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Lower bounds for the number of small convex k-holes∗
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Abstract

Let S be a set of n points in the plane in general po-
sition, that is, no three points of S are on a line. We
consider an Erdős-type question on the least number
hk(n) of convex k-holes in S, and give improved lower
bounds on hk(n), for 3 ≤ k ≤ 5. Specifically, we show

that h3(n) ≥ n2 − 32n
7 + 22

7 , h4(n) ≥ n2

2 − 9n
4 − o(n),

and h5(n) ≥ 3n
4 − o(n).

1 Introduction

Let S be a set of n points in the plane in general po-
sition, that is, no three points of S lie on a common
straight line. A k-hole of S is a simple polygon, P ,
spanned by k points from S, such that no other point
of S is contained in the interior of P . A classical ex-
istence question raised by Erdős [8] is: “What is the
smallest integer h(k) such that any set of h(k) points
in the plane contains at least one convex k-hole?”. Es-
ther Klein observed that every set of 5 points contains
a convex 4-hole, and Harborth [12] showed that ev-
ery set of 10 points determines a convex 5-hole. Both
bounds are tight w.r.t. the cardinality of S. Only in
2007/08 Nicolás [14] and independently Gerken [11]
proved that every sufficiently large point set contains a
convex 6-hole. On the other hand, Horton [13] showed
that there exist arbitrarily large sets which do not con-
tain any convex 7-hole; see [1] for a brief survey.

A generalization of Erdős’ question is: “What is the
least number hk(n) of convex k-holes determined by any
set of n points in the plane?”. In this paper we con-
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centrate on this question for 3 ≤ k ≤ 5, that is, the
number of empty triangles (3-holes), convex 4-holes,
and convex 5-holes. We denote by hk(S) the number
of convex k-holes determined by S, and by hk(n) =
min|S|=n hk(S) the number of convex k-holes any set of
n points in general position must have. Throughout this
paper let ldx = log x

log 2 be the binary logarithm. Further-

more, we denote with CH (S) the convex hull of S and
with ∂ CH (S) the boundary of CH (S).

We start in Section 2 by providing improved bounds
on the number of convex 5-holes. In particular, increas-
ing the so far best bound h5(n) ≥ n

2 − O(1) [16] to
h5(n) ≥ 3n

4 − n0.87447 + 1.875. In Section 3 we combine
these results with a technique recently introduced by
Garćıa [9, 10], and improve the currently best bounds
on the number of empty triangles and convex 4-holes,

h3(n) ≥ n2 − 37n
8 + 23

8 and h4(n) ≥ n2

2 − 11n
4 − 9

4
(both in [10]), to h3(n) ≥ n2 − 32n

7 + 22
7 and h4(n) ≥

n2

2 − 9n
4 − 1.2641n0.926 + 199

24 , respectively.

2 Convex 5-holes

The currently best upper bound on the number of con-
vex 5-holes, h5(n) ≤ 1.0207n2 + o(n2) is by Bárány and
Valtr [5], and it is widely conjectured that h5(n) grows
quadratically. Still, to this date not even a super-linear
lower bound is known.

As early as in 1987 Dehnhardt presented a lower
bound of h5(n) ≥ 3b n

12c in his thesis [6]. Unfortunately,
this result, published in German only, remained un-
known to the scientific community until recently. Thus,
the best known lower bound was h5(n) ≥

⌊
n−4
6

⌋
, ob-

tained by Bárány and Károlyi [4]. In the presentation
of [9] this bound was improved to h5(n) ≥ 2

9n − 25
9 .

