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Abstract. Let G = (S, E) be a plane straight-line graph on a finite point set S ⊂ R2 in general
position. The incident angles of a point p ∈ S in G are the angles between any two edges of G that
appear consecutively in the circular order of the edges incident to p. A plane straight-line graph is called
ϕ-open if each vertex has an incident angle of size at least ϕ. In this paper we study the following type of
question: What is the maximum angle ϕ such that for any finite set S ⊂ R2 of points in general position
we can find a graph from a certain class of graphs on S that is ϕ-open? In particular, we consider the
classes of triangulations, spanning trees, and spanning paths on S and give tight bounds in most cases.

Key words. Plane geometric graph, triangulation, spanning tree, path, maximal angle, min-max-min-
max problem, pointedness, pointed plane graph

1. Introduction

Conditions on angles in plane straight-line graphs have been studied extensively in discrete and
computational geometry. It is well known that Delaunay triangulations maximize the minimum
angle over all triangulations, and that in a (Euclidean) minimum weight spanning tree each
angle is at least π

3
. In this paper we address the fundamental combinatorial question, what is the

maximum value ϕ such that for each finite point set in general position there exists a (certain
type of) plane straight-line graph where each vertex has an incident angle of size at least ϕ.
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In other words, we consider min-max-min-max problems, where we minimize over all finite
point sets S in general position in the plane, the maximum over all plane straight-line graphs
G (of the considered type), of the minimum over all p ∈ S, of the maximum angle incident
to p in G. We present bounds on ϕ for three classes of graphs: spanning paths, (general and
bounded degree) spanning trees, and triangulations. Most of our bounds are tight. To argue this,
we describe families of point sets for which no graph from the respective class can achieve a
greater incident angle at each vertex.

Background. Our motivation for this research stems from the investigation of pseudo-trian-
gulations, a straight-line framework which—apart from deep combinatorial properties—has
applications in motion planning, collision detection, ray shooting and visibility; see [4,13,15–
17] and references therein. Pseudo-triangulations with a minimum number of pseudo-triangles
(among all pseudo-triangulations for a given point set) are called minimum (or pointed) pseudo-
triangulations. They can be characterized as plane straight-line graphs where (1) each vertex
has an incident angle greater than π, and (2) the number of edges is maximal, in the sense that
the addition of any edge produces an edge-crossing or negates the angle condition.

In this paper, we introduce “quantified pointedness” and aim to maximize this parameter: we
consider plane straight-line graphs where each vertex has an incident angle of at least ϕ—to be
maximized. We show that any planar point set admits a triangulation in which each vertex has
an incident angle of at least 2π

3
. We further consider connected plane straight-line graphs where

the number of edges is minimal (spanning trees), and the vertex degree is bounded (spanning
trees of bounded degree and spanning paths). Table 1 lists the obtainable angles of these classes
of graphs. Observe that in this context perfect matchings can be described as plane straight-line
graphs where each vertex has an incident angle of 2π and the number of edges is maximal.

Related Work. There is a vast literature on triangulations that are optimal according to certain
criteria, see [6]. Similar to Delaunay triangulations which maximize the smallest angle over
all triangulations for a point set, farthest point Delaunay triangulations minimize the smallest
angle over all triangulations for a convex polygon [11]. Edelsbrunner et al. [10] showed how to
construct a triangulation that minimizes the maximum angle among all triangulations for a set of
n points in O(n2 log n) time. If all angles in a triangulation are at least π

6
then the triangulation

contains the relative neighborhood graph as a subgraph [14]. The relative neighborhood graph
for a point set connects any pair of points which are mutually closest to each other (among all
points from the set).

In applications where small angles have to be avoided by all means, a Delaunay triangulation
may not be sufficient in spite of its optimality because even there arbitrarily small angles can
occur. By adding so-called Steiner points one can construct a triangulation on a superset of
the original points in which there is some absolute lower bound on the size of the smallest
angle [8]. Dai et al. [9] describe several heuristics to construct minimum weight triangulations
(triangulations which minimize the total sum of edge lengths) subject to absolute lower or upper
bounds on the occurring angles.

Spanning cycles with angle constraints can be regarded as a variation of the traveling sales-
man problem. Fekete and Woeginger [12] showed that if the cycle may cross itself then any set
of at least five points admits a locally convex tour, that is, a tour in which all turns are to the
left (or all turns are to the right, respectively). Arkin et al. [5] consider as a measure for (non-)
convexity of a point set S the minimum number of (interior) reflex angles (angles > π) among
all plane spanning cycles for S, see [1] for recent results. Aggarwal et al. [2] prove that finding
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a spanning cycle for a point set which has minimal total angle cost is NP-hard, where the angle
cost is defined as the sum of direction changes at the points. Regarding spanning paths, it has
been conjectured that each planar point set admits a spanning path with minimum angle at least
π
6

[12]; recently, a lower bound of π
9

has been presented [7].

p q
α

β
γ

δ

Fig. 1. The incident angles of p.

