On the Triangle Vector*

Oswin Aichholzer^{†1}, Ruy Fabila-Monroy^{‡2}, and Julia Obmann^{§1}

¹Institute for Software Technology, Graz University of Technology, Graz, Austria ²Departamento de Matemáticas, CINVESTAV, Mexico DC, Mexico

Abstract

Let S be a set of n points in the plane in general position. In this note we study the so-called triangle vector τ of S. For each cardinality $i, 0 \le i \le n-3$, $\tau(i)$ is the number of triangles spanned by points of S which contain exactly *i* points of S in their interior. We show relations of this vector to other combinatorial structures and derive tight upper bounds for several entries of τ , including $\tau(n-6)$ to $\tau(n-3)$.

1 Introduction

Throughout this paper let S be a set of n points in the plane in general position, that is, no three points of S are on a line. We define $\tau(i) \ge 0$ to be the number of *i*-triangles, that is, triangles spanned by three points in S with exactly *i* points of S in their interior. The triangle vector of S is defined as $\tau = (\tau(0), \tau(1), \ldots, \tau(n-3))$. For example, if and only if S is in convex position then $\tau(0) = \binom{n}{3}$ and all other entries of τ are zero. If S has a triangular convex hull then $\tau(n-3) = 1$, otherwise $\tau(n-3) = 0$. This trivially implies $\tau(n-3) \le 1$. Obviously also $\sum_{i=0}^{n-3} \tau(i) = \binom{n}{3}$ and thus $\tau(0) \le \binom{n}{3}$.

Bounding the rectilinear crossing number $\overline{\operatorname{cr}}(S)$ of the complete geometric graph K_n on S is a central topic in discrete geometry; see [3] for a nice survey. The following relation can be obtained by double counting 4-tuples of points: $\overline{\operatorname{cr}}(S) = 3 {n \choose 4} - \sum_{i=0}^{\lfloor n/2 \rfloor - 1} i(n-i-2)E_i$. Here E_i denotes the number of *i*-edges in S, that is, the number of edges connecting two points of S with exactly *i* points of S on one side of the line supporting this edge. Bounding the number of *i*-edges is therefore used to obtain bounds on the crossing number [3].

Similar, by double-counting the number of 4-tuples of S in non-convex position, we get $\sum_{i=0}^{n-3} i\tau(i) =$

Email: julia.obmann@student.tugraz.at

This project has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922. $\binom{n}{4} - \overline{\operatorname{cr}}(\mathbf{S})$. Combining the two relations leads to $\sum_{i=0}^{n-3} i\tau(i) = \sum_{i=0}^{\lfloor n/2 \rfloor - 1} i(n-i-2)E_i - 2\binom{n}{4}$. In other words, there is a direct relation between the triangle vector and the vector of the number of *i*-edges. Therefore, and to lower bound $\overline{\operatorname{cr}}(\mathbf{S}) = \binom{n}{4} - \sum_{i=0}^{n-3} i\tau(i)$, we are interested in upper bounds of the entries of τ . In this note we show that for sufficiently large n we have $\tau(n-4) \leq 3, \tau(n-5) \leq 6$, and $\tau(n-6) \leq 10$.

2 Basics

Let CH(S) be the convex hull of S and |CH(S)|the number of points from S on the boundary of CH(S). We call a point of S on the boundary of CH(S) extreme point of S and a line segment connecting two adjacent extreme points an extreme edge. If $S = \{p_1, \ldots, p_n\}$, then for simplicity we write $CH(p_1, \ldots, p_n)$ instead of $CH(\{p_1, \ldots, p_n\})$.

For n = 4, ..., 11, Table 1 gives tight upper bounds for the entries of the triangle vector τ . We obtained this by exhaustive computations using the order type data base [1] which contains all combinatorially different point sets of size up to 11.