A slightly better bound h5(n) ≥ 3bn−48 c was presented
in [2], which was then sharpened to h5(n) ≥

⌈
3
7 (n− 11)

⌉

in [3]. The latest and so far best bound of h5(n) ≥
n
2 −O(1) is due to Valtr [16]. In this section we further
improve this bound to h5(n) ≥ 3

4n− o(n).
We start by fine-tuning the proof from [3], show-

ing h5(n) ≥
⌈
3
7 (n− 11)

⌉
, by utilizing the results

h5(10) = 1 [12], h5(11) = 2 [6], and h5(12) ≥ 3 [6]. Al-
though this does not lead to an improved lower bound
of h5(n) for large n, it provides better lower bounds for
small values of n; see Table 1.
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n 10 11 12 13 14 15 16 17 18 19 20..23 24 25 26 27..30 31

h5(n) 1 2 3 3..4 3..6 3..9 ≥ 3 ≥ 4 ≥ 5 ≥ 6 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 9 ≥ 10

n 32 33 34..37 38 39 40 41..44 45 46 47 48..50 51 52 53 54 55..56

h5(n) ≥ 11 ≥ 12 ≥ 12 ≥ 13 ≥ 14 ≥ 15 ≥ 15 ≥ 16 ≥ 17 ≥ 18 ≥ 18 ≥ 19 ≥ 19 ≥ 20 ≥ 21 ≥ 21

Table 1: The updated bounds on h5(n) for small values of n.

Lemma 1 Every set S of n points in the plane in gen-
eral position with n = 7 · m + 9 + t (for any natu-
ral number m ≥ 0 and t ∈ {1, 2, 3}) contains at least
h5(n) ≥ 3m + t = 3n−27+4t

7 convex 5-holes.

Proof. Because of h5(10) = 1, h5(11) = 2, and
h5(12) ≥ 3 this is true for m = 0. Obviously h5(n) ≥
h5(n− 1). Hence, h5(n) ≥ 3 for any n ≥ 12.

If there exists a point p ∈ ((∂ CH (S)) ∩ S) that is a
point of a convex 5-hole, then h5(S) ≥ 1+h5(S\{p}) ≥
1 + h5(n− 1). In this case, the lemma is true by induc-
tion, as for t = 1 and m > 0, h5(n−1) = h5(7 ·m+9) ≥
h5(7 · (m− 1) + 9 + 3). (The case t ∈ {2, 3} is trivial.)

Otherwise, each point p ∈ ((∂ CH (S)) ∩ S) is not a
point of a convex 5-hole. For m > 0 choose one such
point p (e.g. the bottom-most one) and partition S\{p}
(in clockwise order around p) into the following succes-
sive disjoint subsets: S0 containing the first 7 points;
S′0 containing the next 4 points; (m − 1) pairs of sub-
sets: Si containing 3 points and S′i containing 4 points
(1 ≤ i ≤ (m − 1)); and the subset Srem containing the
remaining (t + 4) points. See Figure 1 for a sketch.

p
|S0| = 7

|S ′
0 | =

4

︷ ︸︸ ︷
. . . . . .

|Srem| = t+ 4

3 4 Si S′
i 3 4

(m− 1) pairs

Figure 1: Partition of S\{p} clockwise around an ex-
treme point p: starting with the pair S0, S

′
0; continuing

with (m−1) pairs of sets Si, S
′
i, for 1 ≤ i ≤ (m−1), with

|Si| = 3 and |S′i| = 4; and ending with the remainder
set Srem.

The subset S0 ∪ S′0 ∪ {p} has cardinality 12 and thus
contains at least 3 convex 5-holes. The same is true for
each subset S′i−1∪Si∪S′i∪{p} (1 ≤ i ≤ (m−1)). Finally,
the subset S′m−1 ∪ Srem ∪ {p} has cardinality (9 + t)
and therefore contains at least t convex 5-holes. Note
that we count every convex 5-hole at most once, as the
considered subsets of 10, 11, and 12 points, respectively,
overlap in at most 4 points. In total this gives at least
3 + (m − 1) · 3 + t = 3 · n−9−t7 + t = 3n−27+4t

7 convex
5-holes. �

Corollary 2 Every set S of 17 points in the plane in
general position contains at least h5(17) ≥ 4 convex
5-holes.

Table 1 shows the bounds on h5(n) obtained by
Lemma 1, for some small values of n. By Harborth [12]
h5(10) = 1, and by Dehnhardt [6] h5(11) = 2 and
h5(12) ≥ 3. The bounds for n = 51 and for 57 ≤
n < 62250 (not shown in the table) are due to h5(n) ≥⌈
n
2

⌉
− 7 from Valtr [16]. The bounds h5(12) ≤ 3,

h5(13) ≤ 4, h5(14) ≤ 6, and h5(15) ≤ 9 are from [3, 17].
In the following theorem we present an improved

lower bound on h5(n) for larger n.

