub-polygon by adding edges fromp. There are at most three unhappy points:p,
pi , and a neighbor ofp.

?

?

?

?

(4) S∗ is unhappy and has more than one
interior point. Let Si be the set of
interior points. First add the edges of
CH(Si) to P. Then connect each point
on CH(S∗) tangentially to CH(Si) in
clockwise direction, thereby creating a
“lens shutter” pattern. Each point on CH(S∗) is now happy. If|Si | > 3, then re-
curse onSi . Otherwise, there are at most three unhappy points.

Theorem 3 For every point set S⊂R
2 with parity constraints, there exists a pointed

pseudo-triangulation on S that makes all but at most three points of S happy. ⊓⊔

Note that, as for two-connected outerplanar graphs, an odd number of points in
convex position, all labeled odd, provides an example of a point set that has at least
three unhappy vertices in every pseudo-triangulation.

4 Triangulations

The final and maybe most interesting class of planar graphs which we consider are
triangulations. If the point setS lies in convex position, then all pseudo-triangulations
of Sare in fact triangulations. Thus, Theorem 3 also holds for triangulations of convex
point sets. Moreover, we may select any three pointsp,q, r that are consecutive along
CH(S), which we do not remove when the set is hopeful. When no pointscan be
removed, we complete the triangulation by adding edges toq. This immediately gives
the following result.

Corollary 1 For every point set S⊂ R
2 in convex position with parity constraints,

and any three points p,q, r that are consecutive alongCH(S), there exists a trian-
gulation on S that makes all points of S happy, with the possible exception of p, q,
and r. ⊓⊔

In the following we present lower and upper bounds on the number of happy
vertices for general point sets. For example, for point setsof small cardinality we can
investigate the number of happy vertices with the help of theorder type data base [3].
For any set of 11 points with parity constraints we can alwaysfind a triangulation that
makes at least 7 vertices happy, cf. Table 1 in Section 4.2.
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4.1 A Lower Bound on Unhappy Vertices

The figure below shows a double circle for 10 points with parity constraints, such that
at least 5 points can not be made happy. This is in fact the onlypoint configuration for
n= 10 (out of 14 309 547 [3]) with this property. Adouble circleof even sizen= 2h
is a point set withh extreme vertices (i.e., vertices on the convex hull boundary) in
which each of the remainingh interior points is placed sufficiently close to a different
edge of the convex hull.

For each interior point, the edges to
the two adjacent vertices on the con-
vex hull boundary are unavoidable; they
are part of every triangulation. These un-
avoidable edges form a polygon. There-
fore, triangulating the interior of the dou-
ble circle is equivalent to triangulating a
simple polygon.

Optimal triangulations (w.r.t. minimization of the numberof unhappy vertices)
of arbitrary simple polygons can be computed inO(n3) time by adapting the well-
known dynamic-programmingapproach of [11,14] (devised for the minimum-weight
triangulation problem), where each triangle that can be incident to a chosen edge
(called thebase edge) defines two subproblems. As by combining two subproblems
the parity of their common vertex might change, optimal partial solutions are stored
for all four different parity patterns at the base edge of a subproblem.

This algorithm allows examining the double circle without explicitly generating
geometric representations. Based on the double circle we constructed large examples
with a repeating parity patternσ = 〈(ee(oe)3ee(oe)7ee(oe)5)3〉 of length 108, starting
at an extreme vertex and proceeding counterclockwise. We will show that for these
configurations any triangulation has at leastn/108+2 unhappy vertices. Our proof
uses computer aid. An extensive discussion of the proof and its underlying parity
pattern can be found in the master’s thesis of one of the authors [20].

The proof works by induction over the size of the subproblem and is inspired by
the dynamic-programming approach of combining two subpolygons that are sepa-
rated by a triangle and for which the minimum number of unhappy vertices has al-
ready been determined. Consider a double circle of sizen= |σ | ·s, labeled withs rep-
etitions ofσ . We call a sequence of points labeled by such a repetition aσ -instance.
Add the unavoidable edges and remove the convex hull edges. Let the resulting poly-
gon be called adouble circle polygon.

Consider a diagonald from thei-th vertex in aσ -instance to thej-th vertex in the
k-th following σ -instance in counterclockwise direction, see Fig. 2. (Fork = 0, the
two vertices are taken from the sameσ -instance. These diagonals will form thefixed-
size subproblems.) We denote byfi j (k) the minimum possible number of unhappy
vertices in a triangulation of the polygon formed byd and the vertices between the
endpoints ofd in counterclockwise order (starting with the vertex ati in σ ). For small
values ofk, these numbers can be explicitly calculated with a dynamic-programming
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recursion. We make a claim of the following form:

fi j (0) = κi j , for 1≤ i < j ≤ |σ |, (1)

fi j (k) ≥ ci j + k, for k≥ 1, 1≤ i, j ≤ |σ |, (2)

for constantsκi j andci j . We defineκi j = ∞ if the segment between the vertex ati and
the vertex atj intersects the exterior of the double circle polygon, i.e.,j = i+2 andi
is odd.

