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Abstract

Let S be a set of n points in the plane in general
position. In this note we study the so-called triangle
vector τ of S. For each cardinality i, 0 ≤ i ≤ n − 3,
τ(i) is the number of triangles spanned by points of S
which contain exactly i points of S in their interior.
We show relations of this vector to other combina-
torial structures and derive tight upper bounds for
several entries of τ , including τ(n− 6) to τ(n− 3).

1 Introduction

Throughout this paper let S be a set of n points
in the plane in general position, that is, no three
points of S are on a line. We define τ(i) ≥ 0 to be
the number of i-triangles, that is, triangles spanned
by three points in S with exactly i points of S in
their interior. The triangle vector of S is defined as
τ = (τ(0), τ(1), . . . , τ(n − 3)). For example, if and
only if S is in convex position then τ(0) =

(
n
3

)
and

all other entries of τ are zero. If S has a triangular
convex hull then τ(n−3) = 1, otherwise τ(n−3) = 0.
This trivially implies τ(n − 3) ≤ 1. Obviously also∑n−3

i=0 τ(i) =
(
n
3

)
and thus τ(0) ≤

(
n
3

)
.

Bounding the rectilinear crossing number cr(S) of
the complete geometric graph Kn on S is a cen-
tral topic in discrete geometry; see [3] for a nice
survey. The following relation can be obtained by
double counting 4-tuples of points: cr(S) = 3

(
n
4

)
−∑bn/2c−1

i=0 i(n− i− 2)Ei. Here Ei denotes the number
of i-edges in S, that is, the number of edges connect-
ing two points of S with exactly i points of S on one
side of the line supporting this edge. Bounding the
number of i-edges is therefore used to obtain bounds
on the crossing number [3].

Similar, by double-counting the number of 4-tuples
of S in non-convex position, we get

∑n−3
i=0 iτ(i) =
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(
n
4

)
− cr(S). Combining the two relations leads to∑n−3

i=0 iτ(i) =
∑bn/2c−1

i=0 i(n− i−2)Ei−2
(
n
4

)
. In other

words, there is a direct relation between the triangle
vector and the vector of the number of i-edges. There-
fore, and to lower bound cr(S) =

(
n
4

)
−
∑n−3

i=0 iτ(i), we
are interested in upper bounds of the entries of τ . In
this note we show that for sufficiently large n we have
τ(n− 4) ≤ 3, τ(n− 5) ≤ 6, and τ(n− 6) ≤ 10.

2 Basics

Let CH(S) be the convex hull of S and |CH(S)|
the number of points from S on the boundary of
CH(S). We call a point of S on the boundary of
CH(S) extreme point of S and a line segment con-
necting two adjacent extreme points an extreme edge.
If S = {p1, . . . , pn}, then for simplicity we write
CH(p1, . . . , pn) instead of CH({p1, . . . , pn}).

For n = 4, . . . , 11, Table 1 gives tight upper bounds
for the entries of the triangle vector τ . We obtained
this by exhaustive computations using the order type
data base [1] which contains all combinatorially dif-
ferent point sets of size up to 11.

n | i 0 1 2 3 4 5 6 7 8

4 4 1
5 10 2 1
6 20 6 3 1
7 35 11 5 3 1
8 56 19 9 5 3 1
9 84 30 16 9 6 3 1
10 120 48 25 14 10 6 3 1
11 165 66 35 22 16 10 6 3 1

Table 1: Upper bounds for τ(i) for 0 ≤ i ≤ n − 3,
n = 4, . . . , 11.

In the remaining sections we will provide upper
bounds for several entries of τ . To this end the fol-
lowing definition will be useful.

Definition 1 We denote by
∆ the set of all triangles spanned by (solely) inner

(i.e., non-extreme) points of S,
∆◦ the set of all triangles spanned by one extreme

point and two inner points of S,
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∆◦◦ the set of all triangles spanned by two extreme
points and one inner point of S,

∆◦◦◦ the set of all triangles spanned by (solely) ex-
treme points of S.

For each of those sets we denote by |D|i the number
of i-triangles in D, D ∈ {∆,∆◦,∆◦◦,∆◦◦◦}.