$n \mid i$	0	1	2	3	4	5	6	7	8
4	4	1							
5	10	2	1						
6	20	6	3	1					
7	35	11	5	3	1				
8	56	19	9	5	3	1			
9	84	30	16	9	6	3	1		
10	120	48	25	14	10	6	3	1	
11	165	66	35	22	16	10	6	3	1

Table 1: Upper bounds for $\tau(i)$ for $0 \le i \le n-3$, $n = 4, \ldots, 11$.

In the remaining sections we will provide upper bounds for several entries of τ . To this end the following definition will be useful.

Definition 1 We denote by

 Δ the set of all triangles spanned by (solely) inner (i.e., non-extreme) points of S,

 Δ° the set of all triangles spanned by one extreme point and two inner points of S,

^{*}Work based on the bachelor thesis of the third author [2].

[†]Email: oaich@ist.tugraz.at

[‡]Email: ruyfabila@math.cinvestav.edu.mx

 $\Delta^{\circ\circ}$ the set of all triangles spanned by two extreme points and one inner point of S,

 $\Delta^{\circ\circ\circ}$ the set of all triangles spanned by (solely) extreme points of S.

For each of those sets we denote by $|D|_i$ the number of *i*-triangles in $D, D \in \{\Delta, \Delta^{\circ}, \Delta^{\circ \circ}, \Delta^{\circ \circ \circ}\}.$

3 Upper bound for $\tau(n-4)$

Next we provide a tight upper bound for $\tau(n-4)$. The proofs of the following two lemmas can be found in the full version of this paper.

Lemma 2 For all i < |CH(S)|, it holds that $\tau(n-i) = 0$.

Lemma 3 Let $p_1, p_2, p_3, p_4 \in S$ and $i \in \{0, \ldots, n-3\}$. If both p_1, p_2, p_3 and p_1, p_2, p_4 span *i*-triangles and $p_3 \neq p_4$, then neither triangle contains the other.

Theorem 4 $\tau(n-4) \leq 3$ for $n \geq 5$.

Proof. We distinguish three cases by different cardinalities of |CH(S)|.

Case 1 $|\operatorname{CH}(S)| \ge 5$ By Lemma 2 it follows that $\tau(n-4) = 0$.

Case 2 |CH(S)| = 4

Exactly n-4 points lie in the interior of the polygon spanned by the extreme points of S. Thus every existing (n-4)-triangle belongs to $\Delta^{\circ\circ\circ}$.

As $|\Delta^{\circ\circ\circ}| = 4$ and the fact that there are two disjoint pairs of triangles in $\Delta^{\circ\circ\circ}$ it follows that for $n \ge 5$, we get $|\Delta^{\circ\circ\circ}|_{n-4} \le 2$, thus $\tau(n-4) \le 2$.

Case 3 |CH(S)| = 3

Exactly n-3 points lie in the interior of the polygon spanned by the extreme points of S, thus every existing (n-4)-triangle belongs to $\Delta^{\circ\circ}$.

For a fixed line segment assume that it spans an (n-4)-triangle with an inner point. Then all other inner points lie within this triangle, thus every further (n-4)-triangle spanned by this line segment (and another inner point) is contained in the first one which is a contradiction to Lemma 3. Therefore we know that for every extreme edge of the triangle we have at most one (n-4)-triangle, thus $\tau(n-4) \leq 3$.

Overall it follows that
$$\tau(n-4) \leq 3$$
.

Figure 1 provides an example showing that the upper bound $\tau(n-4) \leq 3$ is tight for all $n \geq 6$.

Figure 1: A point set with n-6 points in the central cell, showing $\tau(n-4) = 3$ for $n \ge 6$.

4 Upper bound for $\tau(n-5)$

Our next goal is to derive an upper bound for $\tau(n-5)$.

Theorem 5 $\tau(n-5) \leq 6$ for $n \geq 6$.

Proof. (Sketch, see full version for a detailed proof) For n = 6 the result follows from Table 1, therefore we can assume $n \ge 7$.

