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Abstract
Let D be a straight-line drawing of a graph where every edge is colored with one of two possible
colors. The rectilinear 2-colored crossing number of D is the minimum number of crossings
between edges of the same color, taken over all possible colorings of D. We show lower and upper
bounds on the rectilinear 2-colored crossing number for the complete graph Kn. Moreover, for
fixed drawings of Kn we give bounds on the relation between its rectilinear 2-colored crossing
number and its rectilinear crossing number.

1 Introduction

In any drawing D of a non-planar graph G in the plane, two of its edges will cross. From
both a theoretical and practical point of view it is of interest to study the minimum number
of pairs of edges that cross in any drawing of G. This is known as the crossing number cr(G)
of G. There are many variants on crossing numbers. In this paper we focus on a variant
mixing two of them: the biplanar crossing number and the rectilinear crossing number.

The biplanar crossing number of a graph G, cr2(G), is the minimum of cr(G1) + cr(G2)
over all graphs G1 and G2 whose union is G. This parameter was introduced by Owens [12].
For a survey on biplanar crossing numbers of graphs see [9, 10].

A straight-line drawing of G is a drawing D of G in the plane in which the vertices are
drawn as points in general position and the edges are drawn as straight line segments. We
identify the vertices and edges of the underlying abstract graph with the corresponding ones
in the straight-line drawing. The rectilinear crossing number of G, cr(G), is the minimum
number of pairs of edges that cross in any straight-line drawing of G. Of special relevance is
cr(Kn), the rectilinear crossing number of the complete graph on n vertices. The current best
published bounds on cr(Kn) are 0.379972

(
n
4
)
< cr(Kn) < 0.380473

(
n
4
)

+ Θ(n3) [3, 11]. The
upper bound has been improved in an upcoming paper [4] to cr(Kn) < 0.3804493

(
n
4
)

+Θ(n3).
A 2-edge-coloring of a drawing D of a graph is an assignment of one of two possible colors

to every edge of D. The rectilinear 2-colored crossing number of a graph G, cr2(G), is the
minimum number of monochromatic crossings (pairs of edges of the same color that cross)
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in a 2-edge-colored straight-line drawing of G. This parameter was introduced before and
called the geometric 2-planar crossing number [13]. We prefer our terminology because the
term k-planar is extensively used in graph drawing with a different meaning.

In this paper we focus on the case where G is the complete graph Kn, and we prove the
following lower and upper bounds on cr2(Kn):

1/33
(
n

4

)
+ Θ(n3) < cr2(Kn) < 0.11798016

(
n

4

)
+ Θ(n3).

Combining the lower bound on cr(Kn) and the upper bound on cr2(Kn) implies that
asymptotically, cr2(Kn)/cr(Kn) ≤ 0.31049652 + o(1).

Note that drawings with few crossings don’t necessarily admit a coloring with few
monochromatic crossings. This observation motivates the following question: Given a fixed
straight-line drawing D of Kn, what is the ratio between the number of monochromatic
crossings for the best 2-edge-coloring of D and the number of (uncolored) crossings in D?
A simple probabilistic argument shows that this ratio is at most 1/2. We show that for
sufficiently large n, it is less than 1/2− c for some positive constant c.

In a slight abuse of notation, we denote with cr(D) the number of pairs of edges in D that
cross and call it the rectilinear crossing number of D. The (rectilinear) 2-colored crossing
number of a straight-line drawing D, cr2(D), is then the minimum of cr(D1) + cr(D2), over
all straight-line drawings D1 and D2 whose union is D. For a given 2-edge-coloring χ of D,
we denote with cr2(D,χ) the number of monochromatic crossings in D. Thus, cr2(D) is the
minimum of cr2(D,χ) over all 2-edge-colorings χ of D.

2 Lower bounds on cr2(D)/cr(D)

In this section we study the extreme values that cr2(D)/cr(D) can attain for straight-line
drawings D of Kn. In the full version of this paper we explore certain classes of straight-line
drawings of Kn. Among others, we show that there exist classes of drawings D of Kn for
which cr2(D)/cr(D) ≤ 1/3 + o(1) and that for convex straight-line drawings of Kn it holds
that cr2(D)/cr(D) = 3/8− o(1).

Using a simple probabilistic argument it can be shown that cr2(D)/cr(D) ≤ 1/2 for every
straight-line drawing D of Kn. This lower bound can be improved for any such drawing.

I Theorem 2.1. There exists a positive integer n0 and a positive constant c such that for any
straight-line drawing D of the complete graph Kn on n ≥ n0 vertices, cr2(D)/cr(D) ≤ 1/2−c.

The proof, based on the positive Fraction Erdős-Szekeres theorem [7], can be found in
the full version of this paper.

3 Upper bounds on cr2(Kn)

For the rectilinear crossing number cr(Kn) the best upper bound [4] comes from finding
examples of straight-line drawings of Kn with few crossings (for a small value of n) which
are then used as a seed for the duplication process in [2, 3]. In this section, we prove that a
more involved but similar approach can be adopted for the two-colored case.

Throughout this section P is a set of m points in general position in the plane. Let p
be a point in P . Given a 2-edge-coloring χ of the edges of the straight-line drawing of Km

that P induces, we denote by L(p) and S(p) the edges incident to p of the larger and smaller
color class at p, respectively. An edge e incident to p is called a χ-halving edge of p if the
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number of edges of L(p) to the right of the line `e spanned by e (and directed from q to
p) and the number of edges of L(p) to the left of `e differ by at most one. An assignment
between the points of P and its χ-halving edges is called a χ-halving matching of P .