Our goal is to prove (2) by induction on the number of verticesbetween the end-
points ofd. In a triangulation that gives the value offi j (k), for k ≥ 1, consider the
triangle incident to the base edged. It can partition the subproblem in three ways,
see Fig. 2: its apexvm is either in the startingσ -instance or in the endingσ -instance
(together with one of the endpoints ofd), or in some intermediateσ -instance. We
must take the minimum of these cases. When disregarding for amoment the parity of
d’s end vertices, we get:

f 1
i j (k) = mini<m1≤|σ |[ fim1(0)+ fm1 j(k)] = mini<m1≤|σ |[κim1 + fm1 j(k)],

f 2
i j (k) = min1≤m2< j [ fim2(k)+ fm2 j(0)] = min1≤m2< j [ fim2(k)+κm2 j ],

f 3
i j (k) = min1≤m3≤|σ |,0<l<k[ fim3(l)+ fm3 j(k− l)]

fi j (k) = min{ f 1
i j (k), f 2

i j (k), f 3
i j (k)}.

i

m1

j
d

σ

fm1j κim1

i

m3

j

σ

fim3

fm3j

d

σ

σl−1

σk−l−1

Fig. 2 The different types of subproblems formed by triangles withtheir base atd.

The simplified hypothesis (2) which we want to prove by induction over the size
of the subproblem is thatfi j (k)≥ k+ci j for some constantci j . The induction hypoth-
esis (1, 2) gives

f 1
i j (k)≥ mini<m1≤|σ |[κim1 + k+ cm1 j ],

f 2
i j (k)≥ min1≤m2< j [k+ cim2 +κm2 j ],

f 3
i j (k)≥ min1≤m3≤|σ |,0≤l<k[l + cim3 + k− l + cm3 j ].
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To prove fi j (k)≥ k+ ci j for k≥ 1 it therefore suffices to show that

κim1 + k+ cm1 j ≥ k+ ci j ∀m1, i < m1 ≤ |σ |

k+ cim2 +κm2 j ≥ k+ ci j ∀m2,1≤ m2 < j

l + cim3 + k− l + cm3 j ≥ k+ ci j ∀m3,1≤ m3 ≤ |σ |,∀k, l .

These inequalities obviously allow us to disregard the variablesl andk. We only need
to compare the constants.

Let us now take the happiness of end vertices of the diagonal into account. Sim-
ilar as above forfi j (k) let f hh

i j (k) define the least number of unhappy vertices in the

subproblem withk+1 σ -instances and with both end vertices happy, and letf uh
i j (k),

f hu
i j (k) and f uu

i j (k) be defined analogously with the first, the second and both end ver-
tices unhappy, respectively (where the first vertex is ati in σ ). Similarly, we extend
the notion for fixed-size subproblem minima toκhh

i j ,κuh
i j ,κhu

i j andκuu
i j . By convention,

we do not include the number of unhappy end vertices inf pq
i j (k) andκ pq

i j . Further
note that some of the fixed-size subproblems may not exist. Inequalities containing
them do not impose a valid subproblem and therefore need not be checked (for these,
let the corresponding value be∞). When combining two subproblems, they have a
common vertex at the apexvm. If it is happy in one subproblem and unhappy in the
other, the combined degree is odd. Hence, we increment the number of unhappy ver-
tices if vm is labeled even (recall thatvm has not been counted before). Otherwise, if
vm has the same state of happiness in both subproblems, the combined degree is even.
Therefore, we increment the number of unhappy vertices ifvm is labeled odd. Further,
the addition ofd changes the happiness of its end vertices. For, e.g.,f hh

i j we therefore
have to consider the combinations of subproblems that have unhappy vertices ati and
j. Let L(m) = 1 if the m-th label inσ is odd andL(m) = 0 otherwise. We now have
to prove for, e.g.,f hh

i j

κuu
im1

+ cuu
m1 j +L(m1) ≥ chh

i j

κuu
im1

+ chu
m1 j +1−L(m1) ≥ chh

i j

κuh
im1

+ cuu
m1 j +1−L(m1) ≥ chh

i j

κuh
im1

+ chu
m1 j +L(m1) ≥ chh

i j















∀m1, i < m1 ≤ |σ | (3)

cuu
im2

+κuu
m2 j +L(m2) ≥ chh

i j

cuu
im2

+κhu
m2 j +1−L(m2) ≥ chh

i j

cuh
im2

+κuu
m2 j +1−L(m2) ≥ chh

i j

cuh
im2

+κhu
m2 j +L(m2) ≥ chh

i j















∀m2,1≤ m2 < j (4)

cuu
im3

+ cuu
m3 j +L(m3) ≥ chh

i j

cuu
im3

+ chu
m3 j +1−L(m3) ≥ chh

i j

cuh
im3

+ cuu
m3 j +1−L(m3) ≥ chh

i j

cuh
im3

+ chu
m3 j +L(m3) ≥ chh

i j















∀m3,1≤ m3 ≤ |σ |. (5)

The inequalities forf hu
i j , f uh

i j and f uu
i j are analogous.