Similar to the proof of Theorem 4 we consider different cardinalities of $|\operatorname{CH}(S)|$ in separate cases.

Case 1 $|CH(S)| \ge 6$ Again Lemma 2 implies $\tau(n-5) = 0$.

Case 2 |CH(S)| = 5

Observe that all (n-5)-triangles are in $\Delta^{\circ\circ\circ}$, i.e., are spanned by three extreme points. No cell in the 5-gon is covered by more than five of those triangles, therefore $\tau(n-5) \leq 5$.

Case 3 $|\operatorname{CH}(S)| = 4$

It can be shown that there are no (n-5)-triangles in Δ and Δ° and at most two (n-5)-triangles in $\Delta^{\circ\circ\circ}$. The last statement follows from the case distinction depicted in Figure 2. For the triangles in $\Delta^{\circ\circ}$, each

Figure 2: The possible cases for two (n-5)-triangles in $\Delta^{\circ\circ\circ}$ for $|\operatorname{CH}(S)| = 4$.

extreme edge of the 4-gon can span at most one (n-5)-triangle (cf. Lemma 3), therefore in total we get $\tau(n-5) \leq 6$.

Case 4 |CH(S)| = 3

 \Box

Obviously we have $|\Delta|_{n-5} = |\Delta^{\circ\circ\circ}|_{n-5} = 0$. The upper bounds $|\Delta^{\circ\circ}|_{n-5} \le 6$ and $|\Delta^{\circ}|_{n-5} \le 3$ are rather easy to derive: each extreme edge spans at most two (n-5)-triangles (Lemma 3) and each extreme point spans at most one (n-5)-triangle, respectively. The main effort is required to show that in total those two sets contain at most six (n-5)-triangles.

If one edge spans two (n-5)-triangles, its two adjacent extreme points do not span any (n-5)-triangle with two inner points. Therefore we can conclude that for $|\Delta^{\circ\circ}|_{n-5} \ge 4$ (in this case at least one edge spans two (n-5)-triangles) it follows $|\Delta^{\circ}|_{n-5} \le 1$ and for $|\Delta^{\circ\circ}|_{n-5} \ge 5$ (i.e., at least two edges span two (n-5)-triangles, respectively) it holds $|\Delta^{\circ}|_{n-5} = 0$.

This proves the assumption $|\Delta^{\circ} \cup \Delta^{\circ \circ}|_{n-5} \leq 6$, and thus $\tau(n-5) \leq 6$.

Figure 3 shows two different examples reaching the upper bound $\tau(n-5) = 6$.

Figure 3: Two point sets, each with n-9 points in the central cell, with $\tau(n-5) = 6$.

5 Upper bound for $\tau(n-6)$

For the proof of our next statement we need an additional definition concerning the triangles in $\Delta^{\circ\circ}$.

Definition 6 By $\Delta_e^{\circ\circ}$ we denote the set of all triangles in $\Delta^{\circ\circ}$ spanned by an extreme edge, i.e., two adjacent extreme points of S and one inner point, and by $\Delta_d^{\circ\circ}$ the set of all triangles in $\Delta^{\circ\circ}$ spanned by a diagonal, i.e., two nonadjacent extreme points of S and one inner point.

Note that $\Delta_e^{\circ\circ}$ and $\Delta_d^{\circ\circ}$ are disjoint and that $\Delta_e^{\circ\circ} \cup \Delta_d^{\circ\circ} = \Delta^{\circ\circ}$, implying $|\Delta_e^{\circ\circ}|_i + |\Delta_d^{\circ\circ}|_i = |\Delta^{\circ\circ}|_i$. The proofs of the following statements can be found in the full version.

