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Abstract. Let S be a set of n points in general position in the plane.
Together with S we are given a set of parity constraints, that is, every
point of S is labeled either even or odd. A graph G on S satisfies the
parity constraint of a point p ∈ S, if the parity of the degree of p in
G matches its label. In this paper we study how well various classes of
planar graphs can satisfy arbitrary parity constraints. Specifically, we
show that we can always find a plane tree, a two-connected outerplanar
graph, or a pointed pseudo-triangulation which satisfy all but at most
three parity constraints. With triangulations we can satisfy about 2/3
of all parity constraints. In contrast, for a given simple polygon H with
polygonal holes on S, we show that it is NP-complete to decide whether
there exists a triangulation of H that satisfies all parity constraints.

1 Introduction

Computing a simple graph that meets a given degree sequence is a classical
problem in graph theory and theoretical computer science, dating back to the
work of Erdös and Gallai [6]. A degree sequence is a vector d = (d1, . . . , dn) of n
positive numbers. It is realizable, iff there exists a simple graph whose nodes have
precisely this sequence of degrees. Erdös and Gallai gave necessary and sufficient
conditions for a degree sequence to be realizable, and several algorithms have
been developed that generate a corresponding abstract graph.

An extension of this problem prescribes not only a degree sequence d, but
also gives a set S ⊂ R

2 of n points in general position, where pi ∈ S is assigned
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degree di. It is well known that a degree sequence d is realizable as a tree if and
only if

∑n

i=1
di = 2n− 2. Tamura and Tamura [11] extended this result to plane

(straight line) spanning trees, giving an O(n2 log n) time embedding algorithm,
which in turn was improved by Bose et al. [4] to optimal O(n log n) time.

In this paper we study a relaxation of this problem, where we replace exact
degrees with degree parity: odd or even. Although parity constrains are sig-
nificantly weaker than actual degree constrains, they still characterize certain
(classes of) graphs. For example, Eulerian graphs are exactly those connected
graphs where all vertices have even degree, and a classical theorem of Whitney
states that a maximal planar graph is 3-colorable iff all vertices have even degree.
A given graph might satisfy only a subset of the parity constraints. So we study
how well various classes of planar graphs can satisfy arbitrary parity constraints.

Definitions and notation. Let S ⊂ R
2 be a set of n points in general posi-

tion. We denote the convex hull of S by CH(S). The points of S have parity
constraints, that is, every point of S is labeled either even or odd ; for ease of ex-
planation we refer to even and odd points. We denote by ne and no the number
of even and odd points in S, respectively. Throughout the paper an even point
is depicted by , an odd point by , and a point that can be either by . A
graph G on S makes a point p ∈ S happy, if the parity of degG(p) matches its
label. If p is not happy, then it is unhappy. Throughout the paper a happy point
is depicted by , an unhappy point by , and a point that can be either by ? .

Results. Clearly, not every arbitrary set of parity constraints can be fulfilled.
For example, in any graph the number of odd-degree vertices is even. Hence, the
number of unhappy vertices has the same parity as no. For the class of plane
trees, the aforementioned results on degree sequences immediately imply:

Theorem 1. On every point set S ⊂ R
2 with parity constraints, there exists a

plane spanning tree that makes (i) all but two points happy if no = 0, (ii) all but

one point happy if no is odd, and (iii) all points happy if no ≥ 2 is even.

We show that we can always find a two-connected outerplanar graph (which is
a Hamiltonian cycle with additional edges in the interior, Theorem 2) and a
pointed pseudo-triangulation (Theorem 3), which satisfy all but at most three
parity constraints. For triangulations (Theorem 4), we can satisfy about 2/3 of
the parity constraints. Our proofs are based on simple inductive constructions,
but sometimes involve elaborate case distinctions. We also argue that for trian-
gulations the number of unhappy vertices might grow linearly in n. Finally, in
Section 5 we show that if we are given a simple polygon H with polygonal holes
on S, it is NP-complete to decide whether there exists a triangulation of H that
satisfies all parity constraints.

