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Abstract

The traveling salesman problem (TSP) asks for a shortest tour through all vertices
of a graph with respect to the weights of the edges. The symmetric quadratic traveling
salesman problem (SQTSP) associates a weight with every three vertices traversed in
succession. If these weights correspond to the turning angles of the tour, we speak of
the angular-metric traveling salesman problem (Angle TSP).

In this paper, we first consider the SQTSP from a computational point of view. In
particular, we apply a rather basic algorithmic idea and perform the separation of the
classical subtour elimination constraints on integral solutions only. Surprisingly, it turns
out that this approach is faster than the standard fractional separation procedure known
from the literature. We also test the combination with strengthened subtour elimination
constraints for both variants but these turn out to slow down the computation.

Secondly, we provide a completely different, mathematically interesting MILP lin-
earization for the Angle TSP that needs only a linear number of additional variables
while the standard linearization requires a cubic one. For medium sized instances of a
variant of the Angle TSP this formulation yields reduced running times. However, for
larger instances or pure Angle TSP instances the new formulation takes more time to
solve than the known standard model.

Finally, we introduce MaxSQTSP, the maximization version of the quadratic traveling
salesman problem. Here it turns out that using some of the stronger subtour elimination
constraints helps. For the special case of MaxAngle TSP we can observe an interesting
geometric property if the number of vertices is odd. We show that the sum of inner
turning angles in an optimal solution always equals π. This implies that the problem
can be solved by the standard ILP model without producing any integral subtours.
Moreover, we give a simple constructive polynomial time algorithm to find such an
optimal solution. If the number of vertices is even the optimal value lies between 0 and
2π and these two bounds are tight, which can be shown by an analytic solution for a
regular n-gon.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the best known and most widely investigated
combinatorial optimization problems with several famous books entirely devoted to its study
[4, 14, 17, 20]. Plenty of variations of this problem have already been studied (see e. g. [14]).

In this paper we consider a relevant extension of the TSP concerning its cost structure.
While we are still looking for a Hamiltonian cycle, also called tour, we do not simply sum up
the costs of the edges of the tour in the objective function, but we consider the transition in
each vertex, i. e., for each vertex i we consider a cost or weight coefficient depending both on
the predecessor and on the successor of i in the tour. Thus, we can model transition costs
such as the effort of turning in path planning [2], changing the equipment in scheduling or
the transportation means in logistic networks [3] from one edge to another.

Mathematically, this can be modeled via a quadratic objective function. The result-
ing optimization problem is known as Symmetric Quadratic Traveling Salesman Problem
(SQTSP) [11]. Only a few publications have dealt with SQTSP. Due to its quadratic cost
structure, it is in general computationally much more difficult than the classical (linear)
TSP.

1.1 Formal problem definition and related literature

In the SQTSP we associate costs with every pair of adjacent edges, represented by the
corresponding triple of vertices. So, going from a vertex i to a vertex j using an edge (i, j)
and then to a vertex k via edge (j, k) in a tour gives rise to a certain cost value which is
assigned to the corresponding ordered triple denoted by 〈i, j, k〉. In this paper we consider
the special case where the direction of traversal of the tour is irrelevant and so the costs for
〈i, j, k〉 and 〈k, j, i〉 are identical.

Our notation follows [11]. Let V = {1, 2, . . . , n} be a vertex set. An edge e ..= (i, j) ∈
V {2} ..=

{
(i, j) = (j, i) : i, j ∈ V, i 6= j

}
consists of an undirected pair of vertices and a

2-edge e〈3〉 ..= 〈i, j, k〉 ∈ V 〈3〉 ..=
{
〈i, j, k〉 = 〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| = 3

}
is defined as

a sequence of three distinct vertices where the reverse sequence is regarded as identical.
If there is no danger of confusion, we simply write ij instead of (i, j) and ijk instead of
〈i, j, k〉. Furthermore, we define a 2-graph G = (V,A) as a pair of a vertex set V and
a set of 2-edges A ⊆ V 〈3〉. A 2-graph is called complete if A = V 〈3〉. Finally, a tour
T =

(
σ(1), σ(2), . . . , σ(n)

)
is a permutation σ of the vertices 1, 2, . . . , n.

Given a complete 2-graph G = (V, V 〈3〉) with n ≥ 3 and non-negative weights de〈3〉 ∈ R+
0

for every 2-edge e〈3〉 ∈ V 〈3〉, the SQTSP asks for a tour T with minimal total weight with
respect to the 2-edge weights de〈3〉 , i. e., a tour T minimizing the objective function

f(G,T ) ..=

(
n−2∑
i=1

dσ(i)σ(i+1)σ(i+2)

)
+ dσ(n−1)σ(n)σ(1) + dσ(n)σ(1)σ(2). (1)

We will also consider the maximization version of that problem, which has not been studied
in the literature before. Formally, the Maximum Symmetric Quadratic Traveling Salesman
Problem (MaxSQTSP) asks for a tour T of maximal total weight w. r. t. (1).

The quadratic TSP was first introduced by Jäger and Molitor [16] in its more general
asymmetric version with a motivation from biology, see also [12]. The authors provide
seven different heuristics and two exact solution approaches for the asymmetric version.
Polyhedral studies on the SQTSP were done by Fischer and Helmberg [11] who also derived
several classes of strengthened subtour elimination constraints and proved that many of
them are facet defining. They also provide computational comparisons based on an ILP
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linearization and on the standard separation approach known from the TSP literature (see
e. g. [20]).

An important application of the SQTSP arises in robotics. Aggarwal et al. [2] discussed
the situation of a robot where changing the driving directions is more energy consuming for
larger turning angles. Thus, one would prefer a tour which keeps the movement of the robot
as closely as possible to a straight line. Formally, the following Angular-Metric Traveling
Salesman Problem (Angle TSP) was introduced in [2]. We assume in this case that the
vertices correspond to points in the Euclidean plane and that the weights of the 2-edges
dijk are given by the turning angles αijk (see Figure 1) defined as

dijk = αijk ..= arccos[0,π]

(
j − i
‖j − i‖

· k − j
‖k − j‖

)
(2)

where the dot · denotes the scalar product. In slight abuse of notation we will sometimes
also use the notation 〈i, j, i〉, i, j ∈ V, i 6= j, for going from i to j and immediately back to i.
Then (2) gives αiji = arccos(−1) = π.

Combining in a weighted sum the turning angles with Euclidean distances of points in the
plane gives rise to the Angular-Distance Metric Traveling Salesman Problem (Angle-Distance
TSP). Problems of this kind were introduced in [21] for an approximate solution of the TSP
for Dubins vehicle, which has applications in robotics.

Considering SQTSP from an approximation point of view only few results are known.
It is easy to see that the standard TSP with weights d′ij can be represented as a special
case of SQTSP with identical solution value by defining 2-edge weights dijk ..= d′jk for all

ijk ∈ V 〈3〉, i < k. Thus, the well-known fact that no constant-ratio approximation can exist
for TSP immediately carries over to SQTSP.

For the special case of the Angle TSP it was shown by Aggarwal et al. [2] that the problem
is still NP-hard but allows a polynomial time approximation algorithm guaranteeing an
approximation ratio within O(log n).

For the complexity of MaxSQTSP one can easily derive the following result.

Proposition 1. MaxSQTSP is Max-SNP-hard.

Proof. It is known that the Symmetric Maximum Traveling Salesman Problem (MaxTSP)
is Max-SNP-hard [14, ch. 12]. Thus, the result follows from the above reduction.

Proposition 1 implies that there exists a constant ratio approximation for MaxSQTSP
but the existence of a PTAS is highly unlikely.

In analogy to Angle TSP we will also consider the Maximum Angular-Metric Traveling
Salesman Problem (MaxAngle TSP) where the sum of the turning angles should be large,
i. e., the sum of the angles contained between two adjacent edges should be as small as
possible. Thus, we can consider the problem as a minimization problem where the weights
d̂ijk are given by the inner angles as illustrated in Figure 1 and defined by

d̂ijk = α̂ijk ..= π − αijk. (3)

The corresponding reverse objective value of a tour T is defined as

f̂(G,T ) ..= n · π − f(G,T ). (4)

Our considerations of the MaxAngle TSP are related to [8, 9] where one studies angle-
restricted tours. Given points in the Euclidean plane the authors investigate in which
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Figure 1: Illustration of the turning angle αijk and of the inner angle α̂ijk.

cases there exist tours such that all inner angles belong to some finite set and consider the
complexity of the corresponding decision problems. Fekete and Woeginger [9] prove that
there always exists a so called “pseudo-convex” tour if there are at least five vertices, i. e., a
tour such that along the tour we always move clockwise (or always counterclockwise). Our
result on the MaxAngle TSP for an odd number of vertices will imply the result in [9] in this
case. Furthermore, in [8] it is shown that there always exists a tour such that the largest
inner angle is at most 2π

3 if the number of nodes is even.