As mentioned above, a dynamic-programming recursion can explicitly calculate
f hh
i j (k), f hu

i j (k), f uh
i j (k), and f uu

i j (k) for small values ofk. This gives us the values of
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κ pq
i j and it allows us to guess the values for the constantscpq

i j , for all combinations of
happiness labelsp,q. For these guesses, we explicitly calculated the exact values for
k≤ 4 using the dynamic-programming approach. Once these constants are found, we
just have to check the inequalities (3–5), again using a computer program.

However, it turned out that this setup did not lead to a valid proof. We have to
refine the inductive claim (1, 2) by treating also the casek= 1 as a “fixed-size” prob-
lem:

fi j (0) = κi j , for 1≤ i < j ≤ |σ |, (6)

fi j (1) = κi,|σ |+ j , for 1≤ i, j ≤ |σ |, (7)

fi j (k)≥ ci j + k, for k≥ 2, 1≤ i, j ≤ |σ |, (8)

The inequalities have to be modified accordingly. For example, we have to add
assertions for the two following inequalities (again simplified, without taking into
account the statesp,q of the boundary vertices).

κim+ cm−|σ |, j −1≥ ci j ∀m, |σ |< m≤ 2|σ |

cim−1+κm,|σ |+ j ≥ ci j ∀m,1≤ m≤ |σ |.

In both inequalities we have to subtract 1 on the left side, because the non-fixed-
size subproblem has now sizek−1 and the fixed-size subproblem extends over two
σ -instances. These assertions cover all pairs of subproblems that are joined in the sec-
ond and in the penultimateσ -instance, respectively (and therefore there are|σ | such
assertions of each type). Takingcpq

i j := f pq
i j (3)− 3 (where f pq

i j has been calculated
beforehand using the dynamic-programming algorithm), allinequalities in this mod-
ified setting are now satisfied, establishing that our polygon with n = s· |σ | = 108s
vertices makes at leasts+2 vertices unhappy:

Theorem 4 The maximum number of unhappy vertices in the best triangulations of
all point sets of size n with parity constraints isΘ(n). ⊓⊔

Open Problem 1 in [2] asks for the maximum constantc such that for any point
set there always exists a triangulation wherecn−o(n) points have odd degree. While
for the question as stated we still believe thatc= 1 is possible, the above construction
shows (using the double circle) that for general parity constraints we havec≤ 107

108.
The upper bound onc can be improved to98

99 by removing the nine even extremal
vertices ofσ and flipping the labels of the neighboring vertices. The triangulations of
the resulting smaller polygonP′ with 99s vertices are in one-to-one correspondence
with those triangulations of the original polygonP in which the removed vertices
form ears (degree-2 vertices) and are thus happy. Since the original polygonP with
108s vertices has no triangulation with more than 107s happy vertices, it is clear
thatP′ has no triangulation with more than 98shappy vertices.

4.2 A Lower Bound on Happy Vertices

As already mentioned, using the order type data base [3] we have investigated point
sets of small cardinality by computer. Letu(T,λ ) be the number of unhappy vertices



11

in a triangulationT of a point setSfor parity constraintsλ . The second row of Table 1
shows the values max|S|=nmaxλ minT u(T,λ ). For all-odd and all-even, respectively,
the maxλ -term is replaced by parity constraints such that all vertices have to be odd
(even), as shown in the subsequent rows of Table 1. Similarlyfor all-inner-odd and
all-inner-even all the inner vertices have to be odd (even),and for the extremal ver-
tices we take the worst parity constraints.

n 3 4 5 6 7 8 9 10 11

worst parity constraints 3 4 3 4 4 4 4 5 4
all odd 3 2 3 2 3 2 3 2 3
all even 0 4 2 4 2 4 4 4 4
all inner odd 3 3 3 3 3 3 3 3 3
all inner even 3 4 3 4 4 4 4 5 4

Table 1 Maximum number of unhappy vertices in the best triangulation of a set ofn points with the
described parity constraints,n≤ 11.

It is noteworthy that the all-inner-even cases already givethe worst bounds among
all parity constraints. (In line with this observation, thebad labeling that we chose
for the double-circle in the previous section had indeed allinner vertices even.) In
contrast, the all-inner-odd case never causes more than 3 unhappy vertices.

The results of Table 1 allow a simple construction for a lowerbound on the num-
ber of happy vertices.

Proposition 1 For every set S⊂ R
2 of n≥ 12 points with parity constraints, there

exists a triangulation on S that makes at least8⌊ n
12⌋−1 points happy.

Proof Given a point setS, select an extreme vertexp and radially sort the remain-
ing n−1 vertices aroundp. We call every twelfth vertex in this order a separating
vertex. The lines throughp and every separating vertex around it split groupsGi

of eleven points (possibly less in the last group). Construct the convex hull bound-
ary for each of these groups. We show that there always existsa triangulation of
D = CH(S) \

⋃

i CH(Gi) such that all separating vertices are happy. Consider a sep-
arating vertexq, and let its two neighboring groups beG j andG j+1. Further, lett
andt ′ be the predecessor and successor ofq in the order aroundp, respectively, see
Fig. 3. We distinguish two cases.
(1) The separatorq is inside the trianglept′t. If q is labeled odd, we draw edges

between each of these four vertices, see Fig. 3(1a). Ifq is labeled even, letg be a
neighbor oft on CH(G j) that is visible fromq, that is, the line segmentqg does
not intersect the interior of CH(G j). Draw the quadrilateralpt′tg (or pt′gt) and
draw the edges fromq to all of them, see Fig. 3(1b–1c).