Definitions and Notation. Let S ⊂ R2 be a finite set of
points in general position, that is, no three points of S are
collinear. In this paper we consider plane straight-line graphs
G = (S, E) on S. The vertices of G are the points in S, the
edges of G are straight-line segments that connect two points
in S, and two edges of G do not intersect except possibly at
their endpoints. The incident angles of a point p ∈ S in G
are the angles between any two edges of G that appear consecutively in the circular order of
the edges incident to p. We denote the maximum incident angle of p in G with opG(p). For a
point p ∈ S of degree at most one we set opG(p) = 2π. We also refer to opG(p) as the open-
ness of p in G and call p ∈ S ϕ-open in G for some angle ϕ if opG(p) ≥ ϕ. Consider for
example the graph depicted in Fig. 1. The point p has four incident edges of G and, therefore,
four incident angles. Its openness is opG(p) = α. The point q has only one incident angle and
correspondingly opG(q) = 2π.

Similarly we define the openness of a plane straight-line graph G = (S,E) as op(G) =
minp∈S opG(p) and call G ϕ-open for some angle ϕ if op(G) ≥ ϕ. In other words, a graph
is ϕ-open if and only if every vertex has an incident angle of size at least ϕ. The openness
of a class G of graphs is the supremum over all angles ϕ such that for every finite point set
S ⊂ R2 in general position there exists a ϕ-open connected plane straight-line graph G on S
and G is an embedding of some graph from G. For example, the openness of minimum pseudo-
triangulations is π. Without the general position assumption many of these questions become
trivial because for a set of collinear points the non-crossing spanning tree is unique—the path
that connects them along the line—and its interior points have no incident angle greater than π.

The convex hull of a point set S is denoted with CH(S). Points of S on CH(S) are called
vertices of CH(S). Let a, b, and c be three points in the plane that are not collinear. With 6 abc
we denote the counterclockwise angle between the segment (b, a) and the segment (b, c) at b.

Results. We study the openness of several classes of plane straight-line graphs. In particular,
in Section 2 we give a tight bound of 2π

3
on the openness of triangulations. In Section 3 we

consider spanning trees, with or without a bound on the maximum vertex degree. For general
spanning trees we prove a tight bound of 5π

3
; for trees with vertex degree at most three we can

still prove a bound of 3π
2

, also this bound is tight. Finally, in Section 4 we study spanning paths
of sets of points in convex or general position. For point sets in convex position we can again
show a tight bound of 3π

2
; for point sets in general position we prove a non-trivial upper bound of

5π
4

. This last bound is not tight, in fact we conjecture that also for point sets in general position
the openness of spanning paths is at most 3π

2
. Our results are summarized in Table 1.

Triangulations Trees Trees with maxdeg. 3 Paths (convex sets) Paths (general)
2π
3

5π
3

3π
2

3π
2

5π
4

Table 1. Openness of several classes of plane straight-line graphs. All given values—except for spanning
paths on point sets in general position—are tight.
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2. Triangulations

It is easy to find point sets of any cardinality such that the smallest angle in any triangulation has
to be arbitrary small. In contrast we show that for any point set we can construct a triangulation
with a surprisingly large openness.

Theorem 1. Triangulations are 2π
3

-open and this bound is the best possible.

Proof. Consider a point set S ⊂ R2 in general position. Clearly, opG(p) > π for every point
p ∈ CH(S) and every plane straight-line graph G on S. We recursively construct a 2π

3
-open

triangulation T of S by first triangulating CH(S); every recursive subproblem consists of a
Let S be a point set with a triangular convex hull and denote the three points of CH(S)

with a, b, and c. If S has no interior points, then we are done. Otherwise, let a′, b′ and c′ be
(not necessarily distinct) interior points of S such that the triangles ∆a′bc, ∆ab′c and ∆abc′ are
empty (see Fig. 2 (left)). Since the sum of the six exterior angles of the hexagon ba′cb′ac′ equals
8π, the sum of the three angels 6 ac′b, 6 ba′c, and 6 cb′a is at least 2π. In particular, one of them,
say 6 cb′a, is at least 2π/3. We then recurse on the two subsets of S that have ∆b′bc and ∆b′ab
as their respective convex hulls.

The upper bound is attained by a set S of n points as depicted in Fig. 2 (right). S consists
of a point p and of three sets Sa, Sb, and Sc that each contain n−1

3
points. Sa, Sb, and Sc are

placed at the vertices of an equilateral triangle ∆ and p is placed at the barycenter of ∆. Any
triangulation T of S must connect p with at least one point of each of Sa, Sb, and Sc and hence
opT (p) approaches 2π

3
arbitrarily close from above.

a b

c

a′

b′

c′

Sa Sb

p

Sc

Fig. 2. Constructing a 2π
3 -open triangulation (left), the openness of triangulations of this point set ap-

proaches 2π
3 from above (right).

3. Spanning Trees

In this section we give tight bounds on the ϕ-openness of two basic types of spanning trees,
namely general spanning trees (Section 3.1) and spanning trees with bounded vertex degree
(Section 3.2). But first we state two technical observations, which will prove useful later.

Consider a point set S ⊂ R2 in general position and let p and q be two arbitrary points of S.
Assume w.l.o.g. that p has smaller x-coordinate than q. Let lp and lq denote the lines through p
and q that are perpendicular to the edge (p, q). We define the orthogonal slab of (p, q) to be the
open region bounded by lp and lq.

Observation 1. Assume that r ∈ S \{p, q} lies in the orthogonal slab of (p, q) and above (p, q).
Then 6 qpr ≤ π

2
and 6 rqp ≤ π

2
. A symmetric observation holds if r lies below (p, q).