1.2 Our contribution

The previous ILP-based solution approaches in [11, 12] all perform separation processes to
identify the violated subtour elimination constraints on fractional solutions of a linearized
model. On contrary, motivated by the impressive performance of today’s ILP solvers we will
pursue the strategy to do all separation processes only on integral solutions (see Section 2).
This was tested with very limited success for the standard TSP in [19] but turned out to be
much more promising for SQTSP. In Section 4 we will combine this approach with different
variants of the classical subtour elimination constraints [6] and the strengthened variants
introduced in [11]. We also give experimental results for MaxSQTSP, which has never been
treated in the literature before and turns out to be very challenging from a computational
point of view. These computational studies are the first main contribution of this paper
and show that in many cases our integral approach is faster in total and that sophisticated
separation strategies do not pay off while solving the considered instances. The benchmark
instances and the computational test environment of all our experiments are described in
Section 3.

Second, we provide a completely different, mathematically interesting MILP linearization
for the Angle TSP and Angle-Distance TSP in Section 4.2. This model has the advantage that
only linearly many new variables are introduced. For instances of the Angle-Distance TSP
with up to 55 vertices the running times can be improved. But for larger instances or classical
Angle TSP instances our computational tests show that for larger n the branch-and-cut
approaches based on the linearization in [11] are faster.

The third contribution concerns the theoretical solution structure of MaxAngle TSP. It
is shown in Section 5.1 that there is a surprising split of the problem: For n odd, we show
that the reverse optimal solution value is always π, i. e., 180 degrees and the problem can
be solved by the standard ILP model without producing any subtours. Nevertheless, even
without subtour elimination constraints the solution of the remaining ILP, a 2-matching
problem (also called Cycle Cover Problem), requires very large running times. Fortunately,
we can bypass this difficulty since we can characterize the structure of an optimal solution
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and derive a simple constructive algorithm to find such an optimal solution. For n even, no
such statement is possible and we can show that the reverse objective function is bounded
by 0 from below and by 2π, i. e., 360 degrees from above. In particular we present a family
of instances such that the optimal value of these converges to 2π for n→∞.

Finally, we conclude our work in Section 6.

2 Fractional vs. integral approach

The quadratic traveling salesman problem can be written as the following quadratic integer
program with binary edge variables xe = xij for e = (i, j) ∈ V {2}, with δ(i) ..= {e : e =
(i, j) ∈ V {2}} denoting the set of all edges incident with i ∈ V .

min/max
∑

e〈3〉=〈i,j,k〉∈V 〈3〉
e=(i,j),f=(j,k)

de〈3〉xexf (5)

s. t.
∑
e∈δ(i)

xe = 2, i ∈ V, (6)

∑
e=(i,j)∈V {2}

i,j∈S

xe ≤ |S| − 1, S ( V, S 6= ∅, (7)

xe ∈ {0, 1}, e ∈ V {2}. (8)

In the objective function (5) a weight de〈3〉 for some 2-edge e〈3〉 ∈ V 〈3〉 is taken into account
if both edges e = (i, j) and f = (j, k) are contained in the tour. Equations (6) are the
degree constraints ensuring that each vertex is visited once, (7) are the well-known subtour
elimination constraints and, finally, (8) are the integrality constraints on the edge variables.
In comparison to the standard model for the TSP going back to [6] we have only changed
the objective function.

This quadratic integer program can easily be linearized by introducing a cubic number of
additional binary variables ye〈3〉 = yijk for all 2-edges e〈3〉 = 〈i, j, k〉 ∈ V 〈3〉, where yijk = 1
if and only if the vertices i, j and k are visited in the tour in consecutive order. This
linearization was first introduced and extensively studied by Fischer and Helmberg [11].

min/max
∑

e〈3〉∈V 〈3〉
de〈3〉ye〈3〉 (9)

s. t. (6), (7), (8),

xe =
∑

k∈V \{i,j}

yijk =
∑

k∈V \{i,j}

ykij , e = (i, j) ∈ V {2}, (10)

ye〈3〉 ∈ {0, 1}, e〈3〉 ∈ V 〈3〉. (11)

The x-variables have to correspond to a tour. Apart from that this model has a linear
objective function (9). Constraints (10) couple the x- and the y-variables. Finally, conditions
(11) ensure the integrality of the y-variables.

This ILP can be used to solve the SQTSP by using the “standard” TSP techniques which
were also applied in the computational studies in [11, 12]. In particular, we can separate
the subtour elimination constraints (7) in the same way as described in the TSP literature
(see e. g. [20]), i. e., by identifying the violated constraints on fractional solutions during the
branch and cut solution process through the solution of appropriate min-cut problems.
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In this paper we focus on a different strategy, which has already been tested for the
classical TSP by Pferschy and Staněk [19]: We relax all subtour constraints (7) first and then
solve the remaining model to integral optimality using an ILP solver. We get a 2-matching
(a cycle cover) usually containing more than one cycle. These cycles can be found by a
simple scan. Now, we can include a subtour elimination constraint for each such cycle and
resolve the enlarged ILP model. This process is repeated and in each iteration additional
subtour elimination constraints are added until we get a solution consisting of only one
cycle, i. e., containing only an optimal SQTSP/MaxSQTSP tour. Note that in contrast to
the TSP even the first step of the described procedure is an NP-hard problem because
the quadratic 2-matching problem is NP-hard for the angular-metric case and for several
variants [2, 12? ].

A short pseudocode description of this approach is given in Algorithm 1. An example
illustrating its execution is given in Figures 2–4: We can see that we need 3 iterations (ILP
solver runs) and 4 subtour elimination constraints to solve the problem to optimality.

Require: SQTSP/MaxSQTSP instance
Ensure: an optimal SQTSP/MaxSQTSP tour

1: define current model as (6), (8), (9), (10), and (11);
2: repeat
3: solve the current model to optimality by an ILP-solver;
4: if solution contains no subtour then
5: return the solution as optimal tour;
6: else
7: find all subtours of the solution and add the corresponding subtour elimination

constraints of type (7) to the current model;
8: end if
9: until optimal tour found;

Algorithm 1: Main idea of our elementary integral approach.

Figure 2: Angle-instance
with n = 30: Iteration 1.

Figure 3: Angle-instance
with n = 30: Iteration 2.

Figure 4: Angle-instance
with n = 30: Optimal
Angle TSP tour.

Let us concentrate on the subtour elimination constraints (7) first. They can be expressed
equivalently by the following cut constraints:∑

e=(i,j)∈V {2}
i∈S,j∈V \S

xe ≥ 2, S ( V, S 6= ∅. (12)

Although mathematically equivalent, it has been observed that the two versions of forbidding
a subtour may result in quite different performances of the ILP solver in the TSP context
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(see [19]). Thus we tested these two variants together with the combined variant∑
e=(i,j)∈V {2}

i,j∈S

xe ≤ |S| − 1, if S ⊂ V, S 6= ∅, |S| ≤ 2n+ 1

3
,

∑
e=(i,j)∈V {2}
i∈S,j∈V \S

xe ≥ 2, if S ( V, |S| > 2n+ 1

3
.

(13)

So we choose the variant which adds less non-zero entries to the overall constraint matrix
(see also Section 1 in [7] for some comments on constraints with large support). The
computational results are summarized in Table 1 in the Appendix (see Section 3 for a
detailed description of the benchmark instances and of the test environment). Our tests
show that the combined variant (13) tends to slightly outperform the other two variants for
randomly generated instances and for Angle-Distance TSP instances for larger n. Since this
representation of subtour elimination constraints was also used in [19], we stick to using (13)
for the basic reference methods F and I, i. e., for the elementary fractional and elementary
integral approach, respectively, in the rest of this paper.

3 Computational experiments

In this section we describe the test setup of our computational experiments, which constitute
a major part of this paper.

3.1 Benchmark instances

Our benchmark instances are mainly based on the instance specification developed in [10]
and [11]. However, we usually do not round the costs to integers because the second MILP
linearization to be introduced in Section 4.2 requires the exact turning angle values α for
instances of Angle TSP and Angle-Distance TSP. We test three instance classes:

Angle-instances are based on points in the Euclidean plane: First, we choose n points
discrete uniformly at random out of {0, . . . , 500}2 and then compute the turning angles
α which we multiply by 1000 first and then we round them to 12 decimal places. The
multiplicative constant of 1000 is introduced to allow a comparison of our programs
with [10]. Instances of this type are named Angle n where n denotes the number of
points/vertices.

Angle-Distance-instances extend the above Angle-instances by combining them with the
Euclidean distances between the points in a weighted sum. Taking the identical point
sets in the plane as generated for Angle n (to allow a better comparison) we denote
the Euclidean distances between vertices i and j as dij . For a parameter ρ ∈ R+

0 we
construct SQTSP-weights as follows:

dijk ..= 100

(
ρ · αijk +

dij + djk
2

)
. (14)

We again round all weights to 12 decimal places.