(2) The quadrilateralpt′qt is convex. Draw the quadrilateral and the edgepq. If, after
triangulating the rest ofD, q is unhappy, exchange the edgepq by the edgett ′ to
makeq happy.

According to Table 1 we can make all but at most four vertices happy in each group of
11. Letn≡ k (mod 12). We haven−k

12 full groups containing at least 7 happy vertices
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(1b)(1a)

p
q

t

Gj

Gj+1

t′

(1c) (2)
g g

Fig. 3 Construction for the lower bound using the order type data base results. The gray regions depict
the convex hulls of groups of eleven points. The three different cases to handle the separating vertices are
shown.

each, andn−k
12 −1 happy separating vertices. The vertexp and thek remaining vertices

after the last full group might be unhappy.1 Thus, we have at least 7n−k
12 + n−k

12 −1=

8n−k
12 −1= 8⌊ n

12⌋−1 happy vertices. ⊓⊔

Proposition 2 For any point set S of size n with all vertices labeled odd, there exists
a triangulation making at least10⌊ n

13⌋−2 vertices happy.

Proof The proof uses the same technique and notation as the one of Proposition 1.
Instead of one vertexq we now use two verticesa andb between groups of 11 points
and show that we can always make botha andb odd, see Fig. 4. We consider three
different cases.

p t

Gj

Gj+1

t′

a

b

g
(1)

(2)

(3.1a)

(3.1b)

(3.2.1)

g
(3.2.2)

a
b

ab b

b a

a

Fig. 4 Two vertices between two groups can be made odd. Examples forthe different cases are shown, as
well as the two possibilities for Case (3.1). The dashed stroke for Case (3.2.2) depicts the flipped edge.

(1) If a, b, p, t, andt ′ are in convex position, after triangulating the exterior,a andb
can be made happy due to Corollary 1.

1 Depending onk we could perform better for the vertices of the last group, but this would only give a
marginal improvement of the additive factor, while making the bound dependent onk.
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(2) If both,a andb, are inside of the trianglept′t, removeb and makea even as in the
proof of Proposition 1, Case (1b) or (1c). Addb again. It is now inside a triangle
that is incident toa. Draw the edges betweenb and all the vertices of the triangle.
Botha andb are now odd.

(3) If w.l.o.g. a, t, p, andt ′ form a convex quadrilateral, we distinguish between two
subcases.

(3.1)Supposeb is inside of the triangleatt′. Removeb and makea even like in the
proof of Proposition 1, Case (2). Then addb again and draw the edges to the
vertices of the triangle containing it. One of these vertices isa that now becomes
odd.

(3.2)Vertexb is inside the trianglept′t. There exists a vertexg next tot on CH(G j)
that is visible tob. Form a (not necessarily convex) 5-gon by addingg to the
quadrilateral in a radial order aroundb.

(3.2.1)If a is a reflex vertex, draw the edget ′g that is outside of the 5-gon. Draw the
edgesat andtt ′, as well as the edges fromb to p, t, andt ′.

(3.2.2)If a is a convex vertex of the 5-gon, triangulate the exterior. Ifa is even, draw
all edges fromb to the vertices of the 5-gon. Ifa is odd, draw the edge between
t ′ anda’s neighbor (which is eithert or g). Add all edges fromb to the remaining
vertices. Sinceb is of degree four, one of the edges incident to it can beflipped
(i.e., the edge is removed and the other diagonal of the resulting convex 4-gon is
added). After the flip,b has degree 3 anda remains happy.

The bound calculated in Proposition 1 improves to 10⌊ n
13⌋−2 happy vertices for all-

odd constraints, using the all-inner-odd result from Table1. ⊓⊔

Proposition 1 uses exhaustive enumeration by computer programs. To gain more
insight into the underlying structure of the problem we present in the following a
computer-free proof and obtain a slightly different bound.Both, Proposition 1 above
and Theorem 5 below, give the same asymptotic factor of2

3, but vary in the additive
constants. Combining the two statements results in a lower bound of 6⌊ n

12⌋+⌊n−9
12 ⌋+

⌊n−11
12 ⌋+ 1 happy points forn ≥ 11. Based on the proof of Theorem 5, the authors

of [19] already obtained a bound of⌊2n
3 ⌋−3 for triangulations with all points labeled

even. The following simple observation will be useful for proving Theorem 5.

Observation 1 For every set S⊂ R
2 of four points in convex position with parity

constraints and every p∈ S there exists a triangulation on S that makes at least two
of the points from S\ {p} happy. ⊓⊔

Theorem 5 For every set S⊂R
2 of n≥ 11points with parity constraints, there exists

a triangulation on S that makes at least⌊2n
3 ⌋−6 points of S happy.

