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Abstract

Let S be a set of n points in the plane in general
position. In this note we study the so-called triangle
vector 7 of S. For each cardinality i, 0 < i < n — 3,
7(4) is the number of triangles spanned by points of S
which contain exactly ¢ points of S in their interior.
We show relations of this vector to other combina-
torial structures and derive tight upper bounds for
several entries of 7, including 7(n — 6) to 7(n —3). |

1 Introduction

Throughout this paper let S be a set of n points
in the plane in general position, that is, no three
points of S are on a line. We define 7(i) > 0 to be
the number of i-triangles, that is, triangles spanned
by three points in S with exactly ¢ points of S in
their interior. The triangle vector of S is defined as
T = (7(0),7(1),...,7(n — 3)). For example, if and
only if S is in convex position then 7(0) = (%) and
all other entries of 7 are zero. If S has a triangular
convex hull then 7(n—3) = 1, otherwise 7(n—3) = 0.
This trivially implies 7(n — 3) < 1. Obviously also
S 7(i) = (%) and thus 7(0) < (7).

Bounding the rectilinear crossing number ¢r(S) of
the complete geometric graph K, on S is a cen-
tral topic in discrete geometry; see [3] for a nice
survey. The following relation can be obtained by
double Counting 4-tuples of points: cr(S) = 3(}) —
ZL"/ZJ i(n—1i—2)E;. Here E; denotes the number
of i-edges in S, that is, the number of edges connect-
ing two points of S with exactly 7 points of S on one
side of the line supporting this edge. Bounding the
number of i-edges is therefore used to obtain bounds
on the crossing number [3].

Similar, by double-counting the number of 4-tuples
of S in non-convex position, we get Z;:OS (i) =
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() — e@(S). Combining the two relations leads to
S ir(i) = S it —i—2) E; —2(7). In other
words, there is a direct relation between the triangle
vector and the vector of the number of i-edges. There-
fore, and to lower bound ¢r(S) = () —=>_1" _03 iT(i), we
are interested in upper bounds of the entries of 7. In
this note we show that for sufficiently large n we have
T(n—4) <3, 7(n—5) <6, and 7(n — 6) < 10.

2 Basics

Let CH(S) be the convex hull of S and | CH(S)]
the number of points from S on the boundary of
CH(S). We call a point of S on the boundary of
CH(S) extreme point of S and a line segment con-
necting two adjacent extreme points an extreme edge.
It S = {p1,...,pn}, then for simplicity we write
CH(p1,...,pn) instead of CH({p1,...,pn})-

For n =4,...,11, Table[I] gives tight upper bounds
for the entries of the triangle vector 7. We obtained
this by exhaustive computations using the order type
data base [I] which contains all combinatorially dif-
ferent point sets of size up to 11.

([ 0 [T [2[ 3[4 ]5[6][7[8]
4 4 1

5 10 2 1

6 20 6 3 1

7 35 [ 11| 5 3 1

8 56 | 19 | 9 5 3 1

9 84 30|16 | 9 6 3 |1

10 120 | 48 | 25| 14 | 10 | 6 1

11 165 | 66 | 35 | 22|16 |10 |6 |3 |1

Table 1: Upper bounds for 7(i) for 0 < i < n — 3,
n=4,...,11.

In the remaining sections we will provide upper
bounds for several entries of 7. To this end the fol-
lowing definition will be useful.

Definition 1 We denote by

A the set of all triangles spanned by (solely) inner
(i.e., non-extreme) points of S,

A° the set of all triangles spanned by one extreme
point and two inner points of S,
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A°° the set of all triangles spanned by two extreme
points and one inner point of S,

A°°° the set of all triangles spanned by (solely) ex-
treme points of S.

For each of those sets we denote by | D|; the number
of i-triangles in D, D € {A, A° A°° A°°°},

3 Upper bound for 7(n — 4)

Next we provide a tight upper bound for 7(n — 4).
The proofs of the following two lemmas can be found
in the full version of this paper.

Lemma 2 For all ¢ < |CH(S)|, it holds that
7(n—1)=0.

Lemma 3 Let pi1,p2,p3,pa € S and i €
{07 cee, = 3} If both P1,P2,P3 and P1,P2,P4 Span
i-triangles and p3 # p4, then neither triangle contains
the other.

Theorem 4 7(n —4) <3 forn > 5.

Proof. We distinguish three cases by different
cardinalities of | CH(SS)|.

Case 1 |CH(S)| > 5
By Lemma [2]it follows that 7(n —4) =0 .

Case 2 |CH(S)| =4

Exactly n — 4 points lie in the interior of the polygon
spanned by the extreme points of S. Thus every
existing (n — 4)-triangle belongs to A°°°.

