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4-Holes in Point Sets
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Abstract

We consider a variant of a question of Erdős on the
number of empty k-gons (k-holes) in a set of n points
in the plane, where we allow the k-gons to be non-
convex. We show bounds and structural results on
maximizing and minimizing the number of general
4-holes, and maximizing the number of non-convex
4-holes.

1 Introduction

Let S be a set of n points in general position in
the plane. A k-gon is a simple polygon spanned by
k points of S. A k-hole is an empty k-gon, that is, a
k-gon which does not contain any points of S in its
interior.
In 1978 Erdős [5] raised the following question for

convex k-holes: “What is the smallest integer h(k)
such that any set of h(k) points in the plane contains
at least one convex k-hole?” As already observed by
Esther Klein, every set of 5 points determines a convex
4-hole, and 10 points always contain a convex 5-hole,
a fact proved by Harborth [8]. However, in 1983 Hor-
ton showed that there exist arbitrarily large sets of
points not containing any convex 7-hole [9]. It again
took almost a quarter of a century after Horton’s con-
struction to answer the existence question for 6-holes.
In 2007/08 Nicolás [11] and independently Gerken [7]
proved that every sufficiently large point set contains
a convex 6-hole.
Erdős also proposed the following variation of the

problem [6]. “What is the least number hk(n) of
convex k-holes determined by any set of n points in
the plane?” We know by Horton’s construction that
hk(n) = 0 for k ≥ 7. For k ≤ 6, upper and lower
bounds on hk(n) exist; see [1] for a survey.
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In this paper we generalize the latter problem by
allowing a k-hole to be non-convex. Thus, whenever
we refer to a k-hole, it might be convex or non-convex,
and we will explicitly state it when we restrict inves-
tigations to one of these two classes.
Note that a set of four points in non-convex position

might span up to three 4-holes; that is, the number of
k-holes can be larger than

(

n

k

)

, the maximum number
of convex k-holes.
We first investigate sets of small cardinality (Sec-

tion 2), and then consider the following tasks: maxi-
mizing the number of 4-holes (Section 3), maximizing
the number of non-convex 4-holes (Section 4), and
minimizing the number of 4-holes (Section 5). In ad-
dition to the best possible lower and upper bounds
on their number, we also show which families of point
sets obtain these bounds.

2 Small Sets

Even to determine the number of small holes is sur-
prisingly intriguing. For n ≤ 11, Table 1 shows
the minimum number of convex 4-holes, the max-
imum number of non-convex 4-holes, the minimum
and maximum number of (general) 4-holes, and, for
easy comparison, the number of 4-tuples.

convex non-convex general
n

min max min max

(

n

4

)

4 0 3 1 3 1

5 1 8 5 9 5

6 3 18 15 22 15

7 6 36 35 43 35

8 10 64 66 77 70

9 15 100 102 126 126

10 23 150 147 210 210

11 32 216 203 330 330

Table 1: Number of 4-holes for n = 4, . . . , 11
points [1].

Obviously, the maximum number of con-
vex 4-holes is

(

n

4

)

, obtained by sets in convex
position. For minimizing the number of convex
4-holes, the currently best known bounds are
n2

2 −O(n) ≤ h4(n) ≤ 1.9397n2 + o(n2), see [3, 4, 12].
For n = 4, . . . , 7 it can be seen from Table 1 that the

minimum number of 4-holes is
(

n
4

)

. In contrast,
(

n
4

)

is
the maximum number of 4-holes for n = 9, . . . , 11, so
the structure of extremal sets seems to switch.
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n=5: 1 / 8 / 9 n=6: 4 / 18 / 22

n=7: 7 / 36 / 43 n=8: 20 / 57 / 77

n=4: 0 / 3 / 3

Figure 1: Point sets maximizing the number of 4-holes
for n = 4, . . . , 8. Shown are the number of convex,
non-convex, and general 4-holes.

Figure 1 shows point sets maximizing the number
of 4-holes for n = 4, . . . , 8. The results for n > 8
suggest that sets in convex position might maximize
the number of 4-holes for n ≥ 9. Indeed, this will be
the first result we prove for general 4-holes (Section 3).

(a) (b)

Figure 2: Two unique extremal sets for n = 11 points:
(a) maximizes the number of non-convex 4-holes, and
(b) minimizes the number of 4-holes.

Figure 2 shows two extremal sets for n = 11
points. Each set represents the unique order type
which reaches the extreme value. The left set maxi-
mizes the number of non-convex 4-holes, namely 216,
and consists of a convex 5-hole inside a convex 6-gon.
The total number of 4-holes in this set is 267; i.e., it
contains in addition 51 convex 4-holes. The set on the
right side minimizes the number of general 4-holes. It
contains 51 convex and 152 non-convex 4-holes, thus
in total the minimum of 203 4-holes.

3 Maximizing the Number of (General) 4-Holes

Lemma 1 Let ∆ be a non-empty triangle in S.

There are at most three non-convex 4-holes spanned

by the three vertices of ∆ plus a point of S in the

interior of ∆.