These instances are between Angle-instances (for ρ→∞) and standard TSP instances
(for ρ = 0). For compatibility with the literature we set ρ = 40 for all our tests as
done in [10]. Instances of this type are named Angle-Distance n.
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Random-instances assign random costs to all 2-edge weights d, in particular the costs
are chosen discrete uniformly at random from {0, . . . , 10000}. The resulting instances
are named Random n.

For each type of instance and each size n we generated 10 test instances.

3.2 Layout of test results

The tables in the Appendix are all created in the following way: The first column always
contains the instance type and size. The second column contains the running times for the
first method, which acts as a reference method in the particular table. All further columns
report the ratios between the running times of the particular approaches and the reference
method. The only exception concerns the root node ratios in Table 2 where the ratios
between the values of the LP-relaxation in the root node and the optimal solution values
are reported. We generated 10 instances for every instance type and every size n and report
the mean values over these 10 instances, in particular arithmetic means for running times
and geometric means for all ratios. Entries for instances where a particular method cannot
be used are marked by “–” and, finally, entries for which we expected excessive running
times were omitted from the tests and are marked by “Ø”.

3.3 Test environment

All tests were run on an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 16 GB RAM
under Linux1 and all programs were implemented in C++2 using CPLEX 12.6.1.0 as the
ILP-solver. Moreover, in order to guarantee the relative reproducibility of our computational
results, we (i) did not allow additional swap memory and (ii) ran all tests separately without
other user processes in background.

4 Minimization problem

The minimization problem SQTSP and its special case Angle TSP were extensively studied
by Fischer and Helmberg [11] from a theoretical point of view: After introducing the
ILP linearization (6)–(11), stronger forms of subtour elimination constraints, which also
involve the y-variables, were described and analyzed. Their paper also contains a small
computational study which is based on a larger set of computational experiments reported
in [10]. However, the authors only deal with the “standard” fractional approach and its
variants.

One main goal of this paper is to provide a broad computational comparison of different
solution strategies. First, we compare the elementary fractional approach with the elementary
integral approach and then we combine both approaches with the stronger subtour elimination
constraints from [11] in Section 4.1. In this section we also examine some weaker types of
subtour elimination constraints. Finally, in Section 4.2 we introduce a new and completely
different MILP linearization with only a linear number of additional variables. It is based
on a geometric argument and works only for Angle- and Angle-Distance-instances.

Our first computational results are given in Table 2 of the Appendix. The first column
(F) contains the results for the elementary fractional and the third column (I) the results
for the elementary integral approach. We can see that the elementary integral approach
outperforms the elementary fractional approach significantly and, moreover, this trend seems

1Precise version: Linux 3.5.0-23-generic #35∼precise1-Ubuntu SMP x86 64 x86 64 x86 64 GNU/Linux.
2Precise compiler version: gcc version 4.8.1.
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to increase for larger n for all classes of test instances. This behavior is quite surprising
since the analogous integral solution strategies are clearly outperformed by the fractional
ones for the standard TSP as illustrated in [19]. To find an explanation for this difference
we analyzed numerous test instances individually and could observe one main difference
between SQTSP and TSP: The SQTSP instances usually produce significantly less subtour
elimination constraints than the TSP instances of similar size and thus solving them involves
much less ILP solver runs. In fact, we obtained less than 10 subtour elimination constraints
for most of our test instances. By studying the particular stages of the solution process
for the Angle- and Angle-Distance-instances we could also observe that the structure of
the generated subtours is different: While the subtours in the TSP case are typically small
and often consist of only a few vertices (and thus we might have many of them), for the
SQTSP instances we obtained large subtours. For the Angle TSP the subtours have the
form of large “circles” or “spiral” shapes. This behavior was also illustrated in the example
of Figures 2, 3 and 4, where only four subtour elimination constraints were required for
determining an optimal SQTSP tour.

4.1 Extending the subtour elimination constraints

In this section, we extend the elementary fractional and the elementary integral approach
by including the subtour elimination constraints introduced in [11]. We also examine some
variants of these constraints. More detailed descriptions and illustrations of the underlying
geometric ideas can be found in [10]. All computational results for the introduced variants
are summarized in Tables 3 and 4 in the Appendix.

F(I)/I(I): We try to reduce the number of unnecessary subtour elimination constraints
in this variant. In fact, one subtour elimination constraint can be skipped in every
iteration as the corresponding tour is implicitly excluded by the other ones. Thus we
always omit the constraint for the largest subtour (i. e., for the subtour which causes
the most non-zero entries in the constraint matrix).

Since we introduce in every iteration only one subtour elimination constraint less than
in the elementary fractional / elementary integral approach, we cannot expect huge
computational time improvements. Indeed, the methods F(I)/I(I) perform similarly
to F/I for the Angle- and Angle-Distance-instances. We can observe a larger variance
of the ratios for the Random-instances, but this trend does not seem to hold for larger
values of n.

F(II)/I(II): In this variant, we weaken the constraints (7) by including the x-variables
only for pairs of vertices i, j that are connected with an edge in the particular subtour.
So we have ∑

e=(i,j)∈V {2}
i,j∈S
x∗ij=1

xe ≤ |S| − 1, S ( V, S 6= ∅, (15)

where x∗ij = 1 if the vertices i and j are connected by an edge in the current solution.
Since there does not exist a cut version of such a subtour elimination constraint, we
always use (15) independently of the subtour size |S|.
Also this variant performs mostly similarly to our elementary approaches. This is a bit
surprising because this kind of subtour elimination constraints is significantly weaker
from a theoretical point of view if |S| > 3.
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F(III)/I(III): We use the strengthened variant of the subtour elimination constraints
introduced in [11]. They are based on the idea that a y-variable yikj , ikj ∈ V 〈3〉,
almost acts like an x-variable xij , ij ∈ V {2}. If they are one in a solution both express
that the nodes i and j are close in the tour. So, in the following formulas we do not
only count the number of direct connections between the nodes of some set S, but
also the connections that leave S but immediately return. We get∑

e=(i,j)∈V {2}
i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \S

ye〈3〉 ≤ |S| − 1, S ⊂ V, S 6= ∅, |S| < n

2
,

∑
e=(i,j)∈V {2}

i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \(S∪{t̂})

ye〈3〉 ≤ |S| − 1, S ( V, |S| ≥ n

2
, t̂ ∈ V \ S,

(16)

as a stronger form of (7) and, similarly,∑
e=(i,j)∈V {2}
i∈S,j∈V \S

xe − 2
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \S

ye〈3〉 ≥ 2, S ⊂ V, S 6= ∅, |S| < n

2
,

∑
e=(i,j)∈V {2}
i∈S,j∈V \S

xe − 2
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \(S∪{t̂})

ye〈3〉 ≥ 2, S ( V, |S| ≥ n

2
, t̂ ∈ V \ S,

(17)

as a stronger form of the cut variant (12), which is equivalent to (16). These can be
interpreted in the following way. We only count those edges leaving S that do not
immediately reenter S. Note, if |S| ≥ n

2 then we have to exclude one vertex t̂ ∈ V \S in
the summation to avoid forbidding tours in both variants (for detailed proofs see [11]).
The inequalities are valid for arbitrary choices of t̂ ∈ V \ S. In our test we add only
one inequality using

t̂ = arg max
k∈V \S

{
min
i,j∈S
i 6=j

dikj

}
, (18)

although the influence of this choice seems to be rather limited. Finally, we keep the
case distinction introduced in (13) and thus use (16) if |S| ≤ 2n+1

3 and (17) otherwise.

Although these strengthened subtour elimination constraints are facet defining for the
SQTSP polytope as long as 2 ≤ |S| ≤ n − 3 and the constraints are much stronger
than (7) from a theoretical point of view, we cannot observe any computational time
improvements in Tables 3 and 4. On the contrary, these kinds of subtour elimination
constraints increase the computational times for almost all test instance groups and
this trend becomes even stronger for larger values of n. Additionally, we want to
note that determining a maximally violated inequality (16) in the case |S| < n

2 is an
NP-hard problem [11], the complexity of the separation problem is currently unknown.

F(IV)/I(IV): This variant combines the subtour elimination constraints used in F(III)
and I(III) with the idea introduced for F(II) and I(II), however, this idea is adopted
only for the y-variables. So we add the associated y-variable to the left-hand side of a
constraint if and only if x∗ij = 1 in (16) or (17) in the current solution, where x∗ij = 1
if the vertices i and j are connected by an edge in the current solution. In particular,
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we get ∑
e=(i,j)∈V {2}

i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \S

x∗ij=1

ye〈3〉 ≤ |S| − 1, S ⊂ V, S 6= ∅, |S| < n

2
,

∑
e=(i,j)∈V {2}

i,j∈S

xe +
∑

e〈3〉=〈i,k,j〉∈V 〈3〉
i,j∈S,k∈V \(S∪{t̂})

x∗ij=1

ye〈3〉 ≤ |S| − 1, S ( V, |S| ≥ n

2
, t̂ ∈ V \ S,

(19)

as a variant of (16). Subsequently, the cut variant (17) can be adapted in the same
way.