Recall that the diameter of a point set is the distance between a pair of points that are furthest
away from each other. Let a and b define the diameter of S and assume w.l.o.g. that a has a
smaller x-coordinate than b. Clearly, all points in S \ {a, b} lie in the orthogonal slab of (a, b).
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Observation 2. Assume that r ∈ S \ {a, b} lies above a diametrical segment (a, b) for S. Then
6 arb ≥ π

3
and hence at least one of the angles 6 bar and 6 rba is at most π

3
. A symmetric

observation holds if r lies below (a, b).

3.1. General Spanning Trees

In this section we consider general spanning trees, that is, spanning trees without any restriction
on the degree of their vertices. Throughout this section we use the following notation: we say
that an angle ϕ is large if ϕ > π

3
. Correspondingly, if ϕ ≤ π

3
then we say that ϕ is small.

Theorem 2. Spanning trees are 5π
3

-open and this bound is the best possible.

Proof. Consider a point set S ⊂ R2 in general position and let a and b define the diameter of S.
W.l.o.g. a has a smaller x-coordinate than b. Let c ∈ S \ {a, b} be the point above (a, b) that is
furthest away from (a, b) and let d ∈ S \ {a, b} be the point below (a, b) that is furthest away
from (a, b). (The special case that (a, b) is an edge of the convex hull of S and hence either c
or d does not exist is handled at the end of the proof.) All points of S lie within the bounding
box defined by the orthogonal slab of (a, b) and two lines through c and d parallel to (a, b).

To construct a 5π
3

-open spanning tree, we first construct a special 5π
3

-open path P whose
endpoints are either a and b or c and d. P has the additional property that the smaller angle at its
endpoints between the path and the bounding box is also small. We extend P to a spanning tree
in the following manner. Every point pi of P has a small incident angle. Consider the cone Ci

with apex pi defined by the edges of P (and the bounding box if pi is an endpoint) enclosing
the small angle at pi. When constructing P we ensure that every point p of S \ P is contained
in exactly one cone Ci. We assemble the spanning tree by connecting each point in S \P to the
apex of its containing wedge (see Fig. 3 (left) and (middle)).

It remains to show that we can always find a path P with the properties described above. We
prove this through a case distinction on the size of the angles that are depicted in Fig. 3 (right).
Since (a, b) is diametrical for S, Observation 2 implies that γ ≥ π

3
and δ ≥ π

3
. Furthermore, at

least one of α1 and β1 and one of α2 and β2 is small.

Case 1 Neither at a nor at b both angles (α1 and α2 or β1 and β2, respectively) are large.
This means that α1 and β2 or α2 and β1 are small. If α1 and β2 are small, then we choose
P = 〈c, a, b, d〉. P is 5π

3
-open and the smaller angles at c and d between P and the bounding

box are at most π
3
. Furthermore, P partitions S \{a, b, c, d} into four subsets and each subset

is contained in exactly one of the four cones with apex a, b, c, and d. Symmetrically, if α2

and β1 are small, then P = 〈c, b, a, d〉.

a b

d

c

α

α1

α2

α′

1

α′

2

γ1 γ2

γ

δ
δ2

δ1

β β1

β2

β′

1

β′

2

a b

d

c

a b

d

c

Fig. 3. The path P (thick edges) and the cones of c and b (left), the spanning tree constructed from P
(middle), the bounding box of S with all relevant angles labeled (right).
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a b

d

c

β1

β2

β2

β1

e

ω

ϕ

ρ

ε

ν

a

b

d

c

α′

2

γ2

δ1

β′

1
a b

d

c

β

β1

Fig. 4. Case 2.1 (left), Case 2.2.1 for γ2 small and β′1 large (middle), Case 2.2.2.2 for γ2 small and β′1
large (right).

Case 2 Either at a or at b both angles are large.
W.l.o.g. assume that both α1 and α2 are large and hence β1 and β2 are both small. Futher-
more, also all of the angles γ1, δ1, α′1 = π

2
− α1, and α′2 = π

2
− α2 are small.

Case 2.1 β = β1 + β2 is small.
We choose P = 〈c, b, d〉 (see Fig. 4 (left)). P is 5π

3
-open and the smaller angles at c and d

between P and the bounding box are at most π
3
. P partitions S \ {b, c, d} into three subsets

and each subset is contained in exactly one of the three cones with apex b, c, and d.
Case 2.2 β = β1 + β2 is large.

Since β = β1 + β2 is large it follows that at least one of γ2 and δ2 and at least one of
β′1 = π

2
− β1 and β′2 = π

2
− β2 is small.

Case 2.2.1 Both β′1 and γ2 are small or both β′2 and δ2 are small.
If both β′1 and γ2 are small then we choose P = 〈a, d, c, b〉 (see Fig. 4 (middle)). P is 5π

3
-

open and partitions S \ {a, b, c, d} into four subsets which each are contained in exactly one
of the four cones with apex a, b, c, and d. Symmetrically, if both β′2 and δ2 are small, then
we can use the path P = 〈a, c, d, b〉.

Case 2.2.2 Neither both β′1 and γ2 are small nor both β′2 and δ2 are small.
Consider the subset Sc of S that consists of the points above (c, b), and the subset Sd of S
that consists of the points below (d, b).

Case 2.2.2.1 β′1 and δ2 are large. Thus γ2 is small.
Case 2.2.2.1.1 6 pbc is small for all points p ∈ Sc.