3 Upper bound for τ(n− 4)

Next we provide a tight upper bound for τ(n − 4).
The proofs of the following two lemmas can be found
in the full version of this paper.

Lemma 2 For all i < |CH(S)|, it holds that
τ(n− i) = 0.

Lemma 3 Let p1, p2, p3, p4 ∈ S and i ∈
{0, . . . , n− 3}. If both p1, p2, p3 and p1, p2, p4 span
i-triangles and p3 6= p4, then neither triangle contains
the other.

Theorem 4 τ(n− 4) ≤ 3 for n ≥ 5.

Proof. We distinguish three cases by different
cardinalities of |CH(S)|.

Case 1 |CH(S)| ≥ 5
By Lemma 2 it follows that τ(n− 4) = 0 .

Case 2 |CH(S)| = 4
Exactly n− 4 points lie in the interior of the polygon
spanned by the extreme points of S. Thus every
existing (n− 4)-triangle belongs to ∆◦◦◦.
As |∆◦◦◦| = 4 and the fact that there are two disjoint
pairs of triangles in ∆◦◦◦ it follows that for n ≥ 5, we
get |∆◦◦◦|n−4 ≤ 2, thus τ(n− 4) ≤ 2.

Case 3 |CH(S)| = 3
Exactly n− 3 points lie in the interior of the polygon
spanned by the extreme points of S, thus every
existing (n− 4)-triangle belongs to ∆◦◦.
For a fixed line segment assume that it spans an
(n − 4)-triangle with an inner point. Then all other
inner points lie within this triangle, thus every
further (n− 4)-triangle spanned by this line segment
(and another inner point) is contained in the first
one which is a contradiction to Lemma 3. Therefore
we know that for every extreme edge of the triangle
we have at most one (n−4)-triangle, thus τ(n−4) ≤ 3.

Overall it follows that τ(n− 4) ≤ 3. �

Figure 1 provides an example showing that the up-
per bound τ(n− 4) ≤ 3 is tight for all n ≥ 6.

n− 6

Figure 1: A point set with n− 6 points in the central
cell, showing τ(n− 4) = 3 for n ≥ 6.

4 Upper bound for τ(n− 5)

Our next goal is to derive an upper bound for τ(n−5).

Theorem 5 τ(n− 5) ≤ 6 for n ≥ 6.

Proof. (Sketch, see full version for a detailed proof)
For n = 6 the result follows from Table 1, therefore
we can assume n ≥ 7.
Similar to the proof of Theorem 4 we consider
different cardinalities of |CH(S)| in separate cases.

Case 1 |CH(S)| ≥ 6
Again Lemma 2 implies τ(n− 5) = 0.

Case 2 |CH(S)| = 5
Observe that all (n − 5)-triangles are in ∆◦◦◦, i.e.,
are spanned by three extreme points. No cell in the
5-gon is covered by more than five of those triangles,
therefore τ(n− 5) ≤ 5.

Case 3 |CH(S)| = 4
It can be shown that there are no (n− 5)-triangles in
∆ and ∆◦ and at most two (n− 5)-triangles in ∆◦◦◦.
The last statement follows from the case distinction
depicted in Figure 2. For the triangles in ∆◦◦, each

1

1 1

n-6n-5

Figure 2: The possible cases for two (n− 5)-triangles
in ∆◦◦◦ for |CH(S)| = 4.

extreme edge of the 4-gon can span at most one
(n − 5)-triangle (cf. Lemma 3), therefore in total we
get τ(n− 5) ≤ 6.

Case 4 |CH(S)| = 3
Obviously we have |∆|n−5 = |∆◦◦◦|n−5 = 0.
The upper bounds |∆◦◦|n−5 ≤ 6 and |∆◦|n−5 ≤ 3
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are rather easy to derive: each extreme edge spans
at most two (n− 5)-triangles (Lemma 3) and each
extreme point spans at most one (n− 5)-triangle,
respectively. The main effort is required to show
that in total those two sets contain at most six
(n− 5)-triangles.
If one edge spans two (n − 5)-triangles, its two adja-
cent extreme points do not span any (n− 5)-triangle
with two inner points. Therefore we can conclude
that for |∆◦◦|n−5 ≥ 4 (in this case at least one edge
spans two (n-5)-triangles) it follows |∆◦|n−5 ≤ 1 and
for |∆◦◦|n−5 ≥ 5 (i.e., at least two edges span two
(n− 5)-triangles, respectively) it holds |∆◦|n−5 = 0.

