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Abstract

We investigate the number of plane geometric, i.e.,
straight-line, graphs, a set S of n points in the plane
admits. We show that the number of plane graphs and
connected plane graphs as well as the number of cycle-
free plane graphs is minimized when S is in convex
position. Moreover, these results hold for all these
graphs with an arbitrary but fixed number of edges.
Consequently, we provide simple proofs that the number
of spanning trees, cycle-free graphs (forests), perfect
matchings, and spanning paths is also minimized for
point sets in convex position.

In addition we construct a new extremal configura-
tion, the so-called double zig-zag chain. Most notewor-
thy this example bears Θ∗(

√
72

n
) = Θ∗(8.4853n) tri-

angulations and Θ∗(41.1889n) plane graphs (omitting
polynomial factors in both cases), improving the previ-
ously known best maximizing examples.

1 Introduction

Let us denote by Sn the set of sets of n points in the
plane in general position, that is, no three points of a set
S ∈ Sn lie on a common line. With Γn ∈ Sn we denote
any set of n points in convex position. Throughout
this paper we consider plane geometric graphs G on
top of S ∈ Sn. That means that the set of vertices
of G is S, edges of G are straight-line segments spanned
by vertices of S and two edges of G do not intersect
in their interior but might have endpoints in common.
From now on we use the term graph to denote plane
geometric graphs, unless otherwise noted.

In other words, we consider the rectilinear drawing
of the complete graph Kn with vertex set S ∈ Sn and
study its crossing-free subgraphs. The problem of how

large the number of such subgraphs may be has been
attracting a lot of attention; many references can be
found in the handbook [15] and in the lately published
book [10]. It has also been proved recently that the set
of crossing-free subgraphs can be realized as a polytope
[17].

A fundamental contribution was given by Ajtaj
et al. [9]: the number of plane graphs on top of
any S ∈ Sn is bounded from above by some fixed
exponential cn; the bound c ≤ 1013 was given there
and has been successively improved up to c ≤ 472. It
is worth mentioning that a main tool developed in [9] is
the nowadays famous “Crossing Lemma”: every planar
drawing of a graph with n vertices and m > 4n edges
contains at least cm3/n2 crossings, for some constant c.
This result, independently proved by Leighton [16], has
later found many applications.

In fact, the motivation in [9] was to provide an up-
per bound for the number of polygonizations (crossing-
free spanning cycles) on top of any S ∈ Sn. Obviously
the bound for generic plane graphs applies, yet better
specific bounds have been obtained for polygonizations
as well as for plane triangulations, perfect matchings,
spanning trees and many other classes of plane graphs;
precise references are given later in this paper.

To describe the asymptotic growth of the number
of graphs we use the O∗()-, Ω∗()-, and Θ∗()-notation.
In these notations we neglect polynomial factors and
just give the dominating exponential term. Moreover
when the base of the exponent is explicitly given as a
numerical value, this has to be seen as an approximation
up to the given precision.

Maximal plane graphs, i.e., triangulations, are a
case of special interest, because any plane graph can
be completed to a triangulation and hence any upper



bound O∗(αn) on the number of triangulations implies
a corresponding upper bound O∗(23nαn) = O∗((8α)n)
on the number of generic plane graphs, because every
triangulation has at most 3n − 6 edges and therefore
contains at most 23n subgraphs, see also Table 1. The
current best upper bound for triangulations is O∗(59n)
and was obtained by Santos and Seidel in [20]; the
aforementioned bound of O∗(472n) for plane graphs is
derived from that.

On the opposite direction, it is also known that ev-
ery S ∈ Sn admits at least Ω∗(2.33n) triangulations,
and it has been conjectured that the number of trian-
gulations is minimized when S is the point set called
double circle, that has Θ∗(

√
12

n
) triangulations [5].

In this paper we obtain new lower and upper bounds
for the maximum and minimum, respectively, number
of plane geometric graphs of different types. All given
bounds will be exponential bounds of the form αn where
the goal is to optimize the base α.

More precisely, in Section 2 we prove that the
number of plane graphs of several classes is minimized
by point sets in convex position, a fact that was known
for perfect matchings, spanning trees and spanning
paths [14, 21]. Here we provide a unified approach that
encompasses those results and extends to many more
classes.

In Sections 3 and 4 we turn our attention to up-
per bounds and, in particular, we prove the existence of
a certain point set that has Θ∗(

√
72

n
) = Θ∗(8.4853n)

triangulations and Θ∗(41.1889n) plane graphs, improv-
ing the previously known best maximizing examples
and disproving the common belief that the tight up-
per bound for the number of triangulations would be
Θ∗(8n).

We use the following notation for the indicated
classes of plane graphs on top of S ∈ Sn: sc(S):
spanning cycles (Hamiltonian cycles, polygonizations);
pm(S): perfect matchings; sp(S): spanning paths
(Hamiltonian paths); tr(S): triangulations; ppt(S):
pointed pseudo triangulations; pt(S): pseudo triangu-
lations; st(S): spanning trees; cf(S): cycle-free plane
graphs (forests); cg(S): connected graphs; pg(S): all
plane graphs. We will use the notation sc(n) (similar
for the other classes) if a given property holds for any
point set of cardinality n.