Proof. Let p1, p2, and p3 be the vertices of ∆. Ob-
serve that any non-convex 4-hole has to use two edges
of ∆. Thus there are three choices for the unused edge
of ∆, and for each choice there is at most one way to
complete the two used edges of ∆ to a 4-hole. As-
sume to the contrary that two different 4-holes avoid
the edge p2p3 and use points q1 and q2, respectively,

in the interior. Then q2 lies outside the two trian-
gles formed by p1q1p2 and p1q1p3. Thus q2 lies in the
triangle formed by p2q1p3. But then q1 must lie in
one of the triangles spanned by p1q2p2 and p1q2p3, a
contradiction. �

Theorem 2 For n ≥ 9 the number of 4-holes is max-

imized by a set of n points in convex position.

Proof. In the following we assign every non-convex
4-tuple of points to the three vertices of its convex hull
and call this the representing triangle of the potential
non-convex 4-holes. By Lemma 1, any non-empty tri-
angle represents at most three 4-holes, and any convex
4-tuple gives at most one 4-hole.
Let T be the number of non-empty triangles. As

any non-empty triangle induces at least one 4-tuple
in non-convex position, we get

(

n

4

)

+ 2T (1)

as a first upper bound on the number of 4-holes of a
point set.
Note that a triangle ∆ with k ≥ 1 interior points is

counted k+2 times in (1), namely k times in the
(

n

4

)

4-tuples plus the extra 2 as ∆ is non-empty. Thus for
k > 1 we have over-counted the number of non-convex
4-holes assigned to ∆; cf. Lemma 1. Moreover, many
of the convex 4-gons might not be empty and thus no
4-holes. Therefore we now analyze how many of the
counted potential 4-holes can be reduced from (1). We
will do this by assigning (possibly multiple) markers
for over-counted 4-holes to convex 4-tuples and non-
empty triangles.
As above, let ∆ be a triangle with k ≥ 1 interior

points, and consider all 4-tuples consisting of the three
vertices of ∆ plus an extra point p. We distinguish
two cases.
First let p be one of the n−k−3 points outside ∆. If

the resulting 4-tuple is convex, we mark this 4-tuple,
as it is not empty and thus no 4-hole. If the 4-tuple
is non-convex, we mark the triangle which represents
the potential non-convex 4-hole, as at least one of the
three possible 4-holes of this 4-tuple is non-empty.
In the second case we consider the k points inside ∆.

As argued above, ∆ was counted k+2 times. But
by Lemma 1, there are at most three 4-holes using
one interior point of ∆ and thus represented by ∆.
Therefore we assign k−1 markers to ∆.
Altogether we have distributed n−4 markers while

considering ∆. Repeating this for all non-empty tri-
angles, we obtain a total of (n−4) · T markers.
A non-empty convex 4-tuple might have received

up to 4 markers in this way, one from each of its sub-
triangles. That is, we have at most 4 times as many
markers as convex 4-tuples which we can reduce from
the upper bound (1).
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A non-empty triangle ∆ with k ≥ 1 interior points
might have got 4 · (k− 1) markers: For its interior
points, ∆ received k − 1 markers from the second
case, and for each non-empty triangle formed by two
vertices of ∆ and one point inside ∆, we received
one marker from the first case. As at least three
of the considered inner triangles are empty (the ones
spanned by an edge e of ∆ and the interior point clos-
est to e), the first case gives at most 3 · (k − 1) addi-
tional markers, resulting in a total of at most 4 ·(k−1)
markers for ∆. As ∆ was counted k+2 times, but rep-
resents at most three 4-holes (Lemma 1), we have at
most 4 · (k−1) markers for at least (k+2)−3 = k−1
over-counted objects. Thus, in both cases we over-
counted reducible terms at most by a factor of 4. We
therefore can reduce the number of potential 4-holes
by one quarter of the distributed markers, namely by
n−4
4 · T . This leads to the improved upper bound

(

n

4

)

+ 2T −
n− 4

4
· T

for the number of 4-holes. For n ≥ 12 this is at most
(

n
4

)

, the number of 4-holes for a set of points in convex
position. Together with the results from Table 1 for
n = 9, . . . , 11, this proves the theorem. �

4 Maximizing the Number of Non-Convex
4-Holes

Lemma 3 The number of non-convex 4-holes of any

set of n points is at most
n(n−1)(n−2)

2 = n3

2 −O(n2).

Proof. By Lemma 1, any non-empty triangle gener-
ates at most three non-convex 4-holes, and there are
at most

(

n

3

)

such triangles in a set of n points. �

Theorem 4 For every n′ > 0 there exist sets of

n points for some n ∈ {n′, . . . , 2n′}, with at least
n3

2 −O(n2 logn) non-convex 4-holes.