Related work. Many different types of degree restrictions for geometric graphs
have been studied. For example, for a given set S ⊂ R

2 of n points, are there
planar graphs on S for which the maximum vertex degree is bounded? There
clearly is a path, and hence a spanning tree, of maximum degree at most two.
Furthermore, there is always a pointed pseudo-triangulation of maximum degree
five [8], although there are point sets where every triangulation must have a
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vertex of degree n− 1. Another related question is the following: we are given a
set S ⊂ R

2 of n points, together with a planar graph G on n vertices. Is there
a plane straight-line embedding of G on S? Outerplanar graphs are the largest
class of planar graphs for which this is always possible, in particular, Bose [3]
showed how to compute such an embedding in O(n log2 n) time.

One motivation for our work on parity restrictions stems from a bi-colored
variation of a problem stated by Erdős and Szekeres in 1935: Is there a number
fES(k) such that any set S ⊂ R

2 of at least fES(k) bi-colored points in general
position has a monochromatic subset of k points that form an empty convex
k-gon (that is, a k-gon that does not contain any points of S in its interior)?
It has been shown recently [1] that every bi-colored point set of at least 5044
points contains an empty (not necessarily convex) monochromatic quadrilateral.
The proof uses, among others, a result that for any point set there exists a
triangulation where at least half of the points have odd parity. Any increase in
the guaranteed number of odd parity points translates into a lower minimum
number of points required in the above statement. More specifically, Theorem 4
below shows that the above result holds for any set of at least 2760 points.

2 Outerplanar graphs

After trees as minimally connected graphs, a natural next step is to consider
two-connected graphs. In particular, outerplanar graphs generalize trees both in
terms of connectivity and with respect to treewidth. In this section we consider
two-connected outerplanar graphs, which are the same as outerplanar graphs
with a unique Hamiltonian cycle [5], in other words, simple polygons augmented
with a set of pairwise non-crossing diagonals.

The following simple construction makes all but at most three points happy.
Pick an arbitrary point p. Set p1 = p and denote by p2, . . . , pn the sequence
of points from S, as encountered by a counterclockwise radial sweep around p,
starting from some suitable direction (if p is on CH(S) towards its counterclock-
wise neighbor). The outerplanar graph G consists of the closed polygonal chain
P = (p1, . . . , pn) plus an edge between p and every odd point in p3, . . . , pn−1. All
points are happy, with the possible exception of p, p2, and pn. The figure below
shows an example of a point set S with parity constraints and an outerplanar
graph on S such that all but two points are happy.

p

pn

p2

p

pn

p2

Theorem 2. For every set S ⊂ R
2 of n points with parity constraints, there

exists an outerplanar graph on S that makes all but at most three points happy.
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3 Pointed pseudo-triangulations

Pseudo-triangulations are related to triangulations and use pseudo-triangles in
addition to triangles. A pseudo-triangle is a simple polygon with exactly three
interior angles smaller than π. A pseudo-triangulation is called pointed if every
vertex p has one incident region whose angle at p is greater than π. In the
following we describe a recursive construction for a pointed pseudo-triangulation
P on S that makes all but at most three points of S happy.

At any time in our construction we have only one recursive sub-problem to
consider. This subproblem consists of a point set S∗ whose convex hull edges
have already been added to P . The current set P is a pointed set of edges
that subdivides the exterior of CH(S∗) into pseudo-triangles such that all points
outside CH(S∗) are happy. P contains no edges inside CH(S∗). We say that S*
is hopeful if at least one point on CH(S∗) is made happy by the current version
of P . Otherwise, we say that S∗ is unhappy.

We initialize our construction by setting S∗ = S and adding CH(S) to P .
Now we distinguish four cases.

?

v

?

?

? ?

?

v

?

?

? ?

q q

p p

(1) S∗ is hopeful. Let v be a point
on CH(S∗) that is currently happy,
let p and q be its neighbors, and
let S′ be the (possibly empty) set
of points from S that lie in the in-
terior of the triangle △qvp. Then
CH(S′ ∪ {p, q}) without the edge
pq defines a convex chain C from p to q, in a way that C and v together form
a pseudo-triangle. (If S′ = ∅, then C = pq.) Remove v from consideration by
adding C to P . If |S∗| ≥ 5, recurse on S∗ \ {v}. Otherwise, there are at most
three unhappy points.

p p
?