2 Convexity Minimizes

In the following subsections we provide injective map-
pings of all plane graphs of Γn to any set of Sn such
that the number of edges is retained.

2.1 Injective Mappings Consider the set of all
plane graphs pg(Γn) on top of Γn, an arbitrary set

S ∈ Sn together with its set of plane graphs. We
will show that we can map G ∈ pg(Γn) to a graph
G′ ∈ pg(S) in an injective way such that the number of
edges of G and G′ is the same. We will provide different
mappings to utilize the special properties of connected
or cycle-free graphs.
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Figure 1: Injective mapping of a plane geometric graph
G of Γn.

2.1.1 Mapping for Plane Graphs Let G, Γn, and
S be given as defined above. We first fix root vertices
r ∈ Γn and r′ ∈ S. The root vertices have to be
chosen as an arbitrary, but unique extreme vertex1.
We then label the remaining vertices of Γn in clockwise
order around r and the remaining vertices of S around
r′, respectively, see Figure 1. Consider the (possibly
empty) fan of all vertices of Γn connected to r in G
and connect the vertices with corresponding labels in
S to r′ in G′. By extending the inserted edges to rays
as indicated in the right part of Figure 1, we are left
with subsets of equal number of vertices for both, Γn

and S. We proceed on these subsets in a recursive
manner, using the just connected vertices as new, ’local’
root vertices. Note that the extension of edges to rays
is limited to the interior of each subset. Each local
root conquers the set of all vertices in the wedge to
its left, excluding its parent root and including the left-
neighbored local root if it exists. The last vertex added
to r (in clockwise order) plays a double-role, as it is the
local root for its left and right wedge, respectively.

Note that in each recursive step the vertices of a
subset are locally relabeled in both sets according to
their clockwise order around the local root vertex. As
all vertices of a subset lie in a halfplane defined by a line
through the local root vertex, there exists a canonical
vertex of the subset to start the labeling from. Therefore
this labeling is well defined. For example, in a second
recursive step in Figure 1, v4 is the local root of the set
{v2, v3, v4}. As the vertices are locally resorted around

1For example, we can choose the vertex with the smallest y-

coordinate, and in case there are ties, the one with the minimum

x-coordinate among them. Note that we use this method in all

given figures.



v4 the edge v2v4 of G maps to the edge v3v4 of G′.
This shows why the given mapping does not guarantee
isomorphic graphs. Another, simpler example is given in
Figure 2. See Subsection 2.1.3 for isomorphic mappings
for cycle-free plane graphs.
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Figure 2: Transformations resulting in non-isomorphic
graphs. Corresponding edges are labeled in order of
their consideration.

If a (local) root vertex is not connected to any
interior vertex of the subset, in the next recursive step
a new root vertex is chosen similar to the first step. For
example, in Figure 1, v7 is neither connected to v5 nor
v6, such that in the next step v6 in Γn and v5 in S
are the corresponding local root vertices of the subset
{v5, v6} and the edge v5v6 is inserted in G′.

The recursion stops if the local root vertex is the
only vertex of a subset. As each subset has a strictly
smaller cardinality than the previous set (the previous
root vertex is never part of a subset) the process
terminates.

Theorem 2.1. For any fixed number k, 0 ≤ k ≤ 2n−3,
the number of plane geometric graphs with k edges on
top of a set of n points is minimized for sets in convex
position.

Proof. To prove the theorem it is sufficient to show that
the above mapping is injective. First observe that all
recursive steps are independent in the sense that no
edges constructed in G′ cross the rays separating the
subsets of S. Thus the image of G is in fact a plane
graph G′. Intuitively the injectivity of our mapping
follows then from this independency and the fact that
each root vertex under consideration is connected to a
uniquely determined subset of vertices.

More formal we prove the statement that there ex-
ists an injective mapping by induction over the number
of points. The root vertex is chosen in a unique way and
splits the problem into smaller subproblems. Note that
this is still true if the chosen root of Γn is not connected
to other vertices, as the cardinality of the remaining
problem is reduced by at least one. Thus we can ap-
ply the induction hypothesis to get injective mappings
for each sub set. These sub-mappings are combined in a
unique way via the root vertex, and the theorem follows.

Corollary 2.1. The number of plane geometric
graphs on top of a set of n points is minimized for sets
in convex position.

The left side of Figure 2 shows a connected plane
graph with a cycle which is transformed into a non-
isomorphic graph. Thus our transformation is not
suited for degree preservation, bipartite graphs etc.
Also connectivity is not preserved by our mapping as
can be seen from the right part of Figure 2. In the
next section, we will give a variation of the mapping
which preserves connectivity and in Subsection 2.1.3 we
will extend this to an isomorphic mapping for cycle-free
plane graphs.