All edges from b to the points in Sc ∪ {c} lie in a wedge with angle β̃′1 smaller than π
3
. As γ2

is small and β̃′1 replaces β′1 we choose P = 〈a, d, c, b〉 as in Case 2.2.1 (see Fig. 4 (middle)).
Case 2.2.2.1.2 6 pbc is large for at least one point p ∈ Sc.

Let e ∈ Sc be the point such that ϕ = 6 ebc is largest among the points in Sc. We choose
P = 〈c, e, a, b, d〉 (see Fig. 4 (right)). The angle ν is small since it is smaller than β1, and β1

is small. Furthermore, ϕ is large by definition of e and Observation 2 implies that 6 aeb = ε
is at least π

3
. Summing the angles within 4cbe yields % + β1 − ν + ϕ + ε = π. Therefore

% + β1 − ν is small, and as β1 − ν ≥ 0, also % is small. Similarly, the angle sum within
4abe is ω + β1 + ϕ + ε = π and therefore ω is small. In summary, all of β2, ω, %, and ν
are small and hence P is 5π

3
-open. P partitions S \ {a, b, c, d, e} into five subsets, and since

the gray-shaded region in Fig. 4 (right) does not contain any points of S by choice of e, each
subset is contained in exactly one of the five cones with apex a, b, c, d, and e.

Case 2.2.2.2 β′2 and γ2 are large. Thus δ2 is small.
If 6 dbq is small for all points q ∈ Sd then, using symmetric arguments as in Case 2.2.2.1.1,
we choose P = 〈a, c, d, b〉 like in Case 2.2.1.
If 6 dbq is large for at least one point q ∈ Sd, then let f ∈ Sd be the point maximizing this
angle. Then, using symmetric arguments as in Case 2.2.2.1.2, we choose P = 〈c, b, a, f, d〉.
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Finally, if (a, b) is an edge of the convex hull then either c or d does not exist. If c does not exist,
then we can choose either P = 〈a, b, d〉 or P = 〈b, a, d〉. A symmetric argument holds if d does
not exist.

S3

S1

S2

Fig. 5. Every spanning tree of S is at most 5π
3 -open.

The upper bound is attained by the point
set depicted in Fig. 5. Each of the sets
Si, i ∈ 1, 2, 3 consists of n

3
points. If a point

p ∈ S1 is connected to any other point from
S1 ∪ S2, then it can only be connected to
a point of S3 forming an angle of at least
π
3
− ε. As the same argument holds for S2

and S3, respectively, any connected graph,
and thus any spanning tree on S is at most
5π
3

-open.

3.2. Spanning Trees of Bounded Vertex Degree

By construction, the spanning trees obtained in the previous section might have arbitrarily large
vertex degree which can be undesirable. Hence in the following we consider spanning trees with
bounded maximum vertex degree and derive tight bounds on their openness.

Theorem 3. Let S ⊂ R2 be a set of n points in general position. There exists a 3π
2

-open span-
ning tree T of S such that every point from S has vertex degree at most three in T . The angle
bound is best possible, even for the much broader class of spanning trees of vertex degree at
most n− 2.

Proof. We show that S has a 3π
2

-open spanning tree with maximum vertex degree three. To do so,
we first describe a recursive construction that results in a 3π

2
-open spanning tree with maximum

vertex degree four. We then refine our construction to yield a spanning tree of maximum vertex
degree three.

Let a and b define the diameter of S. W.l.o.g. a has a smaller x-coordinate than b. The edge
(a, b) partitions S \ {a, b} into two (possibly empty) subsets: the set Sa of the points above
(a, b) and the set Sb of the points below (a, b). We assign Sa to a and Sb to b (see Fig. 6). Since
all points of S \ {a, b} lie in the orthogonal slab of (a, b) we can connect any point p ∈ Sa to
a and any point q ∈ Sb to b and by this obtain a 3π

2
-open path P = 〈p, a, b, q〉. Based on this

observation we recursively construct a spanning tree of vertex degree at most four.
If Sa is empty, then we proceed with Sb. If Sa contains only one point p then we con-

nect p to a. Otherwise consider a diametrical segment (c, d) for Sa. W.l.o.g. d has a smaller

c

d

a ba b

S+
c

S−

c

Sa

Sb

Sd

Fig. 6. Constructing a 3π
2 -open spanning tree with maximum vertex degree four.
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c

d

a b

p

q

c

d

a b

p

q
S+

c
∪ S−

c

Fig. 7. Constructing a 3π
2 -open spanning tree with maximum vertex degree three.

x-coordinate than c and d lies above (a, c). Either 6 adc or 6 dca must be less than π
2
. W.l.o.g. as-

sume that 6 dca < π
2
. Hence we can connect d via c to a and obtain a 3π

2
-open path P = 〈d, c, a, b〉.

The edge (d, c) partitions Sa into two (possibly empty) subsets: the set Sd of the points above
(d, c) and the set Sc of the points below (d, c). The set Sc is again partitioned by the edge (a, c)
into a set S+

c of points that lie above (a, c) and a set S−c of points that lie below (a, c). We
assign Sd to d and both S+

c and S−c to c and proceed recursively. (Note that by Observation 1
6 dce ≤ π

2
∀e ∈ Sc, and 6 cde ≤ π

2
∀e ∈ Sd.)