Lemma 7 Let |CH(S)| = 4. Then the following implications hold:

- (a) If there are six (n-6)-triangles in $\Delta_e^{\circ\circ}$, then $|\Delta^{\circ}|_{n-6} = 0.$
- (b) If there are five (n-6)-triangles in $\Delta_e^{\circ\circ}$, then $|\Delta^{\circ}|_{n-6} \leq 2$ and $|\Delta^{\circ\circ\circ}|_{n-6} = 0$.

- (c) If there are at least three (n-6)-triangles in $\Delta_d^{\circ\circ}$, then $|\Delta^{\circ}|_{n-6} \leq 2$ and $|\Delta^{\circ\circ\circ}|_{n-6} = 0$. If there are exactly four (n-6)-triangles in $\Delta_d^{\circ\circ}$, then $|\Delta^{\circ}|_{n-6} = 0$.
- (d) If there are two (n-6)-triangles in $\Delta_d^{\circ\circ}$, then $|\Delta^{\circ} \cup \Delta^{\circ\circ\circ}|_{n-6} \leq 4.$

Lemma 8 Let |CH(S)| = 3. If an extreme edge \overline{pq} of S spans three (n-6)-triangles in $\Delta^{\circ\circ}$, then neither p nor q is incident to any (n-6)-triangle in Δ° .

Theorem 9 $\tau(n-6) \leq 10$ for $n \geq 8$.

Proof. (Sketch, see full version for a detailed proof) For $8 \le n \le 11$ the result follows from Table 1. Thus we can assume $n \ge 12$.

Case 1 $|\operatorname{CH}(S)| \ge 7$ By Lemma 2 we have $\tau(n-6) = 0$.

Case 2 $|\operatorname{CH}(S)| = 6$

As all possible (n-6)-triangles lie in $\Delta^{\circ\circ\circ}$, i.e., are spanned by extreme points of S, the idea is, similar as in the Proof of Case 2 of Theorem 5, to count the number of covering triangles for each cell in the 6-gon. It follows that $|\Delta^{\circ\circ\circ}|_{n-6} \leq 8$, i.e., $\tau(n-6) \leq 8$.

Case 3 $|\operatorname{CH}(S)| = 5$

We consider the triangles in Δ , Δ° , $\Delta^{\circ\circ\circ}$, $\Delta_e^{\circ\circ}$ and $\Delta_d^{\circ\circ}$ separately.

For the first three sets, we get upper bounds $|\Delta|_{n-6} = |\Delta^{\circ}|_{n-6} = 0$ and $|\Delta^{\circ\circ\circ}|_{n-6} \leq 4$. For the triangles in $\Delta_e^{\circ\circ}$ and $\Delta_d^{\circ\circ}$ we consider two possible cases each. We have either $|\Delta_e^{\circ\circ}|_{n-6} = 3$ and $|\Delta^{\circ\circ\circ}|_{n-6} = 0$ or $|\Delta_e^{\circ\circ}|_{n-6} \leq 2$ and $|\Delta^{\circ\circ\circ}|_{n-6} \leq 4$. Therefore it follows that $|\Delta_e^{\circ\circ} \cup \Delta^{\circ\circ\circ}|_{n-6} \leq 6$. On the other hand we have $|\Delta_d^{\circ\circ}|_{n-6} \leq 5$, but for $|\Delta_d^{\circ\circ}|_{n-6} = 5$ we can conclude $|\Delta^{\circ\circ\circ}|_{n-6} = 0$. Overall it follows that $\tau(n-6) \leq 10$.