(2) S∗ is unhappy and has no interior
points. Choose one point p on CH(S∗)
and triangulate CH(S∗) by adding edges
from p. There are at most three unhappy
points, namely p and its two neighbors.

p pp

?

?

(3) S∗ is unhappy and has exactly one
interior point, pi. Pick an arbitrary
point p on CH(S∗) and draw a line through
p and pi. This line intersects exactly one
edge e of CH(S∗), and e, p, and pi together
define a pseudo-triangle ∇. Add ∇ to P ,
which splits CH(S∗) into two sub-polygons. Triangulate the sub-polygon
which contains pi by adding edges from pi to all other vertices, except to
its neighbors. Similarly, triangulate the other sub-polygon by adding edges
from p. There are at most three unhappy points: p, pi, and a neighbor of p.
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?

?

?

?

(4) S∗ is unhappy and has more than
one interior point. Let Si be the set
of interior points. First add the edges of
CH(Si) to P . Then connect each point on
CH(S∗) tangentially to CH(Si) in clock-
wise direction, thereby creating a “lens
shutter” pattern. Each point on CH(S∗) is now happy. If |Si| > 3, then
recurse on Si. Otherwise, there are at most three unhappy points.

Theorem 3. For every point set S ⊂ R
2 with parity constraints, there exists a

pointed pseudo-triangulation on S that makes all but at most three points of S
happy.

4 Triangulations

The final class of planar graphs which we consider are triangulations. If the
point set S lies in convex position, then all pseudo-triangulations of S are in fact
triangulations. Thus we obtain the following as a consequence of Theorem 3:

Corollary 1. For every point set S ⊂ R
2 in convex position with parity con-

straints, and any three points p, q, r that are consecutive along CH(S), there

exists a triangulation on S that makes all points of S happy, with the possible

exception of p, q, and r.

The following simple observation will prove to be useful.

Observation 1. For every set S ⊂ R
2 of four points in convex position with

parity constraints and every p ∈ S there exists a triangulation on S that makes

at least two of the points from S \ {p} happy.

For point sets of small cardinality we can investigate the number of happy
vertices with the help of the order type data base [2]. For any set of 11 points
with parity constraints we can always find a triangulation which makes at least
7 vertices happy. This immediately implies that there is always a triangulation
that makes at least 7n/11 ≈ 0.63n vertices happy.

The figure below shows a double circle for 10 points with parity constraints,
such that at most 5 points can be made happy. This is in fact the only point
configuration for n = 10 (out of 14 309 547) with this property.

Based on the double circle we have
been able to construct large exam-
ples with a repeating parity pattern
(starting at an extreme vertex) σ =
〈(ee(oe)3ee(oe)7ee(oe)5)3〉 of length 108,
where e denotes even, and o odd parity.
It can be shown by inductive arguments
that for such configurations for any triangulation we get at least n/108 + 2 un-
happy vertices. Triangulating the interior of the double circle is equivalent to
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triangulating a simple polygon, as the inner vertices are connected by unavoid-

able edges, that is, edges that have to be in any triangulation of the set. Hence,
all base cases (over 46000) for the required induction can be checked using dy-
namic programming, see the full version of the paper and [10] for details. Open
Problem 1 in [1] asks which is the maximum constant c such that for any point
set there always exists a triangulation where cn − o(n) points have odd degree.
While for the question as stated we still believe that c = 1 is possible, the above
construction shows that for general parity constraints we have c ≤ 107

108
.

Theorem 4. For every set S ⊂ R
2 of n points with parity constraints, there

exists a triangulation on S that makes at least ⌈2(n−1)/3⌉−6 points of S happy.