The algorithm maintains the following two invariants: (i) at most two sets are assigned to
any point of S, and (ii) if a set Sp is assigned to a point p then p can be connected to any point
of Sp and opT (p) ≥ 3π

2
for any resulting tree T .

We now refine our construction to obtain a 3π
2

-open spanning tree of maximum vertex degree
three. If S+

c is empty then we assign S−c to c, and vice versa. Otherwise, consider the tangents
from a to Sc and denote the points of tangency with p and q (see Fig. 7). Let lp and lq denote
the lines through p and q that are perpendicular to (a, c). W.l.o.g. lq is closer to a than lp.
We replace the edge (a, c) by the three edges (a, p), (p, q), and (q, c). The resulting path is
3π
2

-open and partitions Sc into three sets which can be assigned to p, q, and c while maintaining
invariant (ii). The refined recursive construction assigns at most one set to every point of S and
hence constructs a 3π

2
-open spanning tree with maximum vertex degree three.

p S1

Fig. 8. Every spanning tree of this point
set with vertex degree at most n − 2 is at
most 3π

2 -open.

The upper bound is attained by a set S of n points
as depicted in Fig. 8. S consists of a subset S1 of n−1
near-collinear points close together and one point p
far away. In order to construct any connected graph
with maximum degree at most n− 2, one point of S1

has to be connected to another point of S1 and to p.
Thus any spanning tree on S with maximum degree
at most n− 2 is at most 3π

2
-open.

4. Spanning Paths

Spanning paths can be regarded as spanning trees with maximum vertex degree two. Therefore,
the upper bound construction in Fig. 8 applies to spanning paths as well. We show in Section 4.1
below that the resulting bound of 3π

2
is tight for points in convex position, even in a very strong

sense: there exists a 3π
2

-open spanning path starting from any predefined point. For points in
general position we prove a non-trivial upper bound of 5π

4
in Section 4.2.

4.1. Point Sets in Convex Position

Consider a set S ⊂ R2 of n points in convex position. We can construct a spanning path
for S by starting at an arbitrary point p ∈ S and recursively taking one of the tangents from p
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to CH(S \ {p}). As long as |S| > 2, there are two tangents from p to CH(S \ {p}): the left
tangent is the oriented line t` through p and a point p` ∈ S \ {p} (oriented in direction from p
to p`) such that no point from S is to the left of t`. Similarly, the right tangent is the oriented
line tr through p and a point pr ∈ S \ {p} (oriented in direction from p to pr) such that no point
from S is to the right of tr. If we take the left and the right tangent alternatingly, see Fig. 9, we

Fig. 9. A zigzag path.

call the resulting path azigzag path for S.

Theorem 4. Every finite point set in convex position in the plane admits
a spanning path that is 3π

2
-open and this bound is the best possible.

We present two different proofs for this theorem. First an existential
proof using counting arguments and then a constructive proof that, in
addition, provides a stronger claim. To see that the bound of 3π

2
is tight,

consider again the point set in Fig. 8.

Proof. (Theorem 4, existential) As a zigzag path is completely determined by one of its end-
points and the direction of the incident edge, there are exactly n zigzag paths for S. (Count
directed zigzag paths: there are n choices for the starting point and two possible directions to
continue, that is, 2n directed zigzag paths and, therefore, n (undirected) zigzag paths.)

Now consider a point p ∈ S and sort all other points of S radially around p, starting with
one of the neighbors of p along CH(S). Any angle that occurs at p in some zigzag path for S is
spanned by two points that are consecutive in this radial order. Moreover, any such angle occurs
in exactly one zigzag path because it determines the zigzag path completely. Since the sum of
all these angles at p is less than π, for each point p at most one angle can be ≥ π

2
. Furthermore,

if p is an endpoint of a diametrical segment for S then all angles at p are < π
2
. Since there is

at least one diametrical segment for S, there are at most n − 2 angles > π
2

in all zigzag paths
together. Thus, there exist at least two spanning zigzag paths that have no angle > π

2
, that is,

they are 3π
2

-open.

H+(p, r)

q

r

s
p

H−(p, r)

Fig. 10. (p, r) is expanding in
direction “+”.

Before we present the constructive proof, we give some tech-
nical definitions and observations. For two distinct points p, r ∈
R2 denote by H−(p, r) the set of points on or to the right of the
ray ⇀pr, that is, those t ∈ R2 for which 6 prt ≤ π. Correspond-
ingly, denote by H+(p, r) the set of points on or to the left of the
ray ⇀pr, that is, those t ∈ R2 for which 6 prt ≥ π, see Fig. 10.
Let S+(p, r) := S ∩ H+(p, r) and S−(p, r) := S ∩ H−(p, r).
Consider a directed segment (p, r), for some p, r ∈ S, and a di-
rection τ ∈ {+,−}. Denote by q and s the neighbors of p and r, respectively, along CH(S) that
are in Sτ (p, r) (possibly, q = s or even q = r and s = p). We call (p, r) expanding in direction
τ if the two rays ⇀qp and ⇀sr intersect outside Hτ (p, r); otherwise, (p, r) is called non-expanding
in direction τ . Observe that if |Sτ (p, r)| ≤ 3 then (p, r) is non-expanding in direction τ .

Proof. (Theorem 4, constructive) The proof uses the following more general claim.