Proof Pick an arbitrary pointp on CH(S), set p1 = p, and denote byp2, . . . , pn

the sequence of points fromS, as encountered by a counterclockwise radial sweep
aroundp. Consider the closed polygonal chainP = (p1, . . . , pn) and observe thatP
describes the boundary of a simple polygon (Fig. 5). With∠pqr denote the coun-
terclockwise angle between the edgespq andqr aroundq. A point pi , 2≤ i < n, is
reflexif the interior angle ofP at pi is reflex, that is,∠pi−1pi pi+1 > π ; otherwise,pi

is convex. Thus,p1, p2, andpn are convex.
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We construct a triangulationT on S as follows. As a start, we take the edges of
CH(S) and all edges ofP, and denote the resulting graph byT0. If P is convex thenT0

forms a convex polygon. Otherwise CH(S) is partitioned into two or more faces by
the edges ofP. Thinking of p as a light source and ofP as opaque, we call the face
of T0 that containsp the light faceand the other faces ofT0 dark faces. Dark faces
are shown gray in figures.

In a next step, we insert further edges to ensure that all faces are convex. The light
face is made convex by adding all edgesppi wherepi is reflex. Hence the light face
of T0 might be split into a number of faces, all of which we refer to as light faces
in the following. We partition the dark faces into convex faces as follows. First, we
add all edges to connect the subsequence ofP that consists of all convex points by
a polygonal path. Note that some of those edges may be edges ofP or CH(S) and,
hence, already be present. Next, we triangulate those dark faces that are not convex.
For now, let us say that these faces are triangulated arbitrarily. Later, we add a little
twist.

Our construction is based on choosing particular triangulations for those faces
that share at least two consecutive edges withP. Let us refer to these faces asinter-
esting, while the remaining ones are calleduninteresting. The interesting faces can be
ordered linearly alongP, such that any two successive faces share exactly one edge.
We denote this order byf1, . . . , fm. Note thatfi is light for i odd and dark fori even,
and that bothf1 and fm are light. Also observe thatp is a vertex of every light face;
therefore, any interesting light face other thanf1 and fm has at least four vertices and
all uninteresting light faces are triangles. On the dark side, however, there may be
both interesting triangles and uninteresting faces with more than three vertices. Sim-
ilar to above, we triangulate all uninteresting dark faces,for now, arbitrarily (a little
twist will come later). We denote the resulting graph byT1.

As a final step, we triangulate the interesting facesf1, . . . , fm of T1 in this order to
obtain a triangulation onS with the desired happiness ratio. We always treat a light
face fi and the following dark facefi+1 together (note thati is odd). The vertices that
do not occur in any of the remaining faces areremoved, and the goal is to choose a
local triangulation forfi and fi+1 that makes a large fraction of those vertices happy.
The progress is measured by thehappiness ratio h/t, if h vertices amongt removed
vertices are happy. Note that these ratios are similar to fractions. But in order to
determine the collective happiness ratio of two successivesteps, the corresponding
ratios have to be added component-wise. In that view, for instance, 2/2 is different
from 3/3.

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

Fig. 5 The simple polygon bounded byP, the initial graphT0 (with dark faces shown gray), and the
graphT1 in which all faces are convex (interesting light and dark faces shown light gray and dark gray,
respectively).
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We say that some set of points can be made happy “using a facef ”, if f can be
triangulated—for instance using Corollary 1 or Observation 1—such that all these
points are happy. Two vertices arealigned, if either both are currently happy or both
are currently unhappy. Two vertices that are not aligned arecontrary. Denote the
boundary of a facef by ∂ f , and let∂ fi = (p, p j , . . . , pk), for somek ≥ j +2, and
∂ fi+1 = (pk−1, . . . , pr), for somer ≥ k+1.

After treating fi and fi+1, we have removed all vertices up to, but not including,
the last two verticespr−1 andpr of fi+1, which coincide with the first two vertices of
the next facefi+2. Sometimes, the treatment offi and fi+1 leaves the freedom to vary
the parity of the vertexpr−1 while maintaining the desired happiness ratio as well as
the parity ofpr . This means that the future treatment offi+2 and fi+3 does not need
to take care of the parity ofpr−1. By adjusting the triangulation offi and fi+1 we can
always guarantee thatpr−1 is happy.

Therefore, we distinguish two different settings regarding the treatment of a face
pair: no choice (the default setting with no additional helpfrom outside) and 1st

choice (we can flip the parity of the first vertexp j of the face and, thus, always
make it happy). Note that the construction always starts with no choice, and that
Case (1.2.2) below changes to 1st choice. All cases except Case (2.2.3.3) then change
back to no choice.

No choice.We distinguish cases according to the number of vertices infi .

pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

?

fi

fi+1

(1.1) k ≥ j + 3, that is, fi has at least five vertices.
Then p j , . . . , pk−2 can be made happy usingfi , and
pk−1, . . . , pr−3 can be made happy usingfi+1. Out of
ther − j −1 points removed, at least(k−2− j +1)+
(r−3−(k−1)+1)= r− j−2 are happy. Asr− j ≥ 4,
this yields a happiness ratio of at least 2/3. The figure
to the right shows the caser = k+1 as an example.