Theorem 3 Every set S of n ≥ 12 points in the plane
in general position contains at least h5(n) ≥ 3n

4 −nld 11
6 +

15
8 = 3n

4 − o(n) convex 5-holes.

Proof. For 12 ≤ n < 17 we count three convex 5-holes
for S. For 17 ≤ n < 24 we can count four convex 5-holes
for S by Corollary 2.

If n ≥ 24 consider an (almost) halving line ` of S
which splits S into SL (|SL| = dn2 e) and SR (|SR| =
bn2 c) and does not contain any point of S. See Figure 2.

SL

SR

`

`′

`′′ S′
S′′

Figure 2: A point set S split by a halving line ` into two
point sets SL, SR ⊂ S. The line `′ cuts off a set S′ ⊆ S,
consisting of 8 points of SL and 4 points of SR. The
line `′′ is parallel to `′ and halves SL ∩ S′.

Furthermore, consider a line `′ that intersects ` and
cuts off a set S′ ⊆ S, consisting of eight points from SL
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and four points from SR. That this is in fact possible is
folklore, see e.g. Exercise 4.5 (b) in [7]. Let a line `′′ be
parallel to `′ and split S′ ∩ SL into two groups of four
points, and let S′′ ⊂ S′ be the set which is cut off by `′′.
Note that neither `′ nor `′′ contain any points of S.

As |S′| = 12 we have that S′ contains at least three
convex 5-holes. We distinguish two cases.

Case 1: S′ contains at least three convex 5-holes
which are not intersected by `. Then each of these
5-holes contains only points from SL and thus at least
one point above `′′. We count the three convex 5-holes
for the set SL and continue on S\S′′.

Case 2: S′ contains at most two convex 5-holes which
are not intersected by `. Then at least one convex 5-hole
in S′ is intersected by `. We count one convex 5-hole
for the halving line ` and continue on S\S′.

Note that in both cases we cut off at least four points
from SL, but at most four points from SR. Thus,
we can repeat this process until we have processed
all dn2 e points of SL. Let cL be the number of con-
vex 5-holes counted for ` when processing SL. Hence,
Case 2 appeared cL times, and Case 1 appeared at least⌊
1
4 ·
(⌈

n
2

⌉
− 8cL

)⌋
− 1 times. Therefore, the number of

convex 5-holes we counted in SL (i.e., not intersecting `)
is h5(SL) ≥ 3

(⌊
1
4

(⌈
n
2

⌉
− 8cL

)⌋
− 1
)
.

Repeating the same procedure for SR (exchang-
ing the roles of SL and SR), we obtain h5(SR) ≥
3
(⌊

1
4

(⌊
n
2

⌋
− 8cR

)⌋
− 1
)
, where cR is the number of con-

vex 5-holes which we counted for ` when processing SR.
Note that any convex 5-hole intersected by `, which we
counted while processing SL, might have occurred again
when processing SR. Thus, the total number c of convex
5-holes intersected by ` is at least max{cL, cR} ≥ cL+cR

2 .
As h5(S) = h5(SL) + h5(SR) + c, we obtain

h5(S) ≥ 3 ·
(⌊

1

4
·
(⌈n

2

⌉
− 8cL

)⌋
− 1

)

+ 3 ·
(⌊

1

4
·
(⌊n

2

⌋
− 8cR

)⌋
− 1

)
+

cL + cR
2

.