2.1.2 Mapping for Connected Plane Graphs In
this section, we consider cg(Γn), the set of connected
plane graphs on top of Γn. Let G ∈ cg(Γn).

From the right part of Figure 2 it can be seen that
troubles with connectivity occur when, within the same
fan, two neighbored local root vertices r1 and r2 of S
get connected in G′. This is caused by the resorting of
the subset V of vertices between r1 and r2 (including
r1) around r2.
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Figure 3: Using linear separators (dashed) to preserve
connectedness. Corresponding edges are labeled with
the same letter.

Observe that if there would have already been a
connection between r1 and r2 in V (not necessarily a
direct edge) then connectivity would not have changed.
To solve this problem we allow an edge between r1 and
r2 in G′ only if they are connected in the subgraph in-
duced by V . Note that this only preserves connected-
ness for connected graphs G, but does not guarantee
isomorphism.

For a subset S̃ of Γn and a graph G̃ of S̃ we call
a straight line through a vertex of S̃ which does not
intersect any edge of G̃ a linear separator for S̃. For our
new mapping we insert a linear separator into a wedge
of G formed by two neighbored root vertices r1 and r2 of
a fan whenever r1 and r2 are not connected within the
wedge, see Figure 3. In this case the subset of vertices
is split into two independent parts and we have two
separated recursive steps for the wedge, one with local
root r1, and one with local root r2, respectively. Thus
no edge inserted in G′ crosses the linear separator.

Observe that in the example of Figure 3, vertices v3



and v6 would be singletons in G′ using the mapping of
Section 2.1.1, that is, without using linear separators.

That our new mapping indeed respects connected-
ness can be seen from the fact that each (local) root
vertex is properly connected to its subset, and not to a
neighbored root vertex of the same fan. Thus the claim
follows from the recursive approach by induction.

Figure 4: Using linear separators in combination with
non-connected graphs causes loss of injectivity.

Note that connectivity plays a crucial role when
using linear separators. We can guarantee injectivity of
the mapping only if, in the case that there is no linear
separator, all vertices of the subset V are connected
within the subgraph induced by V . The right part of
Figure 4 shows a non-connected graph, where no linear
separator exists. As the subset V does not induce a
connected graph, the suggested approach does not work.
Thus the example shows that we can use this method
only for connected graphs.

Theorem 2.2. For any fixed number k, 0 ≤ k ≤ 2n−3,
the number of connected plane geometric graphs with k
edges on top of a set of n points is minimized for sets
in convex position.

Corollary 2.2. The number of connected plane geo-
metric graphs on top of a set of n points is minimized
for sets in convex position.

2.1.3 Isomorphic Mapping for Cycle-Free

Plane Graphs Recall that with cf(Γn) we denote
the set of all cycle-free, plane graphs on top of Γn.
Let G ∈ cf(Γn) and let us point out that G is not
necessarily connected.

From Figure 4 it can be seen that the mapping of the
last section is non-isomorphic if cycles of G are broken
and similar examples exist if cycles in G′ are closed.
Therefore we now extend the mapping of the previous
section.

As G has been a connected graph in the last section,
we had at most one linear separator for each wedge.
Now, as G is cycle-free but possibly not connected, we
are going to use multiple linear separators per wedge.
We insert a linear separator between two vertices of the
wedge whenever these two vertices are not connected
within the wedge, see Figure 5. As G is cycle-free
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Figure 5: Cycle-free graphs: Using multiple linear
separators guarantees isomorphic mapping.

there is always at least one linear separator per inner
wedge. In addition we get a linear separator for each
connected component which lies within a wedge but
is not connected to the root vertex. Thus, situations
like in Figure 4 cannot occur. Moreover, any recursive
subset is independent from other subsets not only in
the sense that no other edges cross, but also that there
are no other incident edges from outside V except the
ones from the (local) root. Thus, the mapping indeed
generates isomorphic graphs.

The local labeling in recursive steps might still
change. Although we get an isomorphic graph G′, the
final labeling of S needs not to be the one obtained by
sorting the vertices around r′. See, for example, v1 and
v2 in Figure 5.

Theorem 2.3. There exists a mapping of all cycle-free
plane geometric graphs on top of a set of n points in
convex position to isomorphic plane geometric graphs
on top of any set of n points.

Corollary 2.3. The number of (plane) spanning
trees, spanning paths, perfect matchings, and cycle-free
graphs (forests) is minimized for point sets in convex
position.

Note that for graphs with at least k ≥ 3 edges
the minimum stated in the presented theorems and
corollaries is unique. That is, for any set S of n points,
S 6= Γn, there exist strictly more such graphs than on
top of Γn.

That the number of crossing-free perfect matchings
and spanning trees is minimized for convex sets has been
shown in [14]. A similar result has been obtained for the
number of spanning paths [21].