This idea tries to reduce the number of non-zero entries in the constraint matrix and
can be seen as the compromise between the elementary approaches and variants (III).
Obviously, we lose the facet property of the added inequalities.

Looking at the running times, we can expect that these fluctuate between F/I and
F(III)/I(III) as well. Indeed, in our tests the results for the methods F(IV)/I(IV)
are a slightly worse than the results for F/I and a bit better than the results for
F(III)/I(III).

F(V)/I(V): We use an equivalent version of (16) or (17), respectively, that only uses
y-variables,∑

e〈3〉=〈i,j,k〉∈V 〈3〉
i∈S,j,k∈V \S

ye〈3〉 ≥ 2, S ⊂ V, S 6= ∅, |S| < n

2
,

∑
e〈3〉=〈i,j,k〉∈V 〈3〉
i∈S,j,k∈V \S

ye〈3〉 + 2
∑

e〈3〉=〈i,t̂,j〉∈V 〈3〉
i,j∈S

ye〈3〉 ≥ 2, S ( V, |S| ≥ n

2
, t̂ ∈ V \ S,

(20)

where we restrict to t̂ as in (18) in our tests. They can be interpreted similarly to
the constraints above. We only count those 2-edges that leave the set S without
immediately returning. In our tests, we always use (20) independently of the subtour
size |S|.
These constraints are facet defining if n ≥ 6 and 2 ≤ |S| ≤ n − 3 (see [11]), but do
not speed up the solution process, as can be seen in Tables 3 and 4: The methods
F(V)/I(V) tend to perform worse for all instance groups (at least for larger n) and
they are significantly worse for the Angle-instances.

Finally, let us summarize the computational results in Tables 3 and 4. We can observe
that subtour elimination constraints, which are stronger from a theoretical point of view,
tend to slow down the algorithm. This fact is surprising since one would expect that
stronger models will lead to better bounds during the solution process. One possible
explanation might be the number of non-zero entries in the constraint matrix (see [7]):
The methods F(I)/I(I) and F(II)/I(II) perform similarly to the elementary approaches F/I,
whereas variants F(III)/I(III), F(IV)/I(IV) and F(V)/I(V) all require larger running times
and all have a larger number of non-zero entries in their constraint matrix. However, since
we use the ILP solver as a “black box”, this is only a guess.
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4.2 A geometry-based MILP linearization for Angle TSP

The standard linearization described in Section 2 requires a cubic number of additional
integer variables ye〈3〉 , e

〈3〉 ∈ V 〈3〉. Exploiting the geometry of the Angle TSP we can derive
a different linearization adding only a linear number of real-valued variables. A related
construction was used in [18] for a single allocation hub location problem. Clearly, this
approach can be applied immediately also for the Angle-Distance TSP by splitting the
objective function into a linear distance component and the turning angle:

min w1

∑
e∈V {2}

dexe + w2

∑
e〈3〉=〈i,j,k〉∈V 〈3〉
e=(i,j),f=(j,k)

αe〈3〉xexf . (21)

Euclidean distances between vertices i and j are denoted by de = dij and αe〈3〉 = αijk gives
the turning angle as defined in (2). The parameters w1 and w2 can be used to weight the two
components of the objective function. Our Angle-instances and Angle-Distance-instances
defined in Section 3.1 correspond to the settings w1 = 0, w2 = 1000 and w1 = 100, w2 = 4000,
respectively.

The quadratic terms in the second part of (21) can be easily moved into the set of
constraints by introducing a new variable yj ∈ R+

0 for every vertex j ∈ V corresponding to
the turning angle of a tour in vertex j. Thus, we replace (21) by

min w1

∑
e∈V {2}

dexe + w2

∑
j∈V

yj (22)

with

yj ≥
∑

i,k∈V \{j}
i<k

αijkxijxjk, j ∈ V, (23)

as new constraints. We will now prove that the set of quadratic inequalities of type (23) is –
assuming that the degree constraints (6) and the integrality conditions (8) are satisfied –
equivalent to the following linear inequalities:

yj ≥
∑

k∈V \{j}

αijkxjk − π, i, j ∈ V, i 6= j. (24)

For the proof we need the following geometric lemma.

Lemma 2. For each i, j, k, l ∈ V with i 6= j, k 6= j and l 6= j we have

αijk + π ≥ αljk + αlji. (25)

Proof. Recall from (3) that α̂ijk = π − αijk denotes the inner angle. For any l ∈ V we have
α̂ijl + α̂ljk ≥ α̂ijk which shows the claim (using also the symmetry of the first and last index
in α̂).

Theorem 3. The set of constraints (6) and (23) is equivalent to the set of constraints (6)
and (24) for binary variables xij ∈ {0, 1}, ij ∈ V {2}, and variables yj ∈ R+

0 , j ∈ V .
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Proof. Assume first that (6) and (23) are satisfied. Let j ∈ V be fixed. Then we can do the
following calculation by applying Lemma 2 for a vertex l ∈ V, l 6= j:

yj ≥
∑

i,k∈V \{j}
i<k

αijkxijxjk ≥
∑

i,k∈V \{j}
i<k

(
αljk + αlji − π

)
xijxjk

=
∑

i,k∈V \{j}
i<k

αljkxijxjk +
∑

i,k∈V \{j}
i<k

αljixijxjk − π
∑

i,k∈V \{j}
i<k

xijxjk

i⇔k
=

∑
i,k∈V \{j}

i<k

αljkxijxjk +
∑

i,k∈V \{j}
k<i

αljkxkjxji − π
∑

i,k∈V \{j}
i<k

xijxjk

=
∑

i,k∈V \{j}
i 6=k

αljkxijxjk − π
2

∑
i,k∈V \{j}

i 6=k

xijxjk.

Then we eliminate the condition i 6= k by subtracting the sum for i = k and exploit the
binarity of the x-variables. This results in:

yj ≥
∑

i,k∈V \{j}

αljkxijxjk −
∑

k∈V \{j}

αljkxkjxkj − π
2

 ∑
i,k∈V \{j}

xijxjk −
∑

k∈V \{j}

xjkxjk


=

∑
k∈V \{j}

αljkxjk
∑

i∈V \{j}

xij −
∑

k∈V \{j}

αljkxkj − π
2

 ∑
i∈V \{j}

xij
∑

k∈V \{j}

xjk −
∑

k∈V \{j}

xjk


(6)
=

∑
k∈V \{j}

αljkxjk · 2−
∑

k∈V \{j}

αljkxkj − π =
∑

k∈V \{j}

αljkxjk − π.

This shows that (6) and (23) together with the integrality of the x-variables imply (24).

To prove the other direction, let x̂, ŷ fulfill (6) and (24). For every j ∈ V , (6) implies
the existence of ij and kj with x̂ijj = 1, x̂kjj = 1 and x̂ij = 0 for all i ∈ V, i /∈ {ij , kj}. Now
we evaluate (24) for i = ij :

ŷj ≥
∑

k∈V \{j}

αijjk x̂jk − π = αijjkj + αijjij − π = αijjkj =
∑

i,k∈V \{j}
i<k

αijk x̂ij x̂jk.

Therefore, x̂, ŷ also satisfy (23).

Computational experiments for the linearization given by (24) are reported in Table 2
in the Appendix. Two variants were tested, the former using the standard separation

process done on fractional solutions (column FL) and the latter based on the integer

subtour approach (column IL). It turns out that the linearization works quite well for
medium-sized Angle-Distance-instances with up to 55 vertices where it is superior to the
respective elementary versions. However, for larger n it is clearly outperformed by the
elementary fractional and by the elementary integral approach. Moreover, the performance
is significantly worse for all Angle-instances. Recall that this approach can be used neither
for the Random-instances nor for the maximization problems.

From a theoretical perspective it is also interesting to look at the root node gap, i. e., the
difference between values of the LP-relaxation in the root node of the ILP-solver (without
any subtour constraints) for both linearizations and the optimal solution values. Clearly,
these are the same for the fractional and integral approaches since the differences in the
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subtour elimination have effects only later. In Table 2 we report the corresponding ratios in

columns ratio and ratioL. It can be seen that the linearization with (24) yields larger root
node gaps for all instance classes. Yet they do not differ for the Angle-Distance-instances as
much as for the Angle-instances, which may explain the differences in performance. However,
it should also be pointed out that in the Angle-Distance-instances the linearization of the
y-variables is less significant than for the Angle-instances due to the weighted sum in the
objective function given by the parameters w1 and w2. It can be assumed that the behavior
of both linearizations would converge for both models as ρ→ 0, i. e., w2 → 0 in (22).

The close relationship to the TSP may also be the reason for the extremely small
variance between the root node ratios for different Angle-Distance-instances. Beardwood
et al. [5] proved that the expected length of an optimal TSP tour is asymptotically equal
to β
√
n, where β is a constant, if uniformly random points in the Euclidean planes are

considered. Moreover, Pferschy and Staněk [19] empirically observed that this convergence
property leads to very small variances of TSP solution values even for small values of n.
A similar behavior can be observed in Table 2 where the average root node ratios for the
Angle-Distance-instances do not vary at all.