Considering that

⌊⌈
n
2

⌉

4

⌋
+

⌊⌊
n
2

⌋

4

⌋
=





2 ·
⌊ n

2

4

⌋
. . . n is even

⌊ n+1
2

4

⌋
+

⌊ n−1
2

4

⌋
. . . n is odd

is ≥ n
4− 6

4 in both cases, careful transformation gives

h5(S) ≥ 3n

4
− 11 · cL + cR

2
− 21

2
(1)

as a first lower bound for the number of convex 5-holes
in S. Using h5(S) = c + h5(SL) + h5(SR), and the
fact that the (almost) halving line ` splits S such that
|SL| = dn2 e and |SR| = bn2 c, we get h5(S) ≥ cL+cR

2 +

h5(
⌈
n
2

⌉
) + h5(

⌊
n
2

⌋
) ≥ cL+cR

2 + h5(
⌈
n−1
2

⌉
) + h5(

⌈
n−1
2

⌉
),

and hence, a second lower bound for h5(S):

h5(S) ≥ cL + cR
2

+ 2 · h5(

⌈
n− 1

2

⌉
) . (2)

Combining this with the bound (1), we obtain

h5(S) ≥ max

{(
3n

4
− 11 · cL + cR

2
− 21

2

)
,

(
cL + cR

2
+ 2 · h5(

⌈
n− 1

2

⌉
)

)}
.

(3)

Note that the first term in inequality (3) is strictly
monotonically decreasing in cL+cR

2 , while the second
term is strictly monotonically increasing in cL+cR

2 .
Thus, the minimum of the lower bound in (3) is reached
if both bounds are equal.

3n

4
−11 · cL+cR

2
− 21

2
=

cL+cR
2

+2·h5(

⌈
n−1

2

⌉
)

3n

4
− 21

2
−2·h5(

⌈
n−1

2

⌉
) = 12· cL+cR

2

cL+cR
2

=
n

16
− 7

8
− 1

6
·h5(

⌈
n−1

2

⌉
)

Plugging this result for cL+cR
2 into the lower bound (2)

for h5(S), we obtain a lower bound for h5(S) for any
S with n points. Therefore, this also leads to a lower
bound for h5(n).

h5(n) ≥ n

16
− 7

8
− 1

6
·h5(

⌈
n−1

2

⌉
) + 2·h5(

⌈
n−1

2

⌉
)

=
n

16
− 7

8
+

11

6
·h5(

⌈
n−1

2

⌉
) .

(4)

We show by induction that this recursion resolves to
h5(n) ≥ 3n

4 − nld 11
6 + 15

8 , for n ≥ 12. We know that
h5(12), . . . , h5(16) ≥ 3 and h5(17), . . . , h5(23) ≥ 4 (see

first paragraph of this proof). As 3n
4 − nld 11

6 + 15
8 is

monotonically increasing for 12 ≤ n ≤ 23, it is sufficient
to check the induction base for n = 16 and n = 23:
h5(16) ≥ 3 ≥ 2.578 ≥ 3·16

4 − 16ld
11
6 + 15

8 and h5(23) ≥
4 ≥ 3.609 ≥ 3·23

4 − 23ld
11
6 + 15

8 . For n ≥ 24 we insert
the claim into the recursive formula:

h5(n) ≥ n

16
− 7

8
+

11

6
·h5(

⌈
n−1

2

⌉
)

≥ n

16
− 7

8
+

11

6
·
(

3n−1
2

4
−
(
n−1

2

)ld 11
6

+
15

8

)

=
3n

4
+

15

8
− 11

6
· 1

2ld
11
6

· (n− 1)ld
11
6

≥ 3n

4
− nld 11

6 +
15

8
.

The last inequality is true because (n− 1)ld
11
6 < nld 11

6 .
This proves the claim and the theorem as we have:

h5(n) ≥ 3n
4 − n0.87447 + 1.875 = 3n

4 − o(n) . �
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3 Empty triangles and convex 4-holes

For this section we are going to use some definitions and
notation used in [15, 9, 10]. Let S be a set of n points
in the plane in general position. We need to define a
total order on the points of S. In addition, this order
has to define a line `q through every point q ∈ S, such
that each point r ∈ S is either in the closed halfplane
“below” `q, i.e., q ≥ r, or in the open halfplane “above”
`q, i.e., q < r. In [10] the points of S are sorted in
increasing order of the ordinate y (with the additional
restriction that no two points have equal ordinate). Ob-
serve though, that of course any direction is a valid or-
der for the points of S. Furthermore, observe that also
a cyclic order around some point p ∈ ((∂ CH (S))∩S) is
a valid order for the points of S\{p}, as there exists a
line ` through p, such that all points of S\{p} are in an
open halfplane bounded by `. This will be crucial for
the proof of Lemma 6 where we will order the points of
a set S\{p} around such a point p. Note that, because
of the general position assumption for S, no two points
in S\{p} are equivalent in this order. Anyhow, for sim-
plicity, and apart from the aforementioned exception,
we will use the order along the ordinate of S, as in [10].