This proves the assumption |∆◦ ∪ ∆◦◦|n−5 ≤ 6,
and thus τ(n− 5) ≤ 6. �

Figure 3 shows two different examples reaching the
upper bound τ(n− 5) = 6.

n− 9 n− 9

Figure 3: Two point sets, each with n − 9 points in
the central cell, with τ(n− 5) = 6 .

5 Upper bound for τ(n− 6)

For the proof of our next statement we need an addi-
tional definition concerning the triangles in ∆◦◦.

Definition 6 By ∆◦◦e we denote the set of all tri-
angles in ∆◦◦ spanned by an extreme edge, i.e., two
adjacent extreme points of S and one inner point, and
by ∆◦◦d the set of all triangles in ∆◦◦ spanned by a di-
agonal, i.e., two nonadjacent extreme points of S and
one inner point.

Note that ∆◦◦e and ∆◦◦d are disjoint and that ∆◦◦e ∪
∆◦◦d = ∆◦◦, implying |∆◦◦e |i + |∆◦◦d |i = |∆◦◦|i.
The proofs of the following statements can be found
in the full version.

Lemma 7 Let |CH(S)| = 4. Then the following im-
plications hold:

(a) If there are six (n − 6)-triangles in ∆◦◦e , then
|∆◦|n−6 = 0.

(b) If there are five (n − 6)-triangles in ∆◦◦e , then
|∆◦|n−6 ≤ 2 and |∆◦◦◦|n−6 = 0.

(c) If there are at least three (n−6)-triangles in ∆◦◦d ,
then |∆◦|n−6 ≤ 2 and |∆◦◦◦|n−6 = 0.
If there are exactly four (n− 6)-triangles in ∆◦◦d ,
then |∆◦|n−6 = 0.

(d) If there are two (n − 6)-triangles in ∆◦◦d , then
|∆◦ ∪∆◦◦◦|n−6 ≤ 4.

Lemma 8 Let |CH(S)| = 3. If an extreme edge pq
of S spans three (n−6)-triangles in ∆◦◦, then neither
p nor q is incident to any (n− 6)-triangle in ∆◦.

Theorem 9 τ(n− 6) ≤ 10 for n ≥ 8.

Proof. (Sketch, see full version for a detailed proof)
For 8 ≤ n ≤ 11 the result follows from Table 1. Thus
we can assume n ≥ 12.

Case 1 |CH(S)| ≥ 7
By Lemma 2 we have τ(n− 6) = 0.

Case 2 |CH(S)| = 6
As all possible (n − 6)-triangles lie in ∆◦◦◦, i.e., are
spanned by extreme points of S, the idea is, similar
as in the Proof of Case 2 of Theorem 5, to count
the number of covering triangles for each cell in the
6-gon. It follows that |∆◦◦◦|n−6 ≤ 8, i.e., τ(n−6) ≤ 8.

Case 3 |CH(S)| = 5
We consider the triangles in ∆, ∆◦, ∆◦◦◦, ∆◦◦e and
∆◦◦d separately.
For the first three sets, we get upper bounds
|∆|n−6 = |∆◦|n−6 = 0 and |∆◦◦◦|n−6 ≤ 4.
For the triangles in ∆◦◦e and ∆◦◦d we consider two
possible cases each. We have either |∆◦◦e |n−6 = 3 and
|∆◦◦◦|n−6 = 0 or |∆◦◦e |n−6 ≤ 2 and |∆◦◦◦|n−6 ≤ 4.
Therefore it follows that |∆◦◦e ∪∆◦◦◦|n−6 ≤ 6.
On the other hand we have |∆◦◦d |n−6 ≤ 5, but for
|∆◦◦d |n−6 = 5 we can conclude |∆◦◦◦|n−6 = 0.
Overall it follows that τ(n− 6) ≤ 10.