(1.2)k= j+2, that is, fi is a convex quadrilateral. We distinguish subcases according
to the number of vertices infi+1.

pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(1.2.1) r ≥ j + 4, that is, fi+1 has at least four
vertices. Usingfi+1, all of p j+3, . . . , pr−2 can
be made happy. Then at least two out of
p j , p j+1, p j+2 can be made happy usingfi .
Overall, at leastr −2− ( j +3)+1+2= r −
j−2 out ofr− j−1 removed points are happy.
As r − j ≥ 4, the happiness ratio is at least 2/3.

pj

p

pj+2

pj+1

pr fi+1

?

?

?

pj

p

pj+2

pj+1

pr fi+1

?

?

?

(1.2.2) r = j + 3, that is,
fi+1 is a triangle. If
both p j and p j+1 can
be made happy using
fi , the happiness ratio is
2/2. Otherwise, regard-
less of howfi is triangulated exactly one ofp j andp j+1 is happy, see the figure
to the right. This yields a ratio of 1/2 and 1st choice for fi+2.



16

1st choice.Denote byf ′ the other (thanfi) face incident to the edgep j p j+1 in the cur-
rent graph. As all off1, . . . , fi−1 are triangulated already,f ′ is a triangle whose third
vertex (other thanp j andp j+1) we denote byp′. Recall that in the 1st choice setting
we assume that, regardless of howfi is triangulated,p j can be made happy. More
precisely, we assume the following in a 1st choice scenario with a face pairfi , fi+1 to
be triangulated: By adjusting the triangulations off1, . . . , fi−1, we can synchronously
flip the parity of bothp j andp′, such that

(C1) All faces fi , fi+1, . . . , fm as well asf ′ remain unchanged,
(C2) the degree of all ofp j+1, . . . , pn remains unchanged, and
(C3) the number of happy vertices amongp2, . . . , p j−1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Using this 1st choice flip, we
may suppose thatp′ is happy. Then by (C3) the number of happy vertices among
{p2, . . . , p j−1} \ {p′} does not decrease, in case we do the 1st choice flip (again)
when processingfi , fi+1. We distinguish cases according to the number of vertices
in fi .

pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

fi

fi+1

(2.1) k ≥ j + 3, that is, fi has at least five vertices. Then
p j+1, . . . , pk−1 can be made happy usingfi . If fi+1 is a
triangle (as shown in the figure to the right), this yields
a ratio of at least 3/3. Otherwise (r ≥ k+2), apart from
keepingpk−1 happy, fi+1 can be used to make all of
pk, . . . , pr−3 happy. At leastr − j − 2 out of r − j − 1
vertices removed are happy, for a happiness ratio of at least3/4.

(2.2)k= j+2, that is, fi is a convex quadrilateral. We distinguish subcases according
to the size offi+1.

pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(2.2.1)r ≥ j +5, that is, fi+1 has at least five ver-
tices. Triangulatefi arbitrarily and usefi+1

to make all ofp j+1, . . . , pr−3 happy. At least
r − j −2 out ofr − j −1 vertices removed are
happy, for a happiness ratio of at least 3/4.

pj

p

pj+2

pj+1

pj+3

fi

fi+1

?

?

?

(2.2.2)r = j +3, that is, fi+1 is a triangle. Usefi to
makep j+1 happy for a perfect ratio of 2/2.

pj

p

pj+1

pj+3

pj+4

fi

fi+1

?

?

?

pj+2
(2.2.3)r = j+4, that is, fi+1 is a convex quadrilateral.

If p j+1 andp j+2 are aligned, then triangulatingfi
arbitrarily makes them contrary. Usingfi+1 both
can be made happy, for a perfect 3/3 ratio overall.
Thus, suppose thatp j+1 and p j+2 are contrary.
We make a further case distinction according to
the position ofp j with respect tofi+1.
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pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2(2.2.3.1)∠p j+3p j+2p j ≤ π , that is,p, p j , p j+2, p j+3

form a convex quadrilateral. Add edgep j p j+2

and exchange edgeppj+2 with edgep j p j+3. In
this way,p j+1 and p j+2 remain contrary. Hence,
both p j+1 and p j+2 can be made happy using
fi+1, for a perfect ratio of 3/3 overall.

pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′
?

pj+1

fi+1

f ′
?

?

?