Let P be a convex 5-hole spanned by points of S and
let v be the top vertex of P , i.e., the vertex of P with
highest order. We name an empty triangle generated
by P if it is spanned by v and the two vertices of P
that are not adjacent (on the boundary of P ) to v.
Let h3|5(S) be the number of such triangles determined
by S, and let h3|5(n) = min|S|=n h3|5(S) be the number
of empty triangles generated by convex 5-holes that ev-
ery set of n points spans at least. Likewise, we name a
convex 4-hole generated by P if it is spanned by all ver-
tices of P except for one of the two vertices of P that
are adjacent (on the boundary of P ) to v. Observe that
each convex 5-hole generates two convex 4-holes by this
definition. Let h4|5(S) be the number of such 4-holes
determined by S, and let h4|5(n) = min|S|=n h4|5(S)
be the number of convex 4-holes generated by convex
5-holes that every set of n points spans at least.

Garćıa [10] recently proved that h3(S) = n2 − 5n +
H+4+h3|5(S) ≥ n2−5n+H+4+h3|5(n) and h4(S) =
n2

2 − 7n
2 +H + 3 +h4|5(S) ≥ n2

2 − 7n
2 +H + 3 +h4|5(n),

where H is the number of points of ((∂ CH (S)) ∩ S).
Consequently, this gives h3(n) ≥ n2 − 5n + 7 + h3|5(n)

and h4(n) ≥ n2

2 − 7n
2 + 6 + h4|5(n), as H ≥ 3. Observe

that this implies that h3|5(S) and h4|5(S) (and of course
h3|5(n) and h4|5(n)) do not depend on the chosen order
of the points. As changing the order does not change
the point set, h3(S) and h4(S) are of course indepen-
dent of the order. Furthermore, Garćıa proved that the
number of empty triangles (or convex 4-holes) not gen-
erated by convex 5-holes is an invariant of the point set.
Hence, although the empty triangles and convex 4-holes

generated by convex 5-holes may change with different
orders, their numbers stay the same.

Proving h3|5(n) ≥ 3 ·
⌊
n−4
8

⌋
and h4|5(n) ≥ 6 ·

⌊
n−4
8

⌋
,

Garćıa presented the improved bounds h3(n) ≥ n2 −
37n
8 + 23

8 and h4(n) ≥ n2

2 − 11n
4 − 9

4 . We will improve
these bounds on h3|5(n) and h4|5(n). Showing that for
each convex 5-hole counted in Lemma 1 we may count
one empty triangle generated by convex 5-holes and two
convex 4-holes generated by convex 5-holes will already
give an improved bound for both, h3|5(n) and h4|5(n).
But using a slightly adapted version of the proof from
Theorem 3 will improve the bound on h4|5(n) even fur-
ther. To this end we have to first prove the base case,
i.e., sets of 10, 11, and 12 points.

Having a close look at the example shown in Figure 3,
one can see that as soon as the triangle4 (or the convex
4-hole 3) is generated by more than one convex 5-hole,
there must exist at least one convex 6-hole. We state
this fact in more detail and prove it in the following
lemma. Note that a similar approach and figure has
been used in [10].

Lemma 4 Let S be a set of n ≥ 6 points in the plane
in general position. Let 4 ( 3) be an empty triangle
(a convex 4-hole) of S. If 4 ( 3) is generated by at
least two convex 5-holes, D1 and D2, of S, then there
exists at least one convex 6-hole, 71, of S, containing
D1, and one convex 6-hole, 72, of S, containing D2,
where 71 = 72 is possible.