Proof. Pick an arbitrary point p on CH(S), set p1 = p, and denote by p2, . . . , pn

the sequence of points from S, as encountered by a counterclockwise radial sweep
around p. Consider the closed polygonal chain P = (p1, . . . , pn) and observe that
P describes the boundary of a simple polygon (Fig. 1). With 6 pqr denote the
counterclockwise angle between the edges pq and qr around q. A point pi, 2 ≤
i < n, is reflex if the interior angle of P at pi is reflex, that is, 6 pi−1pipi+1 > π;
otherwise, pi is convex. Thus, p1, p2, and pn are convex.

We construct a triangulation T on S as follows. As a start, we take the edges
of CH(S) and all edges of P , and denote the resulting graph by T0. If P is
convex then T0 forms a convex polygon. Otherwise CH(S) is partitioned into
two or more faces by the edges of P . Thinking of p as a light source and of P as
opaque, we call the face of T0 that contains p the light face and the other faces
of T0 dark faces. Dark faces are shown gray in figures.

In a next step, we insert further edges to ensure that all faces are convex.
The light face is made convex by adding all edges ppi where pi is reflex. Hence
the light face of T0 might be split into a number of faces, all of which we refer
to as light faces in the following. We partition the dark faces into convex faces
as follows. First, we add all edges to connect the subsequence of P that consists
of all convex points by a polygonal path. Note that some of those edges may
be edges of P or CH(S) and, hence, already be present. Next, we triangulate
those dark faces that are not convex. For now, let us say that these faces are
triangulated arbitrarily. Later, we add a little twist.

Our construction is based on choosing particular triangulations for those
faces that share at least two consecutive edges with P . Let us refer to these

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

p = p1

pn p2

?

?

?

?

?

? ?

?
?

?

Fig. 1. The simple polygon bounded by P , the initial graph T0 (with dark faces shown
gray), and the graph T1 in which all faces are convex (interesting light and dark faces
shown light gray and dark gray, respectively).
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faces as interesting, while the remaining ones are called uninteresting. The in-
teresting faces can be ordered linearly along P , such that any two successive
faces share exactly one edge. We denote this order by f1, . . . , fm. Note that fi

is light for i odd and dark for i even, and that both f1 and fm are light. Also
observe that p is a vertex of every light face; therefore, any interesting light face
other than f1 and fm has at least four vertices and all uninteresting light faces
are triangles. On the dark side, however, there may be both interesting trian-
gles and uninteresting faces with more than three vertices. Similar to above, we
triangulate all uninteresting dark faces, for now, arbitrarily (a little twist will
come later). We denote the resulting graph by T1.

As a final step, we triangulate the interesting faces f1, . . . , fm of T1 in this
order to obtain a triangulation on S with the desired happiness ratio. We always
treat a light face fi and the following dark face fi+1 together. The vertices that
do not occur in any of the remaining faces are removed, and the goal is to choose
a local triangulation for fi and fi+1 that makes a large fraction of those vertices
happy. The progress is measured by the happiness ratio h/t, if h vertices among
t removed vertices are happy. Note that these ratios are similar to fractions.
But in order to determine the collective happiness ratio of two successive steps,
the corresponding ratios have to be added component-wise. In that view, for
instance, 2/2 is different from 3/3.

We say that some set of points can be made happy “using a face f”, if f
can be triangulated—for instance using Corollary 1 or Observation 1—such that
all these points are happy. Two vertices are aligned, if either both are currently
happy or both are currently unhappy. Two vertices that are not aligned are
contrary. Denote the boundary of a face f by ∂f , and let ∂fi = (p, pj, . . . , pk),
for some k ≥ j + 2, and ∂fi+1 = (pk−1, . . . , pr), for some r ≥ k + 1.

After treating fi and fi+1, we have removed all vertices up to, but not in-
cluding, the last two vertices pr−1 and pr of fi+1, which coincide with the first
two vertices of the next face fi+2. Sometimes, the treatment of fi and fi+1 leaves
the freedom to vary the parity of the vertex pr−1 while maintaining the desired
happiness ratio as well as the parity of pr. This means that the future treatment
of fi+2 and fi+3 does not need to take care of the parity of pr−1. By adjusting
the triangulation of fi and fi+1 we can always guarantee that pr−1 is happy.