Summarizing, this linearization does not yield competitive results for large instances
with at least 60 vertices and thus we did not consider it with the other variants of subtour
elimination constraints given in Section 4.1.

5 Maximization problem

In this section we deal with the maximization variant of SQTSP. First, we focus on the
MaxAngle TSP from a theoretical point of view and then we provide computational tests
for all instance classes of MaxSQTSP as in the minimization case.

5.1 Theoretical Analysis of MaxAngle TSP

Recall that for MaxAngle TSP the vertices of the graph correspond to points in the Euclidean
plane and the weights dijk represent the turning angles αijk for all i, j, k ∈ V, i 6= j, k 6= j.
Moreover, in (3) and (4) we defined inner angles α̂ijk ..= π − αijk and the corresponding

reverse objective value f̂(G,T ) ..= n · π − f(G,T ) for a tour T . It will be convenient to
address MaxAngle TSP as a minimization problem w. r. t. f̂(G,T ).

While for SQTSP there is not a fundamental difference between Angle-instances and
other instance groups, there is a surprising and highly interesting dichotomous behavior to
be observed for MaxAngle TSP. We will show below that the optimal reverse objective value
equals π for any instance if n is odd. This means that for odd n the optimal solution value
of MaxAngle TSP does not require any computation at all. Note that this remarkable result
implies that the solution of MaxAngle TSP by our integral approach will never produce
any subtour elimination constraint if the vertices are in non-collinear position and so we
need exactly one iteration step without adding subtour elimination constraints at all. This
follows from the observation that any partition of the odd vertex set into subtours will
contain at least one subset of odd cardinality which again would have an optimal reverse
objective value equal to π on its own. As every subset of even cardinality implies a solution
having a positive reverse objective value (at least for non-collinear vertices), the overall
reverse objective value of such a solution is strictly greater than π and thus this solution
cannot be optimal. Nevertheless, even without subtours the solution of the ILP model for
odd instances of MaxAngle TSP by a standard solver requires extensive running times as
described in Section 5.2. As an alternative solution variant we will present a constructive
algorithm, which calculates an optimal tour in polynomial time.
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For n even there does not hold an equivalent statement. In fact, the optimal value of
the reverse objective function can attain values between 0 and 2π in this case and these
bounds are tight.

5.1.1 MaxAngle TSP: n is odd

Let n be odd. First, we prove that f̂(G,T ) ≥ π for every tour T and thereafter we provide
a constructive algorithm which yields a tour T ∗ reaching this lower bound, i. e., with
f̂(G,T ∗) = π.

Let ijk be three vertices traversed in succession in a tour T . If the vertex k lies left to

the ray
#
ij , we say that the tour T has a counterclockwise turn in the vertex j. Otherwise,

we say that the tour T has a clockwise turn in the vertex j ∈ V (if the vertex k lies on the
line ij, we say that the tour has a clockwise turn in the vertex j as well).

Lemma 4. Let G = (V,E) be an instance of MaxAngle TSP. If n is odd, then the following
holds for any tour T :

f̂(G,T ) ≥ π. (26)

Proof. Consider an arbitrary tour T in G and let C ⊆ V be the set of vertices in which the
tour T has a counterclockwise turn and C ⊆ V the set of vertices in which the tour T has a
clockwise turn. Furthermore, let us define the turning angles of T in j as αTj

..= αijk and

α̂Tj
..= α̂ijk, where ijk are three vertices traversed in succession in the tour T . Since the tour

T has to be closed, there is ∑
j∈C

αTj −
∑
j∈C

αTj = 2πk

for some k ∈ Z. This identity can be reformulated by using (3):∑
j∈C

(π − α̂Tj )−
∑
j∈C

(π − α̂Tj ) = 2πk

(
|C| · π −

∑
j∈C

α̂Tj
)
−
(
|C| · π −

∑
j∈C

α̂Tj
)

= 2πk

(
|C| − |C|

)
π −

∑
j∈C

α̂Tj +
∑
j∈C

α̂Tj = 2πk.

Since either |C| or |C| is odd we get ∑
j∈C

α̂Tj −
∑
j∈C

α̂Tj = π + 2πk′

for some k′ ∈ Z. Moreover,∑
j∈V

α̂Tj =
∑
j∈C

α̂Tj +
∑
j∈C

α̂Tj ≥
∣∣∑
j∈C

α̂Tj −
∑
j∈C

α̂Tj
∣∣ = |π + 2πk′|

and thus

f̂(G,T ) ≥ π.

Observe that the proof also reveals an interesting property of the structure of T in
case f̂(G,T ) = π. This extremal situation can only happen if

∑
j∈C α̂

T
j +

∑
j∈C α̂

T
j equals∣∣∑

j∈C α̂
T
j −

∑
j∈C α̂

T
j

∣∣, which is only the case if all turns of the tour have the same
orientation.

In the following we show by a constructive argument that the lower bound of Lemma 4
can always be reached.
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Theorem 5. For n being odd there exists a solution to the MaxAngle TSP with reverse
objective value π. This tour can be constructed in O(n log n) time.

Proof. Let P be a set of n points in the Euclidean plane in general position, i. e., no three
points are on a line. Let p ∈ P be an extreme point of P , i. e., a vertex of the convex hull
CH(P ) of P , and let v be a line through p that separates P \ {p} into two equal halves. For
ease of presentation, we rotate the plane such that v becomes vertical, in a way that the
bottommost point of v inside the convex hull of P be p. Let L ⊂ P be the points to the left
of v and R ⊂ P be the points to the right of it. We have |L| = |R| = n−1

2 . Let b be a line
that (i) contains a point l ∈ L and a point r ∈ R, that (ii) is directed from r to l, and that
(iii) has CH(L) in its left closed half-plane and CH(R) in its right closed half-plane. See
Figure 5 for an illustration. We call b the counterclockwise bitangent of L and R. Note that
p is to the left of b. We set l1 ..= l and let l1 be the successor of p in our tour. Next, we
consider the counterclockwise bitangent of L \ {l1} and R, which is defined by two points
r′ ∈ R and l′ ∈ L \ {l1}. Note that r′ may be different from r. We set r1 ..= r′ and let
r1 be the successor of l1 in our tour. In general, we connect li to the point ri that is on
the counterclockwise bitangent of Li ..= L \ {l1, . . . , li} and Ri−1 ..= R \ {r1, . . . , ri−1}, and
connect ri to the point li+1 that is on the counterclockwise bitangent of Li and Ri. Finally,
we connect r(n−1)/2 to p to close the tour.

We show that the tour makes a clockwise turn at ri. Observe that li is to the right of
the counterclockwise bitangent β of Li and Ri−1, as it has been on the counterclockwise
bitangent of Li−1 and Ri−1 together with some point r ∈ R (see Figure 6). By definition,
ri is on β, and it is also by definition that ri is to the right of v. Thus v and β divide the
plane into four quadrants, where li is on the upper-left quadrant, ri is on β between the
lower-right and the upper-right quadrant, and li+1 can only be in the lower-left quadrant or
on β between the upper-left and the lower-left quadrant. Hence, the tour makes a clockwise
turn at ri. Note that this also holds when L is empty and we connect r(n−1)/2 to p. With
the analogous arguments, we see that we always make a clockwise turn at each point in L.
Observe that the slope of liri is less than the slope of β (ri is on β and li is in the upper-right
quadrant), while the slope of rili+1 is equal to or greater than the slope of β.

Thus, our edges always intersect v, and their slopes are increasing. We can think of an
upward-directed copy v′ of v that rotates counterclockwise around p until it contains l1, at
which time it continues rotating around l1 until it contains r1 and so on. The slope of v′ is
increasing until it reaches p again, where we can rotate it counterclockwise around p until it
matches v again. Therefore, v′ is in total rotated by π, which is thus our reverse objective
value. For an illustration of an optimal tour we refer to Figure 7.

Finally, observe that our argument also holds if there are three points on a line. In fact,
if we are to choose the next point of, say, L and there are two points of L on the current
counterclockwise bitangent, then we can choose either of them. The next counterclockwise
bitangent will be identical to the current one, and we will end up with an angle of 0. Also,
if our halving line v has to contain additional points, we can slightly perturb it to a halving
line of P \ {p} that does not contain any point by a counterclockwise rotation.

It remains to show that our construction can be done in O(n log n) time. Hershberger
and Suri [15] give an O(n log n) time algorithm to construct a data structure that maintains
the convex hull while deleting a sequence of up to n points. The overall cost of deleting
these points is O(n log n). We apply this independently to our sets L and R. Since
the data structure of Hershberger and Suri supports binary search [15, p. 254], one can
apply an algorithm by Guibas, Hershberger, and Snoeyink [13, Lemma A.1] to find the
counterclockwise bitangent in O(log n) time in each iteration.