Proof. See Figure 3 (top). Assume that there exists
at least one empty triangle, 4 = 〈pi, pj , pk〉, with pk
being the top vertex, that is generated by two differ-
ent convex 5-holes. Let one of them, D1, be spanned
by the points pi, pj , pL, pk, pR (the points shown as full
dots in the figure). As4 is generated by another convex
5-hole, D2, there must be at least one additional point
in one of the regions Lh, Ll, Rh, and Rl. Otherwise,
the new pentagon would not be empty, not be convex,
or 4 would not be generated by it (recall that pk must
be the highest point). W.l.o.g. assume that there ex-
ists at least one point pnew in Rl. It is easy to see that
in this case there exists a convex 4-hole spanned by the
points pi, pk, pR, p

′
R (p′R = pnew is possible, but not nec-

essary). Together with pj and pL this forms a convex
6-hole which contains D1. Starting the argument with
4 being generated by D2, proves that also D2 is con-
tained in a convex 6-hole.

The argumentation is analogous for a convex 4-hole,
3, that is generated by two different convex 5-holes.
See Figure 3 (bottom). The only difference to the pre-
vious case (with4) is that the additional point pnew can
not exist in either Ll or Rl, depending on which convex
4-hole (either 3 = 〈pi, pj , pL, pk〉 or 3 = 〈pi, pj , pk, pR〉)
is considered. The former situation is depicted in Fig-
ure 3 (bottom). �
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pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

4

Rl

pk

pi
pj

Lh

Ll

Rh
pR

pL

p′R

pnew

♦
Rl

Figure 3: Auxiliary figure for the proof of Lemma 4.

Using Lemma 4 we are able to provide the base cases
10 ≤ n ≤ 12 for h3|5(n) and h4|5(n). The proof is
omitted in this extended abstract.

Lemma 5 Every set of 10, 11, or 12 points in the
plane in general position contains (i) at least 1, 2, and
3, respectively, different empty triangles generated by
convex 5-holes (i.e., h3|5(10) = 1, h3|5(11) = 2, and
h3|5(12) = 3) and (ii) at least 2, 4, and 6, respectively,
different convex 4-holes generated by convex 5-holes
(i.e., h4|5(10) = 2, h4|5(11) = 4, and h4|5(12) = 6).

These base cases allow a lemma similar to Lemma 1.
The proof follows the lines of the proof of Lemma 1 and
is omitted in this extended abstract.

Lemma 6 Every set S of n points in the plane in gen-
eral position with n = 7 · m + 9 + t (for any natu-
ral number m ≥ 0 and t ∈ {1, 2, 3}) contains at least
h3|5(n) ≥ 3n−27+4t

7 empty triangles generated by con-

vex 5-holes and at least h4|5(n) ≥ 2 · (3n−27+4t)
7 convex

4-holes generated by convex 5-holes.

As mentioned above, this lemma already improves the
bounds for h3|5(n) and h4|5(n). We will further improve
the bound for h4|5(n) in Theorem 8. In the following
theorem we state only the bound for h3|5(n).

Theorem 7 Every set S of n ≥ 12 points in the
plane in general position contains at least h3|5(n) ≥
3·
⌊
n−12

7

⌋
+3+f(|Srem|) ≥

⌈
3n−27

7

⌉
empty triangles gen-

erated by convex 5-holes. The point set Srem⊂S is the
remainder set with 0 ≤ |Srem| ≡ (n− 12) mod 7 ≤ 6,
and f(0 . . . 4) = 0, f(5) = 1, and f(6) = 2.

Proof. The first inequality in the bound, h3|5(n) ≥
3 ·
⌊
n−12

7

⌋
+ 3 + f(|Srem|), is simply a reformulation of

the bound in Lemma 6. The second inequality results
from taking the minimum of the first inequality over all
possible values for |Srem|. (This minimum is obtained
by |Srem| = 4.) �

The basic principles of the proof of the following the-
orem are the same as in the proof of Theorem 3. The
main difference is that, for excluding over-counting, a
slightly different counting is needed. The proof is omit-
ted in this extended abstract and we only state the re-
sult.