(2.2.3.2)∠p j p j+1p j+3 ≤ π , that is, the
points p j , p j+4, p j+3, p j+1 form a
convex quadrilateral. To conquer this
case we needp′p j+4 to be an edge of
T1. In order to ensure this, we apply
the before mentioned little twist: be-
fore triangulating the non-convex dark
faces, we scan through the sequence
of dark faces for configurations of points like in this case. Call a dark quadrilat-
eral fi+1 with ∂ fi+1 = (p j+1, . . . , p j+4) delicateif ∠p j p j+1p j+3 ≤ π . For every
delicate dark quadrilateralfi+1 in f4, f6, . . . , fm−1 such thatfi−1 is not delicate,
add the edgep j+4ph, whereph is the first vertex offi−1. Observe that this is
possible asph, . . . , p j+1, p j+3, p j+4 form a convex polygonf ∗: ph, . . . , p j+1 and
p j+1, p j+3, p j+4 form convex chains being vertices offi−1 and fi+1, respectively,
andp j+1 is a convex vertex off ∗ because∠p j p j+1p j+3 ≤ π . Then we triangulate
the remaining non-convex and the uninteresting dark faces arbitrarily to getT1.

pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′

pj+1f∗

To handle this case we joinfi+1 with
f ′ by removing the edgesp j+1p j+4 and
p′p j+1 and adding the edgep j+3p j+1,
which yields a convex pentagonf ∗ =
p j+4, p j+3, p j+1, p j , p′. Observe that
p j+1 and p j+2 are aligned now. Thus,
makingp j+2 happy usingfi leavesp j+1

unhappy. Ifp′ and p j are aligned, then
triangulate f ∗ using a star fromp′, making p j+1 happy. Asp′ and p j remain
aligned, both can be made happy—possibly using the 1st choice flip—for a per-
fect 3/3 ratio. If, on the other hand,p′ and p j are contrary, then triangulatef ∗

using a star fromp j+4, makingp j+1 happy. Nowp′ andp j are aligned and both
can made happy—possibly using the 1st choice flip—for a perfect 3/3 ratio.

pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2

(2.2.3.3)Neither of the previous two cases occurs and,
thus, p j , p j+1, p j+3, p j+2 form a convex quadri-
lateral f ∗. Removep j+1p j+2 and addp j+1p j+3

and p j p j+2. Note thatp j is happy because of 1st

choice for fi , andp j+1 andp j+2 are still contrary.
Therefore, independent of the triangulation off ∗,
at least two vertices out ofp j , p j+1, p j+2 are happy. Moreover, usingf ∗ we can
synchronously flip the parity of bothp j+1 and p j+3 such that (C1)–(C3) hold.
This gives us a ratio of 2/3 and 1st choice for fi+2.
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Putting things together.Recall that the first facef1 and the last facefm are the only
light faces that may be triangles. In case thatf1 is a triangle, we just accept thatp2

may stay unhappy, and usingf2 the remaining vertices removed, if any, can be made
happy. Similarly, from the last facefm up to three vertices may remain unhappy. To
the remaining facesf3, . . . , fm−1 we apply the algorithm described above.

In order to analyze the overall happiness ratio, denote byh0(n) the minimum
number of happy vertices obtained by applying the algorithmdescribed above to a
sequenceP= (p1, . . . , pn) of n≥ 3 points, starting in a no choice setting. Similarly,
denote byh1(n) the minimum number of happy vertices obtained by applying the
algorithm described above to a sequenceP = (p1, . . . , pn) of n ≥ 3 points, starting
in a 1st choice setting. From the case analysis given above we deducethe following
recursive bounds.

a) h0(n) = 0 andh1(n) = 1, for n≤ 4.
b) h0(n)≥ min{2+h0(n−3),1+h1(n−2)}.
c) h1(n)≥ min{3+h0(n−4),2+h0(n−2),2+h1(n−3)}.

By induction onn we can show thath0(n)≥ ⌈(2n−8)/3⌉ andh1(n)≥ ⌈(2n−7)/3⌉.
Taking the at most four unhappy vertices fromf1 and fm into account yields the
claimed overall happiness ratio. ⊓⊔

5 Triangulations of Polygons

In contrast to triangulations of point sets, it is easy to construct arbitrarily large simple
polygons such that they can not be triangulated with at leastone happy vertex. In
the following, we consider complexity aspects of triangulating polygons with parity
constraints.

It is a well-known and easy fact that there always exists a proper vertex 3-coloring
of any triangulation of a simple polygon [18, p. 15]. There also is an interesting
connection between proper 3-colorings and the parity of thevertices.

Theorem 6 ([10,15])Given a triangulation T(P) of a simple polygon P let u, v, and
w be any three consecutive vertices of P. Then, in a proper vertex3-coloring of T(P),
the vertices u and w have the same color if and only if v is odd.

This follows from the fact that in the sequence of vertices that are neighbors tov in the
triangulation their colors must alternate. Fleischner [10] actually proves this for the
more general case that allows inner vertices of even degree.Kooshesh and Moret [15]
describe a trivial algorithm for coloring a triangulated polygon in linear time that
immediately follows from the above theorem. Indeed, Theorem 6 provides an easy
way to check a necessary condition for a simple polygon to be happily triangulated:
Start with two arbitrary colors for two adjacent vertices, and propagate the 3-coloring
along the boundary, using Theorem 6. A happy triangulation can exist only if this
results in a proper 3-coloring of the vertices (using all three colors).

We already mentioned at the beginning of Section 4.1 that an optimal triangula-
tion of an arbitrary simple polygon can be computed inO(n3) time. In contrast, the
situation gets more involved if we consider polygons with holes. LetP be a simple
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polygon, and letH1, . . . ,Hk be a set of mutually disjoint simple polygons that are
completely contained in the interior ofP. Then the closure of(P\∪1≤i≤kHi) is a
polygon with holes.