Therefore, we distinguish two different settings regarding the treatment of a
face pair: no choice (the default setting with no additional help from outside)
and 1st choice (we can flip the parity of the first vertex pj of the face and, thus,
always make it happy).

No choice. We distinguish cases according to the number of vertices in fi.

pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

?

fi

fi+1

(1.1) k ≥ j + 3, that is, fi has at least five vertices.
Then pj, . . . , pk−2 can be made happy using fi, and
pk−1, . . . , pr−3 can be made happy using fi+1. Out of
the r − j − 1 points removed, at least (k − 2− j + 1) +
(r−3− (k−1)+1) = r− j−2 are happy. As r− j ≥ 4,
this yields a happiness ratio of at least 2/3. The figure
to the right shows the case r = k + 1 as an example.
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(1.2) k = j + 2, that is, fi is a convex quadrilateral. We distinguish subcases
according to the number of vertices in fi+1.

pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(1.2.1) r ≥ j + 4, that is, fi+1 has at least
four vertices. Using fi+1, all of pj+3, . . . , pr−2

can be made happy. Then at least two out of
pj, . . . , pj+2 can be made happy using fi. Over-
all, at least r − 2 − (j + 3) + 1 + 2 = r − j − 2
out of r − j − 1 removed points are happy. As
r − j ≥ 4, the happiness ratio is at least 2/3.

pj

p

pj+2

pj+1

pr fi+1

?

?

?

pj

p

pj+2

pj+1

pr fi+1

?

?

?

(1.2.2) r = j + 3, that is, fi+1

is a triangle. If both pj and
pj+1 can be made happy us-
ing fi, the happiness ratio is
2/2. Otherwise, regardless
of how fi is triangulated ex-
actly one of pj and pj+1 is happy, see the figure to the right. This yields a
ratio of 1/2 and 1st choice for fi+2.

First choice. Denote by f ′ the other (than fi) face incident to the edge pjpj+1 in
the current graph. As all of f1, . . . , fi−1 are triangulated already, f ′ is a triangle
whose third vertex (other than pj and pj+1) we denote by p′. Recall that in the
1st choice setting we assume that, regardless of how fi is triangulated, pj can
be made happy. More precisely, we assume the following in a 1st choice scenario
with a face pair fi, fi+1 to be triangulated: By adjusting the triangulations of
f1, . . . , fi−1, we can synchronously flip the parity of both pj and p′, such that

(C1) All faces fi, fi+1, . . . , fm as well as f ′ remain unchanged,

(C2) the degree of all of pj+1, . . . , pn remains unchanged, and

(C3) the number of happy vertices among p2, . . . , pj−1 does not decrease.

Observe that these conditions hold after Case 1.2.2. Using this 1st choice flip,
we may suppose that p′ is happy. Then by (C3) the number of happy vertices
among {p2, . . . , pj−1} \ {p′} does not decrease, in case we do the 1st choice flip
(again) when processing fi, fi+1. We distinguish cases according to the number
of vertices in fi.

pj

p

pk

pk−2pk−1

.

.

.

pr
?

?

?

fi

fi+1

(2.1) k ≥ j + 3, that is, fi has at least five vertices. Then
pj+1, . . . , pk−1 can be made happy using fi. If fi+1 is a
triangle (as shown in the figure to the right), this yields
a ratio of at least 3/3. Otherwise (r ≥ k + 2), apart
from keeping pk−1 happy, fi+1 can be used to make all
of pk, . . . , pr−3 happy. At least r− j − 2 out of r− j − 1
vertices removed are happy, for a happiness ratio of at least 3/4.

(2.2) k = j + 2, that is, fi is a convex quadrilateral. We distinguish subcases
according to the size of fi+1.
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pj

p

pj+2

pj+1

pr−1

.
.
.

pr

fi

fi+1

?

?

?

?