With the exception of triangulations the cardinality
of all classes of plane graphs considered in this paper
is minimized for point sets in convex position. The
accurate statement for triangulations would be that
the number of plane graphs with k = 2n − 3 edges is
minimized for sets in convex position.

The second column of Table 3 in Section 4 shows the
asymptotic growth of several types of plane graphs for



Type Number Type Number
sc(n) O∗(3n) [21] pt(n) O∗(3n) [19]

pm(n) O∗(
√

3
n
) [*] st(n) O∗(5.3̇n) [18]

sp(n) O∗(3n) [21] cf(n) O∗(6.75n) [*]
tr(n) 1 cg(n) O∗(8n)
ppt(n) O∗(3n) [19] pg(n) O∗(8n) [14]

Table 1: Number of different types of graphs per
triangulation. For easier comparison all expressions
are given by their numerical values. See the related
references for exact formulas, where [*] stands for the
paper at hand.

the convex set Γn. Except for triangulations the given
bounds are lower bounds for these types of graphs.

3 On Upper Bounds

In order to show the bound of O∗(472n) for the number
of plane graphs in [14], the upper bound on the number
of triangulations has been used. As any triangulation
of S has at most 3n − 6 edges, it contains at most
23n−6 plane subgraphs. Therefore we get the bound
|pg(n)| ≤ 23n−6|tr(n)| = O∗(472n). The last equality
comes from the currently best upper bound for |tr(n)|
of O∗(59n) given in [20].

For the maximum number of cycle-free graphs in a
triangulation we get an upper bound of O(

(

3n−6
n−1

)

) =
O∗(6.75n). For the special case of spanning trees this
has recently been improved to O∗(5.3̇n) by observing
that the dual tree has bounded degree 3 [18].

Taking the average vertex degree in a triangulation
into account, a bound of O∗(3n) for the number of span-
ning paths in a given triangulation can be shown [21]:
Starting at an arbitrary beginning vertex construct the
path edge-wise step by step. At each vertex the num-
ber of possible ways to continue, that is, to choose the
next edge, is its effective degree. Here effective degree
means that we do not count edges of the triangulation
which have already been considered before. The reason
is that once a vertex v has been visited, no edge incident
to v can be used later on to continue the path (even if
the edge has not been chosen, as v cannot be visited
again). Hence, every edge is considered only once and
therefore the sum of the effective degree of all vertices
is the number of edges of the triangulation, bounded
by 3n− 6. Essentially the number of different spanning
paths is the product of the effective degrees. This prod-
uct is maximized by uniformly distributing the over-all
degree, and the given bound follows.

Using the same arguments we get a bound of
O∗(

√
3

n
) for the number of perfect matchings in a

triangulation. Here a single step consists of choosing
the leftmost unused vertex and matching it to one of its
(effective) incident neighbours.

The bound on |sp(n)| also implies an upper bound
for the number of spanning cycles: For every spanning
cycle C ∈ sc(S), S ∈ Sn, we get n spanning paths
by omitting one edge of C. As any two elements of
sc(S) differ by at least two edges this implies |sp(S)| ≥
n · |sc(S)|.

Most of the upper bound constructions for various
classes of plane graphs are based on this relation to
triangulations. For example, the bound on the num-
ber of cycle-free graphs in a triangulation implies the
upper bound of O∗(398.25n) for the number of cycle-
free graphs given in Table 2. Only recently different
approaches have been investigated, an outstanding re-
sult being the O∗(10.04n) bound for crossing-free per-
fect matchings [21]. Syntactically their proof follows the
proof of [20] bounding the number of triangulations, but
uses novel ideas and refined observations.

Interestingly the result for crossing-free perfect
matchings can be used to bound the number of spanning
cycles and spanning paths [21]: Observe that for even n
every spanning cycle contains two crossing-free perfect
matchings. Thus |sc(n)| ≤ |pm(n)|2. Similarly every
spanning path contains a crossing-free perfect match-
ing on n points and a crossing free perfect matching on
n− 2 points (omit start and endpoint). We thus get an
upper bound of O∗(100.81n) for both structures. Most
recently this bound has been improved to O∗(94n) for
spanning cycles [21].

4 Special Configurations

In the following subsections, we consider two well known
configurations, namely the double circle [5] and the
double chain [14], as well as a new configuration, the so-
called double zig-zag chain (DZZC). We will show that
the DZZC is a new extremal example for maximizing
the asymptotic number of triangulations and of all plane
graphs on top of a given point set.

4.1 Double Circle and Double Chain

4.1.1 The number of plane graphs of the Dou-

ble Circle

Theorem 4.1. Let |pg(DCn)| be the number
of plane geometric graphs of the double cir-
cle containing n points. Then |pg(DCn)| =
∑

n

2

i=0 (−1)i ·
(n

2
i

)

· 2i+ n

2 · |pg(Γn−i)|, where |pg(Γm)| is
the number of plane geometric graphs of the convex
m-gon.