As |A°°°| = 4 and the fact that there are two disjoint
pairs of triangles in A°°° it follows that for n > 5, we
get |A°°°,_4 <2, thus 7(n —4) < 2.

Case 3 |CH(S)| =3

Exactly n — 3 points lie in the interior of the polygon
spanned by the extreme points of S, thus every
existing (n — 4)-triangle belongs to A°°.

For a fixed line segment assume that it spans an
(n — 4)-triangle with an inner point. Then all other
inner points lie within this triangle, thus every
further (n — 4)-triangle spanned by this line segment
(and another inner point) is contained in the first
one which is a contradiction to Lemma Bl Therefore
we know that for every extreme edge of the triangle
we have at most one (n—4)-triangle, thus 7(n—4) < 3.

Overall it follows that 7(n —4) < 3. O

Figure [I| provides an example showing that the up-
per bound 7(n —4) < 3 is tight for all n > 6.

Figure 1: A point set with n — 6 points in the central
cell, showing 7(n —4) = 3 for n > 6.

4 Upper bound for 7(n — 5)
Our next goal is to derive an upper bound for 7(n—5).

Theorem 5 7(n —5) < 6 for n > 6.

Proof. (Sketch, see full version for a detailed proof)
For n = 6 the result follows from Table [I} therefore
we can assume n > 7.

Similar to the proof of Theorem [ we consider
different cardinalities of | CH(S)| in separate cases.

Case 1 |CH(S)| > 6
Again Lemma [2| implies 7(n — 5) = 0.

Case 2 |CH(S)| =5

Observe that all (n — 5)-triangles are in A°°° i.e.,
are spanned by three extreme points. No cell in the
5-gon is covered by more than five of those triangles,
therefore 7(n — 5) < 5.

Case 3 |CH(S)| =4

It can be shown that there are no (n — 5)-triangles in
A and A° and at most two (n — 5)-triangles in A°°°.
The last statement follows from the case distinction
depicted in Figure 2] For the triangles in A°°, each

Figure 2: The possible cases for two (n — 5)-triangles
in A°°° for | CH(S)| = 4.

extreme edge of the 4-gon can span at most one
(n — 5)-triangle (cf. Lemma [3)), therefore in total we
get 7(n —5) <6.

Case 4 |CH(S)| =3
Obviously we have |Al,,_5 = |A°°°|,_5 = 0.
The upper bounds |A°°|,_5 < 6 and |A°|,—5 < 3
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are rather easy to derive: each extreme edge spans
at most two (n — 5)-triangles (Lemma [3) and each
extreme point spans at most one (n — 5)-triangle,
respectively. The main effort is required to show
that in total those two sets contain at most six
(n — 5)-triangles.

If one edge spans two (n — 5)-triangles, its two adja-
cent extreme points do not span any (n — 5)-triangle
with two inner points. Therefore we can conclude
that for |A°°|,,—5 > 4 (in this case at least one edge
spans two (n-5)-triangles) it follows |A°|,_5 < 1 and
for |[A°°|,—5 > 5 (i.e., at least two edges span two
(n — 5)-triangles, respectively) it holds |A°|,_5 = 0.

This proves the assumption |A° U A°°|,_5 < 6,
and thus 7(n —5) < 6. O

Figure [3| shows two different examples reaching the
upper bound 7(n — 5) = 6.

b

Figure 3: Two point sets, each with n — 9 points in
the central cell, with 7(n —5) =6 .

5 Upper bound for 7(n — 6)

For the proof of our next statement we need an addi-
tional definition concerning the triangles in A°°.

Definition 6 By AS° we denote the set of all tri-
angles in A°° spanned by an extreme edge, i.e., two
adjacent extreme points of S and one inner point, and
by AS° the set of all triangles in A°° spanned by a di-
agonal, i.e., two nonadjacent extreme points of S and
one inner point.

Note that Ag° and AJ° are disjoint and that AZ° U
A = A°°, implying |A2°|; + |A°|; = |A°°);.

The proofs of the following statements can be found
in the full version.

Lemma 7 Let | CH(S)| = 4. Then the following im-
plications hold:

(a) If there are six (n — 6)-triangles in A2°, then

|A°],_¢ = 0.

(b) If there are five (n — 6)-triangles in AS°, then
|Ao|n_6 < 2 and |Aooo‘n_6 =0.

(c) If there are at least three (n—6)-triangles in AS°,
then |A°|,—¢ < 2 and |A°®°|,_¢ = 0.
If there are exactly four (n — 6)-triangles in A$°,
then |Ao|n_6 = 0.

(d) If there are two (n — 6)-triangles in AS°, then
|A° U A%, < 4.

Lemma 8 Let |CH(S)| = 3. If an extreme edge pqg
of S spans three (n—6)-triangles in A°°, then neither
p nor q is incident to any (n — 6)-triangle in A°.