Claim 1. Consider a directed segment (p, r), for some p, r ∈ S, and a direction τ ∈ {+,−}.
Denote by q and s the neighbors of p and r (resp.) along CH(S) that are in Sτ (p, r) (possibly,
q = s or even q = r and s = p). Suppose that (p, r) is non-expanding in direction τ and that

¦ if τ = + then 6 trp ≤ π
2

for all t ∈ S+(p, r) \ {p, r};
¦ if τ = − then 6 prt ≤ π

2
for all t ∈ S−(p, r) \ {p, r}.

Then there is a 3π
2

-open spanning path for Sτ (p, r) that starts with 〈p, r〉.
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The condition on the angles above states that 〈p, r〉 can be extended to a 3π
2

-open path by any
single point from Sτ (p, r) \ {p, r}. Specifically, all conditions of the claim are fulfilled by any
diametrical segment (p, r) of S, for both of its two possible orientations. Hence, applying the
claim to both (p, r) and direction “+” as well as (r, p) and direction “+” yields Theorem 4.

It remains to prove Claim 1.

Proof. (Claim 1) We use induction on |Sτ (p, r)|. The statement is trivial if |Sτ (p, r)| ∈ {2, 3}.
Therefore let |Sτ (p, r)| ≥ 4 and consider the segment (q, s). Observe that by convexity of S the
segment (q, s) is non-expanding in direction τ and Sτ (q, s) = Sτ (p, r) \ {p, r}. From now on,
assume that τ = +; the case τ = − is symmetric.

q

p r

s

t

(a) Case 1: Angles.

q

p r

s

t

(b) Case 1: Path.

q

p r

s

t

(c) Case 2: Angles.

q

p r

s

t

(d) Case 2: Path.

Fig. 11. Constructing a 3π
2 -open spanning path.

Case 1 6 qsr ≥ π
2
.

Illustrated in Fig. 11(a) and 11(b) — (q, s) fulfills the angle condition, since for every
t ∈ S+(q, s) \ {q, s}

6 tsq = 6 tsr − 6 qsr ≤ 6 tsr − π

2
,

and since 6 tsr ≤ π by convexity of S. Thus, we can extend 〈q, s〉 to a 3π
2

-open spanning
path for S+(q, s) inductively. That path together with 〈p, r, q〉 forms a 3π

2
-open spanning path

for S.
Case 2 6 qsr < π

2
.

Illustrated in Fig. 11(c) and 11(d) — as (p, r) is non-expanding in direction “+”, we have
6 srp + 6 rpq ≤ π. Summing the angles within the quadrilateral (p, r, s, q) yields

2π = 6 srp + 6 rpq + 6 pqs + 6 qsr <
3π

2
+ 6 pqs ,

that is, 6 pqs > π
2
. We conclude that for every t ∈ S−(s, q) \ {q, s}

6 sqt = 6 pqt− 6 pqs < 6 pqt− π

2
≤ π

2

as 6 pqt ≤ π by convexity of S. Thus, we can extend 〈s, q〉 to a 3π
2

-open spanning path for
S−(s, q) inductively. That path together with 〈p, r, s〉 forms a 3π

2
-open spanning path for S.

In the remainder of this section we prove a statement that is even stronger than Theorem 4:
for points in convex position there exists a 3π

2
-open spanning path starting at any arbitrary point.

Corollary 1. For any finite set S ⊂ R2 of points in convex position and any p ∈ S there exists
a 3π

2
-open spanning path for S which has p as an endpoint.
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pd(n+1)/2e

p
p1

pb(n−1)/2c

pn−1
. . .

Fig. 12. Segments “parallel to” p.

Proof. For |S| ≤ 3 the statement is trivial. Hence sup-
pose |S| ≥ 4. Denote by (p = p0, p1, . . . , pn−1) the
sequence of points along CH(S) in counterclockwise
order and consider the sequence

(si = (pi, pn−i))i=1...b(n−1)/2c

of segments “parallel to p”, as depicted in Fig. 12. Observe that sb(n−1)/2c is non-expanding in
direction “−” because there are no more than three points in S−(pb(n−1)/2c, pd(n+1)/2e). Anal-
ogously, s1 is non-expanding in direction “+”. Therefore, the minimum index k, 1 ≤ k ≤
b(n− 1)/2c, for which sk is non-expanding in direction “−” is well defined.

If k = 1 then s1 is a segment that is non-expanding for both directions. Otherwise, by the
minimality of k the segment sk−1 is expanding for direction “−”. By definition, if si is expand-
ing in direction “−” then si+1 is non-expanding in direction “+”, for 1 ≤ i < b(n− 1)/2c.
Thus, in any case, sk is a segment that is non-expanding for both directions.

Suppose there is a point q ∈ S−(pk, pn−k) \ {pk, pn−k} for which 6 pkpn−kq > π
2
. Then the

convexity of S implies 6 rpn−kpk < π
2

for all r ∈ S+(pk, pn−k) \ {pk, pn−k}. Moreover, as sk is
non-expanding in direction “−” we have 6 rpkpn−k < π

2
. Application of Claim 1 to (pk, pn−k)

and τ = + yields a 3π
2

-open spanning path for S+(pk, pn−k) starting with 〈pk, pn−k〉. Similarly,
applying Claim 1 to (pn−k, pk) and τ = + we obtain a 3π

2
-open spanning path for S+(pn−k, pk)

starting with 〈pn−k, pk〉. Combining both paths provides the desired 3π
2

-open spanning path
for S. This path has p as one of its endpoints by construction.