Type Lower Bound Number for Γ10 Upper Bound
sc(n) 1 1 Ω∗(4.64n) [14] O∗(94n) [21]
pm(n) Θ∗(2n) [14] 42 Ω∗(3n) [14] O∗(10.04n) [21]
sp(n) Θ∗(2n) 1 280 Ω∗(4.64n) [14] O∗(100.81n) [21]
tr(n) Ω∗(2.33n) O∗(3.47n) [5] 250 Ω∗(8.48n) [*] O∗(59n) [20]
ppt(n) Θ∗(4n) [4] 1 430 Ω∗(12n) [8] O∗(177n) [19]
pt(n) Θ∗(4n) [4] 1 430 Ω∗(20n) [8] O∗(177n) [19]
st(n) Θ∗(6.75n) [13] 246 675 Ω∗(10.42n) [11] O∗(314.7n) [18]
cf(n) Θ∗(8.22n) [13] 2 117 283 Ω∗(11.09n) [14] O∗(398.25n) [*]
cg(n) Θ∗(10.39n) [13] 5 616 182 Ω∗(35.49n) [*] O∗(472n) [14]
pg(n) Θ∗(11.65n) [13] 21 292 032 Ω∗(41.18n) [*] O∗(472n) [14]

Table 2: Asymptotic bounds for various classes of plane graphs. All types except triangulations are minimized
for sets in convex position.

e
e

Figure 6: Moving the interior points to the outside of
the convex hull.

Proof. We move every interior point of the double circle
to the outside of its corresponding convex hull edge e,
see Figure 6. A plane geometric graph of the double
circle might have crossings in the resulting drawing. We
count the number of plane geometric graphs of this point
set which do not contain any of the former convex hull
edges (i.e., an edge e in the right drawing of Figure 6).
Since a convex hull edge of the double circle appears
in exactly half of all plane graphs, we simply have to
multiply this number by 2

n

2 .
If edge e belongs to a plane graph, then there are

four possibilities to connect (or not) the point which is
separated by e to the plane graph. Hence, we assume
this separated point does not belong to the graph. But
then, e is a convex hull edge and appears in half of
all graphs. Since our new point set is convex, the

edge e appears in |pg(Γn−1))|
2 · 4 plane graphs of pg(Γn).

Similarly, i edges “of type e” appear simultaneously in
|pg(Γn−i)|

2i · 4i plane graphs of pg(Γn). Now, in order to
count all plane geometric graphs not containing an edge
“of type e” we can use the inclusion-exclusion principle.
We obtain |pg(DCn)| = (|pg(Γn)| − n

2 · 2 · |pg(Γn−1)| +
(n

2
2

)

· 4 · |pg(Γn−2)| − · · · + (−1)
n

2 · 2n

2 · |pg(Γn

2
)|) · 2n

2 .

Corollary 4.1. |pg(DCn)| = Θ∗
((

4
√

7 + 5
√

2
)n)

= Θ∗(15.0045n).

Proof. We know that |pg(Γm)| = Θ∗
(

(

6 + 4
√

2
)m

)

[13]

and therefore we get |pg(DCn)| =
∑

n

2

i=0 (−1)i ·
(n

2
i

)

· 2i+ n

2 · Θ∗
(

(

6 + 4
√

2
)n−i

)

= Θ∗
(

∑

n

2

i=0

(

(n

2
i

)

·
(

−2
6+4

√
2

)i
)

· (6 + 4
√

2)n · 2n

2

)

Using the binomial theorem
∑t

i=0

(

t
i

)

· xi = (1 + x)t we
get |pg(DCn)| =

Θ∗
(

(

1 − 1
3+2

√
2

)
n

2 · (6
√

2 + 8)n

)

which simplifies to

the given formula.

4.1.2 The number of non-crossing matchings in

the double circle Let Se be a set of 2m− k points in
convex position, and let Si be a set of k points interior
to CH(Se), k ≤ m, each one infinitesimally close to
a different midpoint of an edge of CH(Se). When
|Se| = |Si| = k = m the configuration is the double
circle.

Let µ(2m, k) denote the number of non-crossing
perfect matchings in Se∪Si for the special case in which
all the points in Si correspond to k consecutive edges of
CH(Se).

Lemma 4.1. For 2 ≤ k ≤ m − 1, m ≥ 3 we have
µ(2m, k) = µ(2m, k − 1) + µ(2m − 2, k − 2).

Proof. Let a and b be the endpoints of an edge of
CH(Se) such that there is a point c ∈ Si close to the
midpoint of ab, and one of the neighboring edges of
CH(Se) has also a point from Si but the other one does
not (refer to Figure 7). Let us call C1 this configuration
of points, and let C2 be the configuration obtained from
C1 by replacing c with a point d exterior to CH(Se)
and very close to the midpoint of ab. Let C3 be the
configuration obtained from C1 after the removal of the
points a and b.



a

b

c

C
1

a

b

d

C
2

a

b

c

C
3

Figure 7: Illustrating the recursion for µ(2m, k).