Theorem 8 Every set S of n ≥ 12 points in the plane
in general position contains at least h4|5(n) ≥ 5n

4 − 383
303 ·

nld 19
10 + 55

24 = 5n
4 − o(n) convex 4-holes generated by

convex 5-holes.

Remark: To use the principles of the proof of The-
orem 3 also for empty triangles generated by convex
5-holes, a very disadvantageous splitting is necessary to
avoid over-counting. This would lead to a bound infe-
rior to the one from Theorem 7.

Recall that Garćıa [10] recently proved h3(S) ≥ n2 −
5n+H+4+h3|5(n) and h4(S) ≥ n2

2 − 7n
2 +H+3+h4|5(n).

Combining these results with Theorem 7 and Theorem 8
we can state the following corollary.

Corollary 9 Every set S of n ≥ 12 points in the
plane in general position and with H points on the
boundary of its convex hull contains at least h3(S) ≥
n2 − 5n + H + 4 +

⌈
3n−27

7

⌉
empty triangles and at

least h4(S) ≥ n2

2 − 9n
4 − 383

303 · nld 19
10 + H + 127

24 con-
vex 4-holes. Consequently, h3(n) ≥ n2 − 32n

7 + 22
7 and

h4(n) ≥ n2

2 − 9n
4 − 1.2641n0.926 + 199

24 .

4 Conclusion

In this paper we improved the lower bounds on the least
number hk(n) of convex k-holes any set of n points con-
tains, for 3 ≤ k ≤ 5. The question whether there exists
a super-linear lower bound for the number of convex
5-holes remains unsettled, though.

Still, we are able to answer two questions that Dehn-
hardt [6] asked in 1987. Already in [3] a set of 12
points containing only three convex 5-holes has been
presented, implying h5(12) = 3. This disproved Dehn-
hardt’s conjecture of h5(12) = 4. Recall that we know
from Garćıa [10], that h3(S) = n2−5n+H+4+h3|5(S)

and h4(S) = n2

2 − 7n
2 + H + 3 + h4|5(S), where h3|5(S)

(h4|5(S)) is the number of empty triangles (convex
4-holes) generated by convex 5-holes in S.

Consider the set S12 with n = 12 points and H = 3,
depicted in Figure 4. It can be easily checked that
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Figure 4: Set of 12 points with triangular convex hull,
generating the minimal number of 3-holes (94), convex
4-holes (42), and convex 5-holes (3). The coordinates
(x, y) of the 12 points are: (0, 0); (100, 0); (50, 87); (50,
38); (55, 32); (53, 19); (47, 19); (45, 32); (41, 4); (59,
4); (25, 40); (75, 40).

this point set contains only the 3 shown convex 5-holes.
Hence, h3|5(S12) = 3 and h4|5(S12) = 6, as by Lemma 5
h3|5(12) = 3 and h4|5(12) = 6. Inserting into the above
equations, we get h3(S12) = h3(12) = 144−60 + 3 + 4 +
3 = 94 and h4(S12) = h4(12) = 72−42 + 3 + 3 + 6 = 42,
as h3(12) ≥ 94 and h4(12) ≥ 42 (by [6]). Of course,
h3(S12) and h4(S12) can also be derived by counting
all empty triangles and convex 4-holes in S12. This
disproves two conjectures of Dehnhardt in [6], namely
h3(12) = 95 and h4(12) = 44.

Furthermore, his question for a set of n points that
minimizes at least one of h3(n), h4(n), and h5(n), but
not all of them is answered by the set of 12 points
presented in [3], which has only 3 convex 5-holes but
contains (non-minimal) 95 empty triangles and (non-
minimal) 43 convex 4-holes.
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We thank Alfredo Garćıa for valuable discussions and
an anonymous referee for helpful comments.

References

[1] O. Aichholzer. [Empty] [colored] k-gons - Recent results
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[8] P. Erdős. Some more problems on elementary geome-
try. Australian Mathematical Society Gazette, 5:52–54,
1978.
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