In a symmetric way, we can handle the case that there is a point s ∈ S+(pk, pn−k)\{pk, pn−k}
for which 6 pn−kpks > π

2
. Finally, if neither of the points q and s exist, we can apply Claim 1

to (pk, pn−k) and τ = − as well as to (pn−k, pk) and τ = − and in this way obtain a 3π
2

-open
spanning path for S which has p as one of its endpoints.

4.2. General Point Sets

We finally consider the openness of spanning paths for general point sets. Unfortunately we
cannot give tight bounds in this case, but we do present a non-trivial upper bound on the open-
ness. Let S ⊂ R2 be a set of n points in general position. For a suitable labeling of the points
of S we denote a spanning path for (a subset of k points of) S with 〈p1, . . . , pk〉, where we call
p1 the starting point of the path. Now Lemma 1 follows directly from Theorem 5.

Lemma 1. Spanning paths are 5π
4

-open.

Theorem 5. Let S be a finite point set in general position in the plane. Then

(1) For every vertex q of the convex hull of S, there exists a 5π
4

-open spanning path 〈q, p1, . . . , pk〉
on S starting at q.

(2) For every edge q1q2 of the convex hull of S there exists a 5π
4

-open spanning path starting
at either q1 or q2 and using the edge q1q2, that is, a spanning path 〈q1, q2, p1, . . . , pk〉 or
〈q2, q1, p1, . . . , pk〉.

Proof. For each vertex p in a path G the maximum incident angle opG(p) is the larger of the
two incident angles (except for start- and endpoint of the path). To simplify the discussion we
consider the smaller angle at each point and prove that we can construct a spanning path such
that this angle is at most 3π

4
. We denote with (q, S) a spanning path for S starting at q, and
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with (q1q2, S) a spanning path for S starting with the edge connecting q1 and q2. The outer
normal cone of a vertex y of a convex polygon is the region between two half-lines that start at
y, are respectively perpendicular to the two edges incident at y, and are both in the exterior of
the polygon. We prove part (1) and (2) of Theorem 5 by induction on |S|. The base cases for
|S| = 3 clearly hold.

Induction for (1): Let K = CH(S \ {q}).
Case 1.1 q lies between the outer normal cones of two consecutive vertices y and z of K,

where z lies to the right of the ray −⇀qy.
Induction on (yz, S\{q}) yields a 5π

4
-open spanning path 〈y, z, p1, . . . , pk〉 or 〈z, y, p1, . . . , pk〉

of S \ {q}. Obviously 6 qyz ≤ π
2

< 3π
4

and 6 yzq ≤ π
2

< 3π
4

, and thus we get a 5π
4

-open span-
ning path 〈q, y, z, p1, . . . , pk〉 or 〈q, z, y, p1, . . . , pk〉 for S (see Fig. 13 (left)).

Case 1.2 q lies in the outer normal cone of a vertex of K.
Let p be that vertex and let y and z be the two vertices ofK adjacent to p, z being to the right
of the ray −⇀py. The three angles 6 qpz, 6 zpy and 6 ypq around p obviously add up to 2π. We
consider subcases according to which of the three angles is the smallest, the cases of 6 qpz
and 6 ypq being symmetric (see Fig. 13 (middle)).

Case 1.2.1 6 zpy is the smallest of the three angles.
Then, in particular, 6 zpy < 3π

4
. Assume without loss of generality that 6 qpz is smaller

than 6 ypq and, in particular, that it is smaller than π. Since q is in the normal cone of p, 6 qpz
is at least π

2
, hence 6 pzq is at most π

2
< 3π

4
. Let S ′ = S \ {q, z} and consider the path that

starts with q and z followed by (p, S ′), that is 〈q, z, p, p1, . . . , pk〉. Note that 6 zpp1 ≤ 6 zpy.
Case 1.2.2 6 ypq is the smallest of the three angles.

Then 6 ypq < 3π
4

. Moreover, in this case all three angles 6 qpz, 6 ypq and 6 zpy are at least π
2
,

the first two because q lies in the normal cone of p, the latter because it is not the smallest
of the three angles. We have 6 qyp < π

2
because this angle lies in the triangle containing

6 ypq ≥ π
2
, and 6 ypq < 3π

4
by assumption. We iterate on (py, S \ {q}) and get a 5π

4
-open

spanning path on S \ {q} by induction, which can be extended to a 5π
4

-open spanning path
on S, 〈q, p, y, p1, . . . , pk〉 or 〈q, y, p, p1, . . . , pk〉, respectively.

Induction for (2): Let b and c be the neighboring vertices of q1 and q2 on CH(S), such that
CH(S) reads . . . , b, q1, q2, c, . . . in ccw order (see Fig. 13 (right)).

Case 2.1 α < 3π
4

or ω < 3π
4

.
Without loss of generality assume that α < 3π

4
. By induction on (q1, S \ {q2}) we get a

5π
4

-open spanning path 〈q1, p1, . . . , pk〉 on S \ {q2}. As 6 q2q1p1 ≤ α < 3π
4

we get a 5π
4

-open
spanning path 〈q2, q1, p1, . . . , pk〉 on S.