Now notice that non-crossing matchings in C1 are
in one-to-one correspondence with the matchings in C2,
with d playing the role of c, with the exception of those
matchings in which a is matched with b; these are in
one-to-one correspondence with the matchings in C3,
which proves the claim.

Lemma 4.2. The following equalities hold:

(a) µ(2m, 0) = Cm;

(b) µ(2m, 1) = µ(2m, 0) + µ(2m− 2, 0) = Cm + Cm−1;

(c) µ(2m, m) = µ(2m, m − 1) + µ(2m − 2, m − 3);

where Cm is the m-th Catalan number.

Proof. Equality (a) is well known, see for example [13].
Equality (c) and the first part of (b) are proved by
moving a point from Si to the exterior of CH(Se) as
in the proof of Lemma 4.1.

Proposition 4.1. For 2 ≤ k ≤ m − 1, m ≥ 3 we have
µ(2m, k) =

∑k+1
s=0

(

k+1−s
s

)

Cm−s.

Proof. First notice that the binomial coefficient is 0 for
k + 1 − s < s. The proof is straightforward using
Lemma 4.1 and induction. The base case µ(2m, 2) =
Cm + 2Cm−1 is proved combining Lemma 4.1 with
Lemma 4.2.

Finally, combining Lemma 4.2 with Proposition 4.1
we obtain the number of perfect matchings of the double
circle.

Corollary 4.2. The number of non-crossing perfect
matchings of the double circle is µ(2m, m) =

m
∑

i=0

(

m − i

i

)

Cm−i +
m−2
∑

j=0

(

m − 2 − j

j

)

Cm−1−j .

The preceding result can be used in order to obtain
an asymptotic estimate of µ(2m, m). The generic

term in the expression is roughly
(

(1−α)m
αm

)

C(1−α)m ≈
2(1−α)[H( α

1−α
)+2]m, and elementary computations show

that the exponent is maximized for α = (2 −
√

2)/4 ≈
0.1464466, therefore the number of perfect matchings of
a double circle with n = 2m points is Θ∗(22.271553m) =

Θ∗(4.828427m) = Θ∗(
√

4.828427
n
) = Θ∗(2.197368n).

Theorem 4.2. The double circle of n points has
Θ∗(2.197368n) crossing-free perfect matchings 2.

With similar arguments as used at the end of
Section 3 we obtain

Corollary 4.3. The double circle of n points has
O∗(4.828427n) plane spanning cycles and spanning
paths.

With a similar approach we can obtain lower bounds
for the number of spanning trees and connected graphs
for the double circle which are slightly better than the
bounds for the convex case, cf. Table 3. We do not
expect these bounds to be tight.

4.1.3 The number of connected plane graphs of

the Double Chain

Theorem 4.3. The double chain has Ω∗(35.49n) con-
nected plane graphs.

Proof. Consider all graphs of the double chain such that
the subgraphs of both convex n

2 -gons of the double
chain are connected. Adding one vertical edge of
the convex hull of the double chain gives a connected
graph. From [14] and Section 4.2.1 we know that
there are Θ∗(39.80n) plane graphs in the double chain.
Moreover a convex n-gon has Θ∗(11.65n) plane graphs
and Θ∗(10.39n) connected plane graphs [13]. We thus
have to correct the number 39.80n by the factor ( 10.39

11.65 )n

and get a lower bound of Ω∗(35.49n) for the number of
connected plane graphs of the double chain.

4.2 The Double Zig-Zag Chain - a new Ex-

tremal Configuration In this section we combine the
double circle and the double chain in order to obtain a
new extremal configuration, the so-called double zig-zag
chain (DZZC).

While the double circle has Θ∗(
√

12
n
) triangula-

tions and is thus conjectured to minimize this num-
ber [5], the double chain was up to now the configu-
ration with the asymptotically highest number of trian-
gulations, namely Θ∗(8n) [14]. It was widely believed
(including most of the authors) that this could be the
true upper bound for the number of triangulations.

To obtain the double zig-zag chain, take two dis-
torted double circles with n

2 points each and combine
them within a convex quadrilateral as indicated in Fig-
ure 8. The example is similar to the double chain, but

2The precise base can be computed from the formula
q

2
log 16+

√

2(log 4−log 8)+(
√

2−2) log(2−
√

2)+(2+
√

2) log(2+
√

2)
log 16 .