Case 4 $|\operatorname{CH}(S)| = 4$

In this case we again prove upper bounds for different set individually. However, it is much more tedious to show that in total the number of (n-6)-triangles does not exceed the claimed upper bound. For the separate upper bounds we get

- $|\Delta|_{n-6} = 0$,
- $|\Delta^{\circ}|_{n-6} \leq 4$,
- $|\Delta^{\circ\circ\circ}|_{n-6} \leq 2,$
- $|\Delta^{\circ} \cup \Delta^{\circ \circ \circ}|_{n-6} \le 5$,
- $|\Delta_d^{\circ\circ}|_{n-6} \le 4$,
- $|\Delta_e^{\circ\circ}|_{n-6} \le 6.$

Figure 4 indicates how these upper bounds affect each other and which implications (provided by Lemma 7) are needed to approach the overall upper bound of $\tau(n-6) = |\Delta \cup \Delta^{\circ} \cup \Delta_e^{\circ\circ} \cup \Delta_d^{\circ\circ} \cup \Delta^{\circ\circ\circ}|_{n-6} \leq 10.$

Figure 4: Overview on how to show that $\tau(n-6) \leq 10$. Both statements for the separately considered subsets are used and implications between the subsets provided by Lemma 7 are indicated by colored arrows.

Case 5 |CH(S)| = 3

For the case of n-3 inner points we get the following upper bounds:

- $|\Delta|_{n-6} \leq 1$
- $|\Delta^{\circ}|_{n-6} \leq 6$
- $|\Delta^{\circ\circ}|_{n-6} \leq 9$
- $|\Delta^{\circ\circ\circ}|_{n-6} = 0$

To satisfy the overall upper bound, we distinguish between several cases for the number of (n-6)-triangles in $\Delta^{\circ\circ}$.

Case 5a $|\Delta^{\circ\circ}|_{n-6} \geq 7$

We apply Lemma 8 to this case. Thus $|\Delta^{\circ\circ}|_{n-6} \geq 7$ implies $|\Delta^{\circ}|_{n-6} \leq 2$ and $|\Delta^{\circ\circ}|_{n-6} \in \{8,9\}$ implies $|\Delta^{\circ}|_{n-6} = 0$. Combined with the upper bound for (n-6)-triangles in Δ we are done.

Case 5b $|\Delta^{\circ\circ}|_{n-6} \leq 3$

In this case the separated upper bounds directly sum up to 10. **Cases 5c and 5d** $|\Delta^{\circ\circ}|_{n-6} = 4, 5$

In both cases a more sophisticated case analysis has to be made. For example we show which extreme points span how many (n-6)-triangles and how they are related.

Case 5e $|\Delta^{\circ\circ}|_{n-6} = 6$

In that case each extreme point spans two (n-6)-triangles. Using further observations it follows that either $|\Delta^{\circ\circ}|_{n-6} \leq 3$ or else $|\Delta^{\circ\circ}|_{n-6} \leq 4$ and $|\Delta|_{n-6} = 0$.

This concludes the case $|\operatorname{CH}(S)| = 3$.

In summary for all cases we obtained the claimed upper bound $\tau(n-6) \leq 10$.

Figure 5 shows a point set obtaining the upper bound $\tau(n-6) = 10$, implying that Theorem 9 is tight.

Figure 5: A point set with $\tau(n-6) = 10$. Six (n-6)-triangles in $\Delta_e^{\circ\circ}$ are drawn in black; four (n-6)-triangles in $\Delta_d^{\circ\circ}$ are drawn in yellow and orange.

6 Conclusion

We have shown tight upper bounds for $\tau(n-6)$ to $\tau(n-4)$. This leads us to the following conjecture, which holds for $k \leq 6$.

Conjecture 10 For a constant $k, 3 \le k \le 10$, and n large enough we have $\tau(n-k) \le \binom{k-1}{2}$.

References

- O. Aichholzer, The order type data base, http://www.ist.tugraz.at/aichholzer/research/ rp/triangulations/ordertypes/, retreived: Oct. 1, 2018.
- [2] J. Obmann, Triangle vectors, bachelor thesis, TU Graz, Austria, 2018.
- [3] B.M. Ábrego, S. Fernández-Merchant, G. Salazar, The rectilinear crossing number of K_n: closing in (or are we?), in: *Thirty Essays on Geometric Graph The*ory, Ed. J. Pach, Algorithms and Combinatorics 29, Springer New York, 2013, 5–18.