Case 2.2 Both α and ω are at least 3π
4

.
Let l1 and l2 be the lines through q1 and q2, respectively, and orthogonal to q1q2. Further let
K = CH(S \ {q1, q2}) and with T we denote the region bounded by q1q2, l1, l2 and the part
of K closer to q1q2 (see Fig. 13 (right)).

y

z

q y

z

q
p

T

c

q1

q2

l1

l2

b

α

ω

Fig. 13. Case 1.1 (left), Case 1.2 (middle), Case 2 (right).
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α1

α2

α

γ1

γ2
γ

β2

β

δ

ε
η

q1

q2

p

z

y
b

c
ω

q1

q2

c
z

l2

l1

b

y
q1

q2

c

z

l2

l1

b

y

p

Fig. 14. Case 2.2.1 (left), Case 2.2.1.[1|2] (middle), Case 2.2.2 (right).

Case 2.2.1 At least one vertex p of K exists in T.
If there exist several vertices of K in T , then we choose p as the one with smallest distance
to q1q2 (see Fig. 14 (left)). Obviously the edges q1p and q2p intersect K only in p and the
angles α1 and β are each at most π

2
(see Fig. 14 (middle)).

Case 2.2.1.1 γ2 > π
2

(see Fig.14 (middle)).
By induction on (p, S \ {q1, q2}) we get a 5π

4
-open spanning path 〈p, p1, . . . , pk〉 for

S \ {q1, q2}. Moreover the smaller of 6 q2pp1 and 6 p1pq1 is at most 2π−π
2

2
= 3π

4
. Thus we

get a 5π
4

-open spanning path 〈q1, q2, p, p1, . . . , pk〉 or 〈q2, q1, p, p1, . . . , pk〉 for S.
Case 2.2.1.2 γ2 ≤ π

2
(see Fig.14 (middle)).

Let y and z be vertices of K, with y being the clock-wise neighbor of p and z being the
counterclockwise one (b might equal y and c might equal z). At least one of α1 or β is ≥ π

4
.

Without loss of generality assume that β ≥ π
4
, the other case is symmetric. Then q1, q2, p, y

form a convex four-gon because α ≥ 3π
4

and β ≥ π
4

imply that 6 bpq2 in the four-gon
b, q1, q2, p is less than π. Therefore also γ ≤ 6 bpq2 < π. We show that all four angles α1,
γ1, β2 and δ are at most 3π

4
. Then we apply induction on (py, S \ {q1, q2}) and get a 5π

4
-open

spanning path on S \ {q1, q2}, which can be completed to a 5π
4

-open spanning path for S,
〈q2, q1, p, y, p1, . . . , pk〉 or 〈q1, q2, y, p, p1, . . . , pk〉, respectively.
¦ Both α1 and β2 < β are clearly smaller than π

2
, hence smaller than 3π

4
.

¦ For γ1, the supporting line of yp must cross the segment q1b, so that we have α2 + γ1 < π
(they are two angles of a triangle). Also, α2 = α− α1 ≥ 3π

4
− π

2
= π

4
, so γ1 < 3π

4
.

¦ Analogously, for δ, observe that the supporting line of yp must cross the segment q2c, so
that we have ω − β2 + δ < π. Also ω − β2 ≥ π

4
, so δ < 3π

4
.

Case 2.2.2 No vertex of K exists in T .
Both, l1 and l2, intersect the same edge yz of K (in T ), with y closer to l1 than to l2 (see
Fig. 14 (right)). We show that the four angles 6 yzq1, 6 q2q1z, 6 yq2q1 and 6 q2yz are all
smaller than 3π

4
. Then induction on (yz, S \ {q1, q2}) yields a path that can be extended to

a 5π
4

-open path 〈q2, q1, z, y, p1, . . . , pk〉 or 〈q1, q2, y, z, p1, . . . , pk〉. Clearly, the angles 6 q2q1z
and 6 yq2q1 are both smaller than π

2
. The sum of 6 q2yz + 6 cq2y is smaller than π because the

supporting line of yz intersects the segment q2c. Now, 6 cq2y is at least π
4

by the assumption
that 6 cq2q1 ≥ 3π

4
. So, 6 q2yz < 3π

4
. The symmetric argument shows that 6 yzq1 < 3π

4
.

It is essential for Theorem 5 that the starting point of a 5π
4

-open path is an extreme point of S,
as an equivalent result is in general not true for interior points. As a counter example consider
a regular n-gon with an additional point in its center. It is easy to see that for sufficiently large
n starting at the central point causes a path to be at most π + ε-open for a small constant ε.
Similar, non-symmetric examples exist already for n ≥ 6 points, and analogously, if we require
a specific interior edge to be part of the path, there exist examples bounding the openness
by 4π

3
+ ε [18].
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5. Conclusion and open problems

In this paper we introduced the concept of openness of plane straight line graphs, a general-
ization of pointedness as used in the context of pseudo-triangulations. We derived bounds for
the maximal openness for the classes of triangulations, spanning trees (general, as well as with
bounded vertex degree), and spanning paths. Despite the examples presented in the final discus-
sion of Section 4.2 we state the following conjecture:

Conjecture 1. Every finite point set in general position in the plane has a 3π
2

-open spanning path.

Of interest are of course also the algorithmic problems associated with openness: for a given
point set, how fast can we compute the maximal open plane straight-line graph of a given class?
For which classes can this be done in polynomial time?
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