Type Convex Set Double Circle Double Chain Double Zig-Zag Chain
sc(n) 1 O∗(4.83n) [*] Ω∗(4.64n) O∗(5.61n) [14]
pm(n) Θ∗(2n) [14] Θ∗(2.20n) [*] Θ∗(3n) [14]
sp(n) Θ∗(2n) O∗(4.83n) [*] Ω∗(4.64n) [14]

tr(n) Θ∗(4n) Θ∗(
√

12
n
) [5, 8] Θ∗(8n) [14] Θ∗(8.48n) [*]

ppt(n) Θ∗(4n) Θ∗(
√

28
n
) [8] Θ∗(12n) [8]

pt(n) Θ∗(4n) Θ∗(
√

40
n
) [8] Θ∗(20n) [8]

st(n) Θ∗(6.75n) [13] Ω∗(6.89n) Ω∗(10.42n) [11]
cf(n) Θ∗(8.22n) [13] Ω∗(8.22n) Ω∗(11.09n) [14]
cg(n) Θ∗(10.39n) [13] Ω∗(10.84n) Ω∗(35.49n) [*] Ω∗(32.49n) [*]
pg(n) Θ∗(11.65n) [13] Θ∗(15.0046n) [*] Θ∗(39.80n) [14][*] Θ∗(41.19n) [*]

Table 3: Special configurations and their asymptotic number of graphs.

Figure 8: Double zig-zag chain: combining double circle
and double chain.

instead of two concave chains we now have two zig-
zag chains of edges splitting the area of the quadrilat-
eral into three parts. These edges are unavoidable in
the sense that they are not crossed by any other edge
spanned by the point set. For example, the edges of the
zig-zag chains will have to be part of any triangulation.
Note that the two zig-zag configurations are at suffi-
cient distance from each other such that any vertex of
a chain can ’see’ all vertices of the opposite chain, that
is, an edge connecting a vertex of the lower chain to a
vertex of the upper chain does not cross a zig-zag edge.
Both, upper and lower part, are double circles with n

2

vertices and thus Θ∗(
√

12
n/2

) triangulations each. To
be precise, there is one interior vertex near the horizon-
tal convex-hull edges missing in each subset, which does
not influence the asymptotic counting arguments for the
upper and lower parts.

4.2.1 The number of plane graphs of the DZZC

Theorem 4.4. The double zig-zag chain of n points
contains Θ∗(41.1889n) plane geometric graphs.

n/4

n/4

n/4

n/4

Figure 9: Counting plane graphs in the interior of the
double zig-zag chain.

Proof. The double zig-zag chain consists of three parts
separated by the two zig-zag chains. The number of
graphs can be counted independently for each part.

We first count the number of plane geometric graphs
in the interior of the double zig-zag chain. To this end
we are going to choose m points, 0 ≤ m ≤ n

2 , from
each zig-zag chain. The points of each zig-zag chain
can be viewed as lying on a smaller and a larger circle.
For the upper zig-zag chain we choose i1 points from the
larger and j1 points from the smaller circle, i1 +j1 = m.
Similarly we choose i2 and j2 points from the lower zig-
zag chain.

There are
∑

0≤m≤n

2

∑

i1,i2,i1+j1=i2+j2=m

(n

4
i1

)

·
( n

4
j1

)

·
(n

4
i2

)

·
( n

4
j2

)

ways to do so. Then we connect the chosen
points by pairing a point from the upper zig-zag chain
with a point from the lower zig-zag chain by scanning
them from left to right. We say that these pairs
are connected by black edges, shown as dark edges in
Figure 9. Next we draw red edges (marked by arrows in



Figure 9) connecting the black edges in a way that we
connect the lower endpoint of the ’left’ black edge to the
upper endpoint of the ’right’ black edge. If the starting
(ending) point of the lower (upper) zig-zag chain is not
used by a black edge, then the first (last) red edge uses
this point instead of an endpoint of a black edge.

We complete the drawing to a triangulation of the
interior by connecting the two zig-zag chains in a fan like
manner to the endpoints of the red and black edges.
Let us color these edges gray (dotted edges in Figure
9). Note that we can flip some of the gray edges
(connected to the smaller circle of a zig-zag chain) to
obtain different triangulations, still containing the red
and black edges. Here a flip exchanges the two diagonals
of the convex quadrilateral formed by the two adjacent
triangles.

Next we consider all subgraphs of the obtained
triangulations which contain the black segments. For
a flippable gray edge we have three possibilities (draw
it, delete it, flip it), for a non-flippable gray edge we have
two possibilities. We also have two possibilities for the
red edges (draw it or not). Note that we do not flip red
edges for the following reason. It is important to observe
that any obtained subgraph is uniquely assigned to its
triangulation, that is, to the given set of black edges.
In other words for a given subgraph its triangulation
can be uniquely restored: We can always detect (and
insert) the red and black edges: By starting from the
leftmost point of the lower zig-zag chain we draw an
edge (or simply detect whether it is already there) to
the rightmost visible point on the upper zig-zag chain.
This gives us the first red edge and the starting point
of the next black edge. The black edge is determined
as the rightmost edge incident to this vertex and going
back to the lower zig-zag chain. Continuing in the same
manner this gives us the remaining red and black edges.
Note that the above argumentation still goes through
when flippable gray edges have been flipped arbitrarily.

We now count the number of the constructed sub-
graphs. There are n

2 − (j1 + j2) flippable gray edges
(one for each non-chosen point of the two smaller cir-
cles). Analogously, there are n

2 − (i1 + i2) non-flippable
gray edges. And there are m black and m+{−1, 0, +1}
red edges.