We remark that the proof is inspired by the technique used in [1, Theorem 3.1], where
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Figure 5: Angle-instance
with n = 7: Construction of
an optimal tour: phase 1.
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Figure 6: Angle-instance
with n = 7: Construction of
an optimal tour: phase 2.
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Figure 7: Angle-instance
with n = 7: Optimal
MaxAngle TSP tour.

bitangents with both subsets on the same side are used for creating a plane path that
alternates between the two subsets.

5.1.2 MaxAngle TSP: n is even

Lemma 6. Let G = (V,E) be an instance of MaxAngle TSP. If n is even, then for every
optimal tour T ∗ there is:

0 ≤ f̂(G,T ∗) ≤ 2π. (27)

Proof. The lower bound is trivial. To show the upper bound we apply the algorithm
described in Section 5.1.1 after removing an arbitrary vertex q to obtain a tour T̃ on V \ {q}.
Pick an arbitrary edge ij of T̃ and replace it by the edges iq and qj, obtaining a tour T on
V . The reverse objective value for T̃ was π, and T̃ and T only differ in the angles at i, j
and q. The sum of the changes in these three inner angles is the angle sum of the triangle
ijq, which is π. Hence, the reverse objective value for T can increase by at most π, and so
we get an upper bound of 2π. (Observe that this increase may be less than π if, say, the
edge jk of T̃ , k 6= i, intersects the interior of the triangle ijq.)

Note that the lower bound can be reached trivially by an instance where all vertices lie
on a line. The following result shows that also the upper bound is tight.

Theorem 7. Let G = (V,E) be an instance of MaxAngle TSP with n vertices corresponding
to n equally distributed points on the unit circle. Then for n even every solution T fulfills

f̂(G,T ) ≥ 2(n− 2)

n
· π. (28)

Proof. Let n be even. For convenience denote V = {0, . . . , n− 1} and let vertex u ∈ V be
embedded in the plane at point (cos(2π un), sin(2π un)) ∈ R2. Consider an arbitrary tour T
in G.

Let C = (0, 1, 2, . . . , n− 1) be the canonical cycle in G and denote by dC(u, v) the length
of the shortest path (number of edges) between u and v in C. Now consider any three
successive vertices u, v, w on the tour T : Observe that the inner angle α̂uvw at v is at least
dC(u,w) · πn because the central angles between u and w are 2π

n dC(u,w) and 2π− 2π
n dC(u,w),

hence the inscribed angles are π
ndC(u,w) and π − π

ndC(u,w). Therefore, it suffices to prove
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that for each tour T = (u0, u1, . . . , un−1) the following inequality is satisfied,

`(T ) ..=
n−1∑
i=0

dC(ui, u(i+2) mod n) ≥ 2 · (n− 2).

The tour T defines two subtours T1 = (u0, u2, . . . , un−2) and T2 = (u1, u3, . . . , un−1) on
the even and odd numbered vertices of T , respectively. In particular, the value `(T ) of tour
T is exactly the sum of the lengths of T1 and T2 w. r. t. the edge lengths dC , i. e., with dC(Ti)
denoting the sum of the edge weights of Ti, i = 1, 2,

`(T ) = dC(T1) + dC(T2). (29)

Now observe that there must be two vertices ui, uj , i, j ∈ {0, 2, . . . , n − 2} with
dC(ui, uj) ≥ n

2 − 1: if there are two vertices ui = k, uj = k + n
2 ∈ V (T1) for some

k ∈ {0, . . . , n2 − 1} then dC(ui, uj) = n
2 . Otherwise, by the pigeonhole principle, we

know that for all k ∈ {0, . . . , n2 − 1} either k ∈ V (T1) or (k + n
2 ) ∈ V (T1). So choose

k′ ∈ {0, . . . , n − 1} with k′ ∈ V (T1) and ((k′ + 1) mod n) /∈ V (T1), then for ui = k′ and
uj = (k′ + 1 + n

2 ) mod n we have dC(ui, uj) = n
2 − 1.

The triangle inequality implies dC(T1) ≥ 2 · dC(ui, uj) ≥ 2 · (n2 − 1) = n − 2 and,
analogously, dC(T2) ≥ n− 2. Hence (29) shows `(T ) ≥ 2 · (n− 2).

So, for the instances considered in Theorem 7 the optimal reverse objective value f̂(G,T )
tends to 2π for n→∞.

Remark 8. Considering the instances in Theorem 7, the optimal value 2 · (n − 2) · πn is
attained by a large number of different tours. In fact, it can be shown that 2n−7n2 optimal
solutions for the MaxAngle TSP exist in this case. Note that it follows from the proof
of Theorem 7 that a half tour T1 can have length n − 2 if and only if it covers exactly n

2
consecutive vertices, say {u0, u2, . . . , un−2} = {0, 1, . . . , n2 − 1}. (In this case, we know that
α̂uvw actually equals dC(u,w) · πn .) In particular, T1 must satisfy, w. l. o. g.,

• u0 = 0, uı̂ = n
2 − 1 for some ı̂ ∈ {0, 2, . . . , n− 2},

• ui < uj for all 0 ≤ i < j ≤ ı̂,

• ui > uj for all ı̂ ≤ i < j ≤ n
2 − 1.

This gives, for fixed “turning vertices” {0, n2−1}, exactly 2
n
2
−2/2 tours (because each tour can

be traversed in both directions). The same number of tours is possible for T2. Furthermore,
note that T2 can be combined with T1 by starting with u0 of T1 and an arbitrary vertex u2i+1,
i ∈ {1, 3, . . . , n− 1} of T2 and with T2 being traversed in both directions, giving 2 · n2 = n
possible combinations. Finally there are n

2 possible choices for the turning vertices of T1.
Putting all together we can construct exactly(

2
n
2
−2

2

)2

· n
2
· n = 2n−7n2

optimal tours.

It should be noted that the equidistant points on a unit circle do not seem to be the
worst case instances for the reverse objective value of MaxAngle TSP. For n = 4 and n = 6
we could reach higher values for instances where we arrange n−1 vertices equally distributed
along the unit circle and one vertex at the center of this circle. It is open, how worst case
instances for n ≥ 8 look like.
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5.2 Computational results for MaxSQTSP

We now consider the different instance classes for MaxSQTSP from a computational point
of view. The results are summarized in Tables 5 and 6 in the Appendix. They both use the
elementary fractional approach (column F) as the reference method and thus the ratios in
the remaining columns are comparable. In particular, Table 5 contains the results for all
methods based on the fractional and Table 6 for the integral separation process, respectively.
As we have seen in Sections 5.1.1 and 5.1.2, MaxAngle TSP behaves very differently in the
odd and in the even case from a theoretical point of view. Thus, we evaluated the Angle-
and Angle-Distance-instances separately for n even and n odd, respectively, in our tables.

Angle-instances, n even: Similar to the minimization problems, all introduced integral
approaches beat their fractional counterparts. However, different from the minimization
case, the stronger subtour elimination constraints do improve the performance in the
case of maximization. All the methods F(III)/I(III), F(IV)/I(IV) and F(V)/I(V) beat
the elementary integral approach. Moreover, the methods F(IV)/I(IV) lie between
the elementary approaches and the variants F(III)/I(III) as one could expect from a
theoretical point of view (for details see Section 4.1). The best approach among all is
I(III) for this instance type.

Angle-instances, n odd: As already proved in Section 5.1.1, the inclusion of subtour
elimination constraints is not necessary to solve these instances (at least for points
in non-collinear position). However, some subtour elimination constraints can be
separated inside the branch and cut tree during the solution process. Consequently, we
can observe different solution times caused by the particular methods. The elementary
fractional approach performs as well as the elementary integral approach and among
all tested approaches, the method F(III) outperforms the other ones significantly.
Contrary to the even case, the variants (II) and (IV) seem to slow down the solution
process.

Angle-Distance-instances, n even: The methods F(III)/I(III) and F(V)/I(V) yield the
best running times in this case, similarly as for the Angle-instances with n even. We
can also observe that the integral approaches outperform their fractional counterparts
with the notable exceptions of methods I(II) and I(IV) which surprisingly perform
extremely poor. Although the entries greater than 20 are always caused by one single
outlier instance, also the other ratios are quite high. The overall best running times for
this instance type are derived with the methods I(III) and I(V), where I(III) slightly
outperforms I(V).

Angle-Distance-instances, n odd: For these instances, the trends are less clear. We
can see that even the absolute running times in the first column do not increase
monotonically and similar variances can be observed in other columns. Looking at all
the table entries and not only the mean values, the method F(III) provides the best
performance. Moreover, apart from the methods F(V)/I(V) the fractional approaches
outperform their integral counterparts.

A rather surprising observation shows that many instances yield the same optimal
tour as it would be obtained by solving the corresponding Angle-instances on the same
point sets. Of course, the optimization goals of maximizing the turning angles and the
distances are not contradictory, but we could observe that even for ρ = 0 we often
got an optimal MaxAngle TSP tour. For these instances, the optimal tour does not
change by increasing ρ, however, a significant increase of the running time occurs for
larger values of ρ.
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Random-instances: Finally, the integral methods mostly beat their fractional counterparts
for Random-instances. The methods I(II) and I(IV) yield the best running times,
although I(I) and I(III) do not lag far behind.