Case 4 |CH(S)| = 4
In this case we again prove upper bounds for different
set individually. However, it is much more tedious
to show that in total the number of (n− 6)-triangles
does not exceed the claimed upper bound.
For the separate upper bounds we get

• |∆|n−6 = 0,

• |∆◦|n−6 ≤ 4,

• |∆◦◦◦|n−6 ≤ 2,

• |∆◦ ∪∆◦◦◦|n−6 ≤ 5,

• |∆◦◦d |n−6 ≤ 4,

• |∆◦◦e |n−6 ≤ 6.
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Figure 4 indicates how these upper bounds affect each
other and which implications (provided by Lemma 7)
are needed to approach the overall upper bound of
τ(n− 6) = |∆ ∪∆◦ ∪∆◦◦e ∪∆◦◦d ∪∆◦◦◦|n−6 ≤ 10.

||∆◦◦
e ||n−6 = 5

||∆◦◦
e ||n−6 ≤ 4

||∆◦||n−6 = 0

||∆◦◦
d ||n−6 ∈ {3, 4} ||∆◦◦

d ||n−6 = 2 ||∆◦◦
d ||n−6 = 1

||∆◦◦
d ||n−6 ∈ {3, 4} ||∆◦◦

d ||n−6 ≤ 2

||∆◦◦◦||n−6 = 0

||∆◦◦◦||n−6 = 0

||∆◦||n−6 ≤ 2

||∆◦◦◦||n−6 ≤ 2

||∆◦ ∪∆◦◦◦||n−6 ≤ 4 ||∆◦ ∪∆◦◦◦||n−6 ≤ 5

follows by Lemma 7 (b)
follows by Lemma 7 (a)

follows by Lemma 7 (d)

||∆◦◦
e ||n−6 = 6

||∆◦||n−6 ≤ 2

||∆◦◦
d ||n−6 = 4 ||∆◦◦

d ||n−6 ≤ 3

||∆◦||n−6 = 0

follows by Lemma 7 (c)

||∆◦◦◦||n−6 = 0

Figure 4: Overview on how to show that τ(n−6) ≤ 10.
Both statements for the separately considered subsets
are used and implications between the subsets pro-
vided by Lemma 7 are indicated by colored arrows.

Case 5 |CH(S)| = 3
For the case of n−3 inner points we get the following
upper bounds:

• |∆|n−6 ≤ 1

• |∆◦|n−6 ≤ 6

• |∆◦◦|n−6 ≤ 9

• |∆◦◦◦|n−6 = 0

To satisfy the overall upper bound, we distinguish be-
tween several cases for the number of (n−6)-triangles
in ∆◦◦.

Case 5a |∆◦◦|n−6 ≥ 7
We apply Lemma 8 to this case. Thus |∆◦◦|n−6 ≥
7 implies |∆◦|n−6 ≤ 2 and |∆◦◦|n−6 ∈ {8, 9} im-
plies |∆◦|n−6 = 0. Combined with the upper
bound for (n− 6)-triangles in ∆ we are done.

Case 5b |∆◦◦|n−6 ≤ 3
In this case the separated upper bounds directly
sum up to 10.

Cases 5c and 5d |∆◦◦|n−6 = 4, 5
In both cases a more sophisticated case analysis
has to be made. For example we show which ex-
treme points span how many (n-6)-triangles and
how they are related.

Case 5e |∆◦◦|n−6 = 6
In that case each extreme point spans two (n−6)-
triangles. Using further observations it follows
that either |∆◦◦|n−6 ≤ 3 or else |∆◦◦|n−6 ≤ 4
and |∆|n−6 = 0.

This concludes the case |CH(S)| = 3.

In summary for all cases we obtained the claimed
upper bound τ(n− 6) ≤ 10. �

Figure 5 shows a point set obtaining the upper
bound τ(n− 6) = 10, implying that Theorem 9 is
tight.

n− 10

Figure 5: A point set with τ(n−6) = 10. Six (n− 6)-
triangles in ∆◦◦e are drawn in black; four (n − 6)-
triangles in ∆◦◦d are drawn in yellow and orange.

6 Conclusion

We have shown tight upper bounds for τ(n − 6) to
τ(n − 4). This leads us to the following conjecture,
which holds for k ≤ 6.

Conjecture 10 For a constant k, 3 ≤ k ≤ 10, and n
large enough we have τ(n− k) ≤

(
k−1
2

)
.
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