Thus, we obtain the number of plane ge-
ometric graphs of the interior of the dou-
ble zig-zag chain by multiplying all factors as
∑

0≤m≤n

2

∑

i1,i2,i1+j1=i2+j2=m

(n

4
i1

)

·
( n

4
j1

)

·
(n

4
i2

)

·
( n

4
j2

)

·
3

n

2 −(j1+j2) · 2n

2 −(i1+i2)+m+{−1,0,+1}.
Neglecting polynomial factors, the asymptotic of

this sum is determined by its largest element, since
we have only a linear number of terms. As i1 + j1 is
independent from i2 + j2, the maximum is obtained for

i1 = i2 and j1 = j2 by symmetry.
Using Stirling’s formula n! ≈

(

n
e

)n √
2πn

one derives the well known estimate
(

n
αn

)

=

Θ(n− 1
2 2H(α)n) where H(α) = −(α log2 α + (1 −

α) log2(1 − α)) denotes the binary entropy function.

From this relation we get i = (
√

2−1)n
4 and j =

√
2

3+
√

2
n
4

which evaluates to Θ∗(3.88215n) plane graphs for the
inner part of the double zig-zag chain.

The two outer parts of the double zig-zag chain are
double circles without their convex hull edges. Using
Corollary 4.1 we obtain that the total number of graphs
is Θ∗(3.88215n · 15.0045n

2
n

2
).

In [14] a lower bound of Ω∗(39.80n) plane graphs of
the double chain has been shown. Using the argumenta-
tion from above we will strengthen this to Θ∗(39.80n),
which implies that the double zig-zag chain has in
fact asymptotically more plane graphs than the dou-
ble chain. The main difference to the above approach
is that for a chain of the double chain we do not need
to distinguish between points of the smaller and larger
circles, but choose all vertices from the same chain.

In addition, as none of the edges in the inner part
is flippable any more, red and gray edges provide now a
factor of 2. Thus if we choose c·n2 points of each chain for
the black edges, the general term of the sum simplifies

to
( n

2
c n

2

)2 ·2n−c n

2 . This term is maximized for c =
√

2−1

leading to Θ∗(39.79898n) plane geometric graphs of the
double chain, the exact base being 20 + 14

√
2.

4.2.2 The number of triangulations of the

DZZC

Theorem 4.5. The double zig-zag chain of n points
contains Θ∗(8.48528n) triangulations.

Proof. To count the number of triangulations for the
central part of the double zig-zag chain we use the same
approach as in Section 4.2.1. As every constructed edge
has to be in the triangulations, we only get a factor 2
for gray, flippable edges. Non-flippable edges and red
edges do not provide a multiplicative factor. We thus
get

∑

0≤m≤n

2

∑

i1,i2,i1+j1=i2+j2=m

(n

4
i1

)

·
( n

4
j1

)

·
(n

4
i2

)

·
( n

4
j2

)

·
2

n

2 −(j1+j2) triangulations. Again for symmetry reasons
we assume i1 = i2 and j1 = j2 for the maximal term of
the sum. Moreover set i = c · n

4 and j = d · n
4 and we

have to maximize the term
( n

4
c·n

4

)2 ·
( n

4
d·n

4

)2 · 2(1−d) n

2 for

0 ≤ c, d ≤ 1.
Again we make use of the binary entropy function

as described in Section 4.2.1 and conclude that c =
1
2 gives the maximum for the first factor, namely

Θ∗(2
n

2 ). For d we have to maximize 2H(d) n

2 +(1−d) n

2 ,



which is equivalent to maximizing H(d) − d. It is
well known that the maximum is obtained for d =
1
3 , resulting in Θ∗(2

log2 3

2 n). Combining both factors

gives Θ∗(2H(1/3)n/2+5n/6) triangulations, which can be

simplified to Θ∗(
√

6
n
) = Θ∗(2.44949n) triangulations

for the central part.

In total we thus get Θ∗(
√

12
n

2 )2 · Θ∗(
√

6
n
) =

Θ∗((6
√

2)n) = Θ∗(8.48528n) triangulations for the dou-
ble zig-zag chain.

5 Further Work and Open Problems

The most challenging question is of course to close the
gap between maximizing examples and upper bounds.
Here Sharir and Welzl [21] recently have made enormous
progress on the upper bounds.

Obviously further work is required to improve (or
even fill in) the entries in Tables 1 to 3. In Tables 1
and 2 the goal is to close or at least narrow the gaps
between lower and upper bounds, while for Table 3
several entries, especially for the double zig-zag chain,
are missing.

Concerning our lower bound construction an inter-
esting question is the following: Does there exist an
example that shows that an isomorphic mapping from
any planar graph on top of a convex point set to any
other point set (of the same cardinality) is not possible?
If such an example does not exist, can we find a unified
isomorphic mapping that works for all graphs?
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