Theorem 9 7(n —6) < 10 for n > 8.

Proof. (Sketch, see full version for a detailed proof)
For 8 < n < 11 the result follows from Table [Il Thus
we can assume n > 12.

Case 1 |CH(9)| > 7
By Lemma [2] we have 7(n — 6) = 0.

Case 2 |[CH(S)| =6

As all possible (n — 6)-triangles lie in A°°°, i.e., are
spanned by extreme points of S, the idea is, similar
as in the Proof of Case 2 of Theorem to count
the number of covering triangles for each cell in the
6-gon. It follows that |A°°°|,_¢ < 8, i.e., 7(n—6) < 8.

Case 3 |CH(S)|=5

We consider the triangles in A, A°, A°°°  A2° and
AS° separately.

For the first three sets, we get upper bounds
|A|n—6 = |Ao|n_6 =0 and |Aooo|n_6 S 4.

For the triangles in A2° and A$° we consider two
possible cases each. We have either |A2°|,_¢ = 3 and
|A°®°|,,_6 = 0 or |AS°|,—¢ < 2 and |A®°®°|,_ < 4.
Therefore it follows that |AS® U A°°°|,_¢ < 6.

On the other hand we have |[AS°],—¢ <5, but for
|AS°|n—6 = b we can conclude |A°°°|,_¢ = 0.
Overall it follows that 7(n — 6) < 10.

Case 4 |CH(S)| =4

In this case we again prove upper bounds for different
set individually. However, it is much more tedious
to show that in total the number of (n — 6)-triangles
does not exceed the claimed upper bound.

For the separate upper bounds we get

° |A|n—6 = 07

|Ao|n76 S 47

|A%°],_¢ < 2,

|AO U Aooo|n76 < 5,

|A ln—6 < 4,

|A:o|n—6 S 6.
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Figure[4 indicates how these upper bounds affect each
other and which implications (provided by Lemma
are needed to approach the overall upper bound of
T(n—6) =]AUA°UA® UAFP UA®°°|,_¢ < 10.

HAgoanﬁ':ﬁ HAZOHVZ—G:E)
l [[A°][—g < 2
Al =0
I/IM\ 1A%} = 0
1A ln-6 € {3,4}  [[AF[In-6 <2 AP s =4 [|AP|lnes < 3
[14°%°|n—6 =0 [[A°°]p—g < 2 [|A%[ln-6 =0
[[A°]|n—s < 4

/N

1AZIln—s € {34}

}

HAoanﬁ < 2
[1A°°°]ln—6 =0

[1AZNn—6 =2 [1AZ°]ln-6 =1

[[A°U Al <4 [|A°UA6<5

Figure 4: Overview on how to show that 7(n—6) < 10.
Both statements for the separately considered subsets
are used and implications between the subsets pro-
vided by Lemma|[7] are indicated by colored arrows.

Case 5 |CH(S)| =3
For the case of n — 3 inner points we get the following
upper bounds:

o [Alhg<1

* [A%n6<6
o |A%,6 <9
o |A%°|, 6 =0

To satisfy the overall upper bound, we distinguish be-
tween several cases for the number of (n—6)-triangles
in A°°,

Case 5a |A°°|,_¢ > 7

We apply Lemmato this case. Thus |A°°|,—¢ >
7 implies |A°],—¢ < 2 and |A°°|,,_¢ € {8,9} im-
plies |A°|,,_¢ = 0. Combined with the upper
bound for (n — 6)-triangles in A we are done.

Case 5b |[A°°|,,_¢ <3
In this case the separated upper bounds directly
sum up to 10.

Cases 5¢ and 5d |A°°|,_¢ = 4,5

In both cases a more sophisticated case analysis
has to be made. For example we show which ex-
treme points span how many (n-6)-triangles and
how they are related.

Case 5e |A°°|,,_6 =6

In that case each extreme point spans two (n—6)-
triangles. Using further observations it follows
that either |A°°|,_g < 3 or else |A°°|,_¢ < 4
and |Al,_¢ = 0.

This concludes the case | CH(S)| = 3.

In summary for all cases we obtained the claimed
upper bound 7(n — 6) < 10. O

Figure [5] shows a point set obtaining the upper
bound 7(n —6) = 10, implying that Theorem |§| is
tight.

Figure 5: A point set with 7(n—6) = 10. Six (n — 6)-
triangles in A2° are drawn in black; four (n — 6)-
triangles in A3° are drawn in yellow and orange.

6 Conclusion

We have shown tight upper bounds for 7(n — 6) to
7(n — 4). This leads us to the following conjecture,
which holds for & < 6.

Conjecture 10 For a constant k, 3 < k <10, and n
large enough we have 7(n — k) < (kgl)
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