(2.2.1) r ≥ j + 5, that is, fi+1 has at least five
vertices. Triangulate fi arbitrarily and use fi+1

to make all of pj+1, . . . , pr−3 happy. At least
r − j − 2 out of r − j − 1 vertices removed are
happy, for a happiness ratio of at least 3/4.

pj

p

pj+2

pj+1

pj+3

fi

fi+1

?

?

?

(2.2.2) r = j + 3, that is, fi+1 is a triangle.
Use fi to make pj+1 happy for a perfect ratio
of 2/2.

pj

p

pj+1

pj+3

pj+4

fi

fi+1

?

?

?

pj+2(2.2.3) r = j + 4, that is, fi+1 is a convex quadrilat-
eral. If pj+1 and pj+2 are aligned, then triangu-
lating fi arbitrarily makes them contrary. Using
fi+1 both can be made happy, for a perfect 3/3
ratio overall. Thus, suppose that pj+1 and pj+2

are contrary. We make a further case distinction
according to the position of pj with respect to fi+1.

pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2
(2.2.3.1) 6 pj+3pj+2pj ≤ π, that is, p, pj, pj+2, pj+3

form a convex quadrilateral. Add edge pjpj+2 and
exchange edge ppj+2 with edge pjpj+3. In this way,
pj+1 and pj+2 remain contrary. Hence, both pj+1

and pj+2 can be made happy using fi+1, for a
perfect ratio of 3/3 overall.

pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′
?

pj+1

fi+1

f ′
?

?

?

(2.2.3.2) 6 pjpj+1pj+3 ≤ π, that is, the
points pj , pj+4, pj+3, pj+1 form a convex
quadrilateral. To conquer this case we
need p′pj+4 to be an edge of T1. In or-
der to ensure this, we apply the before
mentioned little twist: before triangulat-
ing the non-convex dark faces, we scan
through the sequence of dark faces for
configurations of points like in this case. Call a dark quadrilateral fi with
∂fi = (pj+1, . . . , pj+4) delicate if 6 pjpj+1pj+3 ≤ π. For every delicate dark
quadrilateral fi in f4, f6, . . . , fm−1 such that fi−2 is not delicate, add the
edge pj+4ph, where ph is the first vertex of fi−2. Observe that this is pos-
sible as ph, . . . , pj+1, pj+3, pj+4 form a convex polygon f∗: ph, . . . , pj+1 and
pj+1, pj+3, pj+4 form convex chains being vertices of fi−2 and fi, respectively,
and pj+1 is a convex vertex of f∗ because 6 pjpj+1pj+3 ≤ π. Then we trian-
gulate the remaining non-convex and the uninteresting dark faces arbitrarily
to get T1.
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pj

p

pj+3

pj+4
?

?

? fi

pj+2

p′

pj+1f∗

To handle this case we join fi+1

with f ′ by removing the edges pj+1pj+4

and p′pj+1 and adding the edge
pj+3pj+1, which yields a convex pen-
tagon f∗ = pj+4, pj+3, pj+1, pj , p

′. Ob-
serve that pj+1 and pj+2 are aligned
now. Thus, making pj+2 happy using fi

leaves pj+1 unhappy. If p′ and pj are
aligned, then triangulate f∗ using a star from p′, making pj+1 happy. As
p′ and pj remain aligned, both can be made happy—possibly using the 1st

choice flip—for a perfect 3/3 ratio. If, on the other hand, p′ and pj are con-
trary, then triangulate f∗ using a star from pj+4, making pj+1 happy. Now p′

and pj are aligned and both can made happy—possibly using the 1st choice
flip—for a perfect 3/3 ratio.

pj

p

pj+1

pj+3

pj+4

fi+1

?

?

?

pj+2

(2.2.3.3) Neither of the previous two cases oc-
curs and, thus, pj , pj+1, pj+3, pj+2 form a con-
vex quadrilateral f∗. Remove pj+1pj+2 and add
pj+1pj+3 and pjpj+2. Note that pj is happy be-
cause of 1st choice for fi, and pj+1 and pj+2 are
still contrary. Therefore, independent of the trian-
gulation of f∗, at least two vertices out of pj , pj+1, pj+2 are happy. Moreover,
using f∗ we can synchronously flip the parity of both pj+1 and pj+3 such that
(C1)–(C3) hold. This gives us a ratio of 2/3 and 1st choice for fi+2.