Summing up the results for the maximization problem we cannot identify a clear winner
for all instance classes. Different from the minimization case, the variants of stronger
subtour elimination constraints improve the performance in many cases. In particular, the
stronger subtour elimination constraints (III) improve the performance for all angle-based
test instances. However, for both the Angle- and Angle-Distance-instance classes

• the integral approach outperforms the fractional one if n is even and

• the fractional approach outperforms the integral one if n is odd.

If forced to nominate one method of choice our pick would be I(III).

6 Conclusions

In this paper we deal with the symmetric quadratic traveling salesman problem (SQTSP)
and two geometric variants, namely the Angular-Metric Traveling Salesman Problem (Angle
TSP) where the distances correspond to the turning angles of the tour, and the Angular-
Distance Metric Traveling Salesman Problem (Angle-Distance TSP) where turning angles
are combined with Euclidean distances. Moreover, we introduce the maximization variants
MaxSQTSP and MaxAngle TSP, which were not treated in the literature before.

Contributing to ILP-based solution approaches, we consider a standard linearization
and test a purely integral subtour elimination process. This basic approach turns out
to significantly outperform the standard fractional separation procedure known from the
literature for all types of test instance types in all problem variants. Note that such a
behavior does not apply to the classical TSP. After that we include other kinds of subtour
elimination constraints [11] in the separation process. Although stronger from a theoretical
point of view, for the minimization case the use of these constraints tends to increase the
solution times as more non-zero entries are contained in the constraint matrix.

We also introduce a completely new, geometrically based MILP linearization for the
Angle TSP and Angle-Distance TSP involving only a linear number of additional variables
while the standard linearization requires a cubic number. This approach helps to reduce the
running times for Angle-Distance-instances with up to 55 vertices. The downside of this
approach are larger root node gaps which may be the reason for worse running times of this
approach for large n.

In the second part of the paper we deal with the MaxSQTSP. From a computational
point of view, in the maximization case, different from the minimization case, some of
the additional constraints speed up the solution process in many cases. The comparison
between purely integral and fractional subtour elimination is less clear and depends on the
particular type of test instances. It also turns out that for geometrically based test instances
a dramatic difference between the cases of even and odd number of vertices can be observed
which led us to interesting theoretical results.

If n is odd we can show for MaxAngle TSP by a geometric argument that the reverse
optimal objective value (sum of inner turning angles) is always equal to π. Geometrically,
given an odd point set there always exists a closed polygonal chain such that the inner angles
sum to π. This also implies that the solution of the standard ILP model will never produce
subtours and so integral separation does not occur at all. Even though, the solution times
for this simple ILP increase dramatically for the maximization case. But fortunately, we
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provide a simple constructive polynomial time algorithm to find such an optimal solution. In
contrary, if n is even it can be shown that the reverse objective function value lies between
0 and 2π and that these bounds are tight. The latter is shown by an analytic solution of
the MaxAngle TSP for a regular n-gon. Note that the complexity status of MaxAngle TSP
for n even remains an open question.
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[4] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, 2006.

[5] J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Mathematical Proceedings of the Cambridge Philosophical Society, 55(4):299–327,
1959.

[6] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research Society of America, 2(4):393–410, 1954.

[7] S. S. Dey, M. Molinaro, and Q. Wang. Integer Programming and Combinatorial
Optimization: 17th International Conference, IPCO 2014, Bonn, Germany, June 23-25,
2014. Proceedings, chapter How Good Are Sparse Cutting-Planes?, pages 261–272.
Springer International Publishing, Cham, 2014. ISBN 978-3-319-07557-0. doi: 10.1007/
978-3-319-07557-0 22. URL http://dx.doi.org/10.1007/978-3-319-07557-0_22.
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A Appendix

We refer to Section 3 for a detailed description of the structure of all tables comparing the
particular approaches. In general, the first column always contains the absolute running
times of a reference method in seconds. The other columns report the ratios between the
particular running times and the running times of the reference method. Means report
arithmetic means if absolute running times are considered, and geometric means if ratios
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are considered. Finally, since we created 10 test instances for every instance type and size,
we report only the mean values in every row.

Instance I I I
(constr. (7)) (constr. (12)) (constr. (13))

Angle 25 1.3 1.11 1.11
Angle 30 3.3 1.01 1.01
Angle 35 6.6 1.08 1.08
Angle 40 57.9 1.06 1.06
Angle 45 129.1 1.12 1.12
Angle 50 321.3 1.00 1.00
Angle 55 1099.8 1.07 1.07

mean 1.07 1.07

Angle-Distance 50 19.2 0.98 0.98
Angle-Distance 55 80.6 1.02 1.02
Angle-Distance 60 68.5 1.01 1.01
Angle-Distance 65 104.3 1.10 1.08
Angle-Distance 70 543.4 1.01 1.01
Angle-Distance 75 773.2 0.98 0.98
Angle-Distance 80 1719.5 0.95 0.95

mean 1.00 1.00

Random 20 3.8 0.97 1.05
Random 25 34.2 1.12 1.05
Random 30 331.4 0.82 0.83
Random 35 2979.1 1.03 0.92

mean 0.98 0.96

Table 1: Minimization case: comparing the running times of the approaches I (subtour
elimination constraints as in (7)), I (subtour elimination constraints as in (12)) and the
elementary integral approach I (subtour elimination constraints as in (13)).

23



Instance F FL I IL ratio ratioL

Angle 25 1.6 1.55 0.91 1.30 0.91 0.89
Angle 30 3.7 1.98 0.95 1.72 0.92 0.90
Angle 35 7.7 3.39 0.92 2.77 0.91 0.88
Angle 40 63.9 5.30 0.98 4.03 0.91 0.86
Angle 45 148.1 10.02 0.84 9.12 0.90 0.86
Angle 50 443.9 Ø 0.81 Ø 0.91 Ø
Angle 55 2183.3 Ø 0.86 Ø 0.91 Ø

mean 3.53 0.89 2.96 0.91 0.88

Angle-Distance 30 0.8 0.59 1.04 0.56 0.98 0.97
Angle-Distance 35 2.3 0.53 0.96 0.43 0.97 0.96
Angle-Distance 40 3.4 0.60 0.90 0.53 0.97 0.96
Angle-Distance 45 11.8 0.75 0.95 0.51 0.96 0.95
Angle-Distance 50 22.4 0.76 0.84 0.47 0.95 0.95
Angle-Distance 55 85.7 0.93 0.92 0.61 0.95 0.94
Angle-Distance 60 80.3 1.36 0.87 1.00 0.95 0.94
Angle-Distance 65 126.7 2.07 0.84 1.36 0.95 0.94
Angle-Distance 70 909.1 1.91 0.67 1.28 0.95 0.94
Angle-Distance 75 1035.8 4.55 0.77 3.11 0.95 0.93
Angle-Distance 80 3742.4 6.46a 0.60 3.91 0.95 0.93

mean 1.27 0.84 0.92 0.96 0.95

Random 20 4.6 – 0.90 – 0.66 –
Random 25 41.1 – 0.87 – 0.64 –
Random 30 306.1 – 0.90 – 0.63 –
Random 35 2990.1 – 0.81 – 0.62 –

mean – 0.87 – 0.64 –

Table 2: Minimization case: comparing the running times of the elementary fractional

approach F, the approach FL, the elementary integral approach I and the approach IL.
Moreover, the table compares the respective root node ratios (i. e., the ratio between root
node value of the LP-relaxation and optimal solution value) of the two linearizations in

columns ratio and ratioL.

aMean of 9 instances (one instance did not fit into 16 GB RAM).
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Instance F F(I) F(II) F(III) F(IV) F(V)

Angle 25 1.6 1.07 1.03 1.03 1.14 1.02
Angle 30 3.7 1.00 1.01 1.04 1.00 1.08
Angle 35 7.7 0.99 1.01 1.07 0.98 1.14
Angle 40 63.9 1.03 1.07 1.10 1.08 1.14
Angle 45 148.1 0.99 0.90 1.00 1.04 1.03
Angle 50 443.9 0.97 1.14 1.03 1.05 1.14
Angle 55 2183.3 1.03 1.06 1.06 1.00 1.12

mean 1.01 1.03 1.05 1.04 1.09

Angle-Distance 50 22.4 1.00 1.03 0.97 0.93 0.90
Angle-Distance 55 85.7 1.02 0.95 1.30 1.04 1.03
Angle-Distance 60 80.3 1.06 0.98 1.13 1.02 0.98
Angle-Distance 65 126.7 1.02 1.02 1.13 0.89 1.04
Angle-Distance 70 909.1 1.02 1.07 1.13 0.98 1.05
Angle-Distance 75 1035.8 1.05 1.15 1.43 1.21 1.13
Angle-Distance 80 3742.4 0.93 0.90 1.22 0.93 0.99

mean 1.01 1.01 1.18 0.99 1.01

Random 20 4.6 0.86 0.79 0.89 0.92 0.87
Random 25 41.1 0.76 0.94 0.92 0.89 0.82
Random 30 306.1 1.12 1.10 1.09 0.87 1.01
Random 35 2990.1 0.98 1.11 1.13 1.11 1.07

mean 0.92 0.98 1.00 0.94 0.94

Table 3: Minimization case: comparing the running times of the elementary fractional
approach F and other fractional approaches using different variants of subtour elimination
constraints.
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Instance I I(I) I(II) I(III) I(IV) I(V)