Theorem 7 It is NP-complete to decide, for a given polygon H with holes and with
parity constraints, whether there exists a triangulation of H such that all vertices
of H are happy.

Proof Following Jansen [12], we use a restricted version of the NP-completeplanar
3-SATproblem [16], in which each clause contains at most three literals and each
variable occurs in at most three clauses. The Boolean formula is given as a graph,
known to be planar, whose vertices are the variables and the clauses of the formula,
and a variable vertex is connected by an edge to a clause vertex iff the variable is
contained (negated or unnegated) in that clause. We represent a plane embedding of
that graph by gadgets.

(d) (e) (f)

(a) (b) (c)

Fig. 6 A wire (a) that transfers TRUE (b), and FALSE (c), and a variable (d) in TRUE (e) and FALSE (f)
state. The short edges are part of every triangulation.

Theedgesof the plane formula are represented bywires (Fig. 6(a)–(c)), narrow
corridors which can be triangulated in two possible ways, and thereby transmit in-
formation between their ends. The vertices of the wires are labeled even. Negation
can easily be achieved by swapping the labels of a single vertex pair in a wire from
both even to both odd. The construction of avariable(Fig. 6(d)–(f)) ensures that all
wires emanating from it carry the same state, that is, their diagonals are oriented in
the same direction.

To check clauses we use anOR-gate (Fig. 8) with two inputs and one output
wire. TheOR-gate is a convex 9-gonv1 . . .v9 with three attached wires, and aloop
(Fig. 7(a)) attached to the two top-most verticesv8,v9. This loop has two possible
triangulations and gives more freedom for the two vertices to which it is attached:
by switching between the two triangulations of the loop the parity of both vertices is
changed. All edges of the 9-gon are either on the boundary of the input polygon or
they are unavoidable: no other potential edge crosses them,and thus they must belong
to every triangulation. This can be achieved by making them short enough. Starting
at the leftmost vertexv1 (see Fig. 8(a)), the constraint sequence of the vertices in
counterclockwise order isλ = 〈oeoeeoeoe〉, whereestands for even ando for odd.

Fig. 8 shows triangulations of theOR-gate for the four possible input configura-
tions of anOR-gate, where the output is FALSE if and only if both inputs are false.
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(b)

∨

∨

a b c

True

(a)

Fig. 7 A loop (a). Checking a clausea∨b∨c by joining twoOR-gates (b).

v1

F F T F F T T T

F T T T

v6 v6

v2

v9

(a)

l

(b)

l

(c)

l

(d)

l

Fig. 8 An OR-gate with inputs FALSE, FALSE (a), TRUE, FALSE (b), FALSE, TRUE (c), and TRUE, TRUE

(d). The two inputs are at the bottom and the output is at the upper right side. A loopl is attached to the
two top-most vertices.

index 1 2 3 4 5 6 7 8 9 10≃ 1

λ f o e e e o e e o o o
color 1 2 3 1 2 1 3 2 3 2 6= 1

λ ′
f o e e e o e e e e o

color 1 2 3 1 2 1 3 2 1 3 6= 1

Table 2 Invalid colorings induced by the vertex constraints show the nonexistence of a triangulation of
the OR-gate with both inputs FALSE and the output TRUE.

There may also be triangulations of anOR-gate such that the output can be FALSE

even if one input is TRUE. The important part is that (i) when at least one input is
TRUE, there is a triangulation with output TRUE, see Fig. 8(b–d), and (ii) if both
inputs are FALSE, the output must also be FALSE.

Suppose the inputs are both FALSE and the output is TRUE. Remove the edges
outside of the 9-gon and adjust the labeling of the the 9-gon accordingly. We get
λ f = 〈oeeeoeeoo〉, and for a different direction of the loopλ ′

f = 〈oeeeoeeee〉. If we
apply the test of Theorem 6 and try to 3-color the vertices, asshown in Table 2, we
get a conflict, and hence there is no triangulation with the given parities.

Clauses with two literals can directly be realized by such gates, three literals
require to cascade twoOR-gates (Fig. 7(b)). In both cases, we fix the output to TRUE

by simply removing the output wire and swapping the parity ofthe 6-th vertexv6.
It is straightforward to combine the constructed elements to a polygonH with

holes representing a given planar 3-SAT formula. ⊓⊔

6 Conclusion

In this paper we considered the construction of crossing-free geometric graphs on
point sets with constraints on the parity of the vertex degrees. For all but at most
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three vertices the constraints can be fulfilled when constructing outerplanar graphs
and pointed pseudo-triangulations. For triangulations, we showed that there can be a
linear number of such vertices and gave a construction that allows making⌊2n

3 ⌋−6
vertices happy. For polygons with polygonal holes, we proved the according decision
problem to be NP-complete.

For the case where all vertices are labeled odd, Proposition2 showed that one can
achieve a fraction10

13 of happy vertices. There might be ways to further improve this
constant factor. We even conjecture that this factor is 1, that is, every planar point set
has a triangulation with at mostK even vertices, for some absolute constantK.
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