Putting things together. Recall that the first face f1 and the last face fm

are the only light faces that may be triangles. In case that f1 is a triangle,
we just accept that p2 may stay unhappy, and using f2 the remaining vertices
removed, if any, can be made happy. Similarly, from the last face fm up to three
vertices may remain unhappy. To the remaining faces f3, . . . , fm−1 we apply the
algorithm described above.

In order to analyze the overall happiness ratio, denote by h0(n) the minimum
number of happy vertices obtained by applying the algorithm described above
to a sequence P = (p1, . . . , pn) of n ≥ 3 points in a no choice scenario. Similarly,
denote by h1(n) the minimum number of happy vertices obtained by applying
the algorithm described above to a sequence P = (p1, . . . , pn) of n ≥ 3 points in
a 1st choice scenario. From the case analysis given above we deduce the following
recursive bounds.

a) h0(n) = 0 and h1(n) = 1, for n ≤ 4.

b) h0(n) ≥ min{2 + h0(n − 3), 1 + h1(n − 2)}.

c) h1(n) ≥ min{3 + h0(n − 4), 2 + h0(n − 2), 2 + h1(n − 3)}.

By induction on n we can show that h0(n) ≥ ⌈(2n − 8)/3⌉ and h1(n) ≥ ⌈(2n −
7)/3⌉. Taking the at most four unhappy vertices from f1 and fm into account
yields the claimed overall happiness ratio. ⊓⊔
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5 Triangulating polygons with holes

Theorem 5. Let H be a polygon with holes and with parity constraints on the

vertices. It is NP-complete to decide whether there exists a triangulation of H
such that all vertices of H are happy.

Proof. Following Jansen [7], we use a restricted version of the NP-complete pla-

nar 3-SAT problem [9], in which each clause contains at most three literals and
each variable occurs in at most three clauses.

(d) (e) (f)

(a) (b) (c)

Fig. 2. Wire (a) that transfers true (b), and False (c). The short edge between the
two vertices is in every triangulation. A variable (d) in true (e) and False (f) state.

The edges of the planar formula are represented by wires (Fig. 2(a)–(c)),
narrow corridors which can be triangulated in two possible ways, and thereby
transmit information between their ends. Negation can easily be achieved by
swapping the labels of a single vertex pair in a wire. The construction of a
variable (Fig. 2(d)–(f)) ensures that all wires emanating from it carry the same
state, that is, their diagonals are oriented in the same direction.

To check clauses we use an or-gate with two inputs and one output wire
which we build by cascading two or-gates and fixing the output of the second
gate to true (Fig. 3(b)). The or-gate is a convex 9-gon with three attached wires,
and a don’t-care loop (Fig. 3(a)) attached to the two top-most vertices. This loop
has two triangulations and gives more freedom for the two vertices to which it
is attached: they must have an even number of incident diagonals in total.

Fig. 4 shows triangulations for the four possible input configurations, where
the output is False iff both inputs are false. We have to ensure that the config-

(b)

∨

∨

a b c

True

(a)

Fig. 3. A don’t-care loop (a), checking a clause a ∨ b ∨ c by joining two or-gates (b).
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(a)

dc dc

(b)

dc

(c) (d)

dc

Fig. 4. An or-gate with inputs False, False (a), True, False (b), False, True (c),
and True, True (d). The two inputs are at the lower side and the output is at the
upper right side. A don’t-care loop dc is attached to the two top-most vertices.

uration where both inputs are False and the output is True is infeasible. This
can be checked by an exhaustive search of the 429 triangulations of the convex
9-gon. (The output of an or-gate can be False even if only one input is False;
this does not affect the correctness of the clause gadget.)

To combine the constructed elements to a simple polygon H with holes rep-
resenting a given Boolean formula φ is now straightforward. ⊓⊔
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