Angle 25 1.4 1.08 1.01 1.10 1.13 1.03
Angle 30 3.4 1.01 1.03 1.04 1.04 1.07
Angle 35 6.8 1.04 1.04 1.06 1.00 1.17
Angle 40 59.5 0.95 0.98 0.95 0.99 1.09
Angle 45 125.7 1.04 1.02 1.07 1.04 1.15
Angle 50 323.1 1.11 1.12 0.96 1.09 1.23
Angle 55 1299.2 0.94 0.92 1.00 1.05 1.22

mean 1.02 1.02 1.02 1.05 1.13

Angle-Distance 50 19.1 1.11 1.26 1.02 1.10 1.14
Angle-Distance 55 78.2 0.94 1.13 1.12 1.09 1.25
Angle-Distance 60 70.4 0.92 1.04 0.90 0.97 0.97
Angle-Distance 65 102.6 1.01 1.14 1.09 1.13 1.08
Angle-Distance 70 444.7 1.13 1.55 1.17 1.40 1.26
Angle-Distance 75 784.1 0.98 0.94 1.07 0.96 1.10
Angle-Distance 80 1699.2 0.99 0.96 1.00 0.98 1.03

mean 1.01 1.13 1.05 1.08 1.11

Random 20 3.9 0.99 0.97 0.90 0.88 0.91
Random 25 37.0 0.76 0.88 0.82 0.92 0.79
Random 30 235.3 0.97 1.15 1.35 1.05 1.27
Random 35 2887.0 1.07 1.04 1.07 1.07 1.37

mean 0.94 1.00 1.01 0.98 1.06

Table 4: Minimization case: comparing the running times of the elementary integral approach
I and other integral approaches using different variants of subtour elimination constraints.
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Instance F F(I) F(II) F(III) F(IV) F(V)

Angle 10 0.1 0.99 1.01 0.98 0.95 0.85
Angle 12 1.2 0.96 1.04 0.80 0.88 0.80
Angle 14 6.2 1.04 0.95 0.75 0.95 0.72
Angle 16 263.2 0.89 0.94 0.49 1.03 0.59
Angle 18 4270.8 0.97 1.16 0.38 0.98 0.57

mean 0.97 1.02 0.65 0.96 0.70

Angle 11 0.3 1.02 0.99 0.91 0.98 0.83
Angle 13 1.1 1.17 1.25 0.93 0.98 0.92
Angle 15 7.3 0.95 1.02 0.69 0.92 0.85
Angle 17 22.9 0.79 1.20 0.82 1.34 1.10
Angle 19 254.1 1.05 1.24 0.41 1.08 0.90

mean 0.99 1.13 0.72 1.05 0.92

Angle-Distance 16 0.8 0.98 1.00 0.94 1.01 0.97
Angle-Distance 18 1.3 0.99 1.07 0.81 1.04 0.95
Angle-Distance 20 2.8 0.98 1.02 0.56 1.09 0.83
Angle-Distance 22 24.4 0.86 0.89 0.41 0.86 0.55
Angle-Distance 24 50.0 0.97 0.92 0.44 1.18 0.63
Angle-Distance 26 304.8 0.85 1.10 0.42 1.19 0.62

mean 0.94 1.00 0.56 1.06 0.74

Angle-Distance 41 4.8 0.99 0.98 0.78 1.04 1.02
Angle-Distance 43 5.3 0.94 0.93 0.70 0.91 0.91
Angle-Distance 45 17.3 0.95 0.86 0.51 0.96 0.71
Angle-Distance 47 6.3 1.02 1.06 0.68 0.93 0.86
Angle-Distance 49 16.1 1.21 1.17 0.77 1.18 1.02
Angle-Distance 51 17.7 0.86 0.91 0.45 0.97 0.98
Angle-Distance 53 39.3 1.03 1.05 0.60 0.99 1.00
Angle-Distance 55 32.1 0.91 0.96 0.60 0.81 0.85
Angle-Distance 57 74.2 1.04 0.99 0.42 0.96 1.14
Angle-Distance 59 325.7 0.86 0.74 0.33 0.86 0.78
Angle-Distance 61 63.4 1.11 0.94 0.59 1.00 0.97
Angle-Distance 63 107.7 1.00 0.90 0.48 0.84 0.78
Angle-Distance 65 257.6 0.84 0.99 0.32 0.86 0.77

mean 0.98 0.95 0.54 0.94 0.90

Random 20 4.1 0.95 0.94 1.02 0.93 1.04
Random 25 39.8 0.90 1.02 1.01 0.75 0.92
Random 30 425.0 0.77 0.87 0.89 0.70 0.97
Random 35 3911.1 0.88 1.15 1.11 0.75 0.91

mean 0.87 0.99 1.00 0.78 0.96

Table 5: Maximization case: comparison of the running times. We compare the elemen-
tary fractional approach F with fractional approaches using different variants of subtour
elimination constraints.
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Instance F I I(I) I(II) I(III) I(IV) I(V)

Angle 10 0.1 0.95 0.95 0.97 0.96 0.96 0.83
Angle 12 1.2 0.95 0.97 1.05 0.77 0.86 0.75
Angle 14 6.2 0.86 0.84 1.12 0.69 0.96 0.71
Angle 16 263.2 0.62 0.58 1.04 0.44 1.04 0.49
Angle 18 4270.8 0.40 0.32 0.62 0.33 0.72 0.42

mean 0.72 0.68 0.94 0.59 0.90 0.62

Angle 11 0.3 0.97 0.94 0.93 0.92 0.90 0.81
Angle 13 1.1 1.00 0.96 1.16 1.01 1.11 0.84
Angle 15 7.3 0.92 0.77 1.02 0.83 1.04 0.92
Angle 17 22.9 1.34 1.08 1.34 0.92 1.23 0.97
Angle 19 254.1 0.83 0.79 0.88 0.69 0.89 0.72

mean 1.00 0.90 1.05 0.87 1.03 0.85

Angle-Distance 16 0.8 1.05 0.98 1.64 0.93 1.69 0.99
Angle-Distance 18 1.3 1.03 1.11 2.28 0.79 2.20 0.73
Angle-Distance 20 2.8 1.07 1.02 5.91 0.61 4.73 0.62
Angle-Distance 22 24.4 0.69 0.65 22.31 0.33 21.24 0.44
Angle-Distance 24 50.0 0.84 0.69 9.04 0.46 8.57 0.48
Angle-Distance 26 304.8 0.73 0.59 20.80 0.37 12.65 0.45

mean 0.89 0.81 6.73 0.54 5.86 0.59

Angle-Distance 41 4.8 1.16 1.20 1.30 0.91 1.35 1.11
Angle-Distance 43 5.3 1.03 1.01 0.88 0.99 0.96 1.10
Angle-Distance 45 17.3 0.98 1.04 0.96 0.74 1.27 0.99
Angle-Distance 47 6.3 1.16 1.19 1.11 0.86 1.11 0.91
Angle-Distance 49 16.1 1.13 1.22 1.27 1.11 1.24 1.06
Angle-Distance 51 17.7 1.03 1.08 0.96 0.62 1.10 0.81
Angle-Distance 53 39.3 1.26 0.97 1.29 0.89 1.18 0.89
Angle-Distance 55 32.1 0.82 0.96 0.83 0.80 1.02 0.82
Angle-Distance 57 74.2 1.32 1.27 1.19 0.71 1.45 0.83
Angle-Distance 59 325.7 0.90 0.98 1.05 0.60 0.77 0.69
Angle-Distance 61 63.4 0.94 0.89 0.87 0.71 1.01 0.82
Angle-Distance 63 107.7 1.16 1.13 1.24 0.75 1.45 0.93
Angle-Distance 65 257.6 0.80 0.85 0.77 0.51 0.69 0.60

mean 1.04 1.05 1.04 0.77 1.10 0.88

Random 20 4.1 0.81 0.93 0.85 0.86 0.83 0.98
Random 25 39.8 0.80 0.90 0.64 0.89 0.73 0.88
Random 30 425.0 0.86 0.72 0.73 0.72 0.74 0.97
Random 35 3911.1 1.02 0.80 0.77 0.87 0.74 0.93

mean 0.87 0.83 0.74 0.83 0.76 0.94

Table 6: Maximization case: comparison of the running times. We compare the elementary
integral approach I with the elementary fractional approach F and with integral approaches
using different variants of subtour elimination constraints.
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