Proof. We consider the special point sets Xm, m ≥ 1,
with |Xm| = n = 2m+1−2 points, introduced in [10].
The point sets are defined recursively in layers, start-
ing with two points X1 := R1 in the first layer. An
additional layerRi is added to Xi−1 := R1∪· · ·∪Ri−1

by placing two new points close to any point in Ri−1

outside the convex hull of Xi−1, such that the follow-
ing conditions hold: (1) Xi = R1∪· · ·∪Ri is in general
position, (2) Ri are the extremal points of Xi, and (3)
any triangle determined by Ri contains precisely one
point of Xi in its interior. See Figure 3 for an example
and [10] for a detailed description of the construction.
Furthermore, in [10] it is shown that every triangle
spanned by Xm contains at most one interior point
of Xm; i.e., every non-empty triangle of Xm contains
exactly one point. Using Lemma 1, the number of

Ap

Bp

p

q

Bq

Aq

Figure 3: Example for m = 4 of the special point set
defined in [10].

non-convex 4-holes of Xm is three times the number
of non-empty triangles.
For each point of the set Xm, we count the num-

ber of triangles that contain it. First, fix a point
in the first layer R1, say p in Figure 3. Any tri-
angle containing p is formed by one point of Ap,
one point of Bp, and one point of the remaining set
Cp = Xm\{Ap∪Bp∪{p}}. We say that Ap and Bp are
the induced subsets of p, and that Cp is the remain-

der (of Xm) for p. As a1 := |Ap| = |Bp| =
n−2
4 and

c1 := |Cp| = n − 2 · a1 − 1 = n
2 , this gives a21 · c1 tri-

angles containing p, and thus the number of triangles
containing a point of R1 is 2 · a21 · c1 = 2 · (n−2

4 )2 · n
2 .

Now consider a point q in the second layer R2. Its
induced subsets Aq and Bq have size a2 = n−6

8 , and
the remainder Cq has c2 = n−2 ·a2−1 = 3n+2

4 points.
In combination with r2 := |R2| = 4 this gives a total
of 4 · (n−6

8 )2 · 3n+2
4 triangles containing a point of R2.

In general, |Ri| = ri = 2i, and the size of the two
induced subsets of any point pi in Ri is

ai =
1

ri+1
(n− |Xi|) =

n− (2i+1 − 2)

2i+1
.

Thus, with the size of the corresponding remainder
Cpi

of

ci = n− 2 · ai − 1 =
(2i − 1)n+ 2i − 2

2i
,

we get ri · a
2
i · ci triangles containing one point of Ri.

Using that every non-empty triangle of Xm gives
three non-convex 4-holes, and summing up over all
layers Ri, we obtain

3·

m
∑

i=1

ri·a
2
i ·ci =

3·

m
∑

i=1

2i
(

n− (2i+1 − 2)

2i+1

)2
(2i − 1)n+ 2i − 2

2i
=

1

2
n3+

(

39

4
− 3 log2(n+ 2)

)

n2−O(n log n)

for the total number of non-convex 4-holes of Xm. �
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5 Minimizing the Number of (General) 4-Holes

We obtained the following observation for general
4-holes by checking all corresponding point sets from
the order type data base [2].

Observation 1 Let S be a set of n = 8 points in the

plane in general position, and p1, p2 ∈ S two arbitrary

points of S. Then S contains at least five 4-holes

having p1 and p2 among their vertices.

Based on this simple observation, we derive the fol-
lowing lower bound for the number of 4-holes.

Theorem 5 Let S be a set of n ≥ 8 points in the

plane in general position. Then S contains at least
5
2n

2 −O(n) 4-holes.

Proof. We consider the point set S in x-sorted order,
S = {p1, . . . , pn}, and sets Si,j = {pi, . . . , pj} ⊆ S.
The number of sets Si,j having at least 8 points is

n−7
∑

i=1

n
∑

j=i+7

1 =
n−7
∑

i=1

n− i− 6 =
n2

2
−

13

2
n+ 21.

By Observation 1, each set Si,j contains at least five
4-holes having pi and pj among their vertices (take
the six points of Si,j which are nearest to the seg-
ment pipj). Moreover, as pi and pj are the left- and
rightmost points of Si,j , they are also the left- and
rightmost points for each of these 4-holes. This im-
plies that any 4-hole of S counts for at most one set
Si,j , which gives a lower bound of 5

2n
2 −O(n) for the

number of 4-holes in S. �

Note that there exist sets which contain fewer than
1.94n2 convex 4-holes, while by the above result any
set contains at least 2.5n2 (general) 4-holes.

6 Conclusion

We have shown lower and upper bounds on the num-
bers of (general) and non-convex 4-holes in point sets.

A natural generalization of this work is to consider
similar questions for k > 4. For example, we have
been able to show that for every constant k ≥ 3, the
maximum number of non-convex k-holes is asymp-
totically smaller than the maximum number of convex
k-holes. This gives rise to the following conjecture,
which is a general version of Theorem 2, and part of
our ongoing research on this topic.

Conjecture 1 For any constant k ≥ 5 and suffi-

ciently large n, the number of k-holes is maximized

by a set of n points in convex position.
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