I Theorem 3.1. Let P be a set of m points in general position with a two-coloring χ of the
edges of the straight-line drawing of Km it induces. If P has a χ-halving matching, then

cr2(Kn) ≤ 24A
m4

(
n

4

)
+ Θ(n3)

where A is a rational number that depends on P , χ, and the χ-halving matching of P .

Proof. First we describe a process to obtain from P a set Q of 2m points, a 2-edge-coloring
χ′ of the of the straight-line drawing of K2m that Q induces, and a χ′-halving matching for
Q. The set Q is constructed as follows. Let p be a point in P and e = (p, q) its χ-halving
edge in the matching. We add to Q two points p1, p2 placed along the line spanned by e and
in a small neighborhood of p such that: (i) if f is an edge different from e that is incident to
p, then p1 and p2 lie on different sides of the line spanned by f ; (ii) if f is an edge different
from e that is not incident to p, then p1 and p2 lie on the same side of the line spanned by f
as p; and (iii) the point p1 is farther away from q than p2. The set Q has 2m points and the
above conditions ensure that they are in general position.

Next, we define a coloring χ′ and a χ′-halving matching for Q. For every edge (p, q) of
P , color the four edges (pi, qj), i, j ∈ {1, 2} with the same color as (p, q). Hence the only
edges remaining to be colored are the edges (p1, p2) between the duplicates of a point p ∈ P .
Let `e be the line spanned by e and directed from q to p and let q1, q2 be the points that
originated from q, such that q1 lies to the left of `e and q2 lies to the right of `e. We assume
that the colors are red and blue and that the larger color class at p is blue.
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Figure 1 The cases in the duplication process of Theorem 3.1 when the larger color class at p
is blue. The edge e of P has color red in the first 3 cases and color blue in the last 3 cases. The
dotted lines represent the lines spanned by the χ-halving edges for P . The thick edges represent the
χ′-halving edges for Q, where the arrow points to the point it is matched to. Ll and Lr (Sl and Sr)
represent the number of blue (red) edges at p to the left and right of le, respectively. The number of
colored edges on each side of the lines spanned by thick edges indicate the resulting numbers of red
and blue edges to the left and right of the χ′-halving edges for Q.
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There are six cases in which p can fall. They are all shown in Figure 1, which depicts
among others the color that the edge (p1, p2) receives and that the edges matched to p1 and
p2 are indeed χ′-halving edges in each case.

Note that no point in Q falls in Case 5. From now on, we assume that no point in P falls
in Case 5. Our goal is to iterate the duplication process and obtain a bound on cr2(Kn). Let
k ≥ 1 be an integer and let (Qk, χk) be the pair obtained by iterating the duplication process
k times. We claim the following on cr2(Qk, χk), the number of monochromatic crossings in
the straight-line 2-edge colored drawing of Kn induced by Qk and χk:

I Claim. After k iterations of the duplication process, the following holds

cr2(Qk, χk) = A · 24k +B · 23k + C · 22k +D · 2k

where A,B,C and D are rational numbers that depend on P and its χ-halving matching.

The proof of this claim can be found in the full version of this paper. Letting n = 2km:

cr2(Kn) ≤ cr2(Qk, χk) = 24A
m4

(
n

4

)
+ Θ(n3)

which proves the theorem when n is of the form 2km. The proof for 2km < n < 2k+1m

follows from showing that cr(Kn) is an increasing function. J

3.1 Small configurations
The previous section implies that for a large number of vertices we can obtain straight-line
drawings of the complete graph with a reasonable small 2-colored crossing number from good
sets of constant size. Thus, in this section we describe how to obtain those small good sets.

Similar as in [4] we combine different methods to obtain straight-line drawings of the
complete graph with low 2-colored crossing number. The overall approach is to apply three
different methods in alternating order: we start with a known set, apply the duplication
process from Theorem 3.2 to obtain a larger set, locally optimize it to get a better set, find
good subsets, locally optimize them, duplicate the resulting sets and so on.

The currently best (w.r.t. to the crossing constant, see below) straight-line drawing D
with 2-edges coloring χ we found1 has n = 135 vertices, a 2-colored crossing number of
cr2(D,χ) = 1470756, and contains a χ-halving matching.

3.2 Rectilinear 2-colored crossing constant
Let cr2 be the rectilinear 2-colored crossing constant, that is, the constant such that the best
straight-line drawing of Kn for large values of n has at most cr2

(
n
4
)
monochromatic crossings.

Its existence follows from showing that limn→∞ cr2(Kn)/
(

n
4
)
exits and is a positive number.

From the previous results in this section we can derive an upper bound for the 2-colored
crossing constant from a given set of constant size with a small 2-colored crossing number:

Plugging the values of the set of 135 points obtained in the last section into Theorem 3.2
(after duplicating once to get rid of Case 5) we get the upper bound of cr2 < 0.11798016.

I Theorem 3.2. The 2-colored crossing constant satisfies cr2 ≤ 182873519
1550036250 < 0.11798016.

1 The interested reader can get a file with the coordinates of the points, the colors of the edges, and a χ-
halving matching from http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php.

http://www.crossingnumbers.org/projects/monochromatic/sets/n135.php
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Figure 2 Left: a 2-colored rectilinear drawing of K8 without monochromatic crossings. Right: a
2-colored drawing of K9 with only one monochromatic (red) crossing.

In [3] a lower bound of cr ≥ 277
729 > 0.37997267 has been shown for the rectilinear crossing

constant. We can thus give an upper bound on the asymptotic ratio between the best 2-colored
straight-line drawing of Kn and the best straight-line drawing of Kn of cr2/cr ≤ 0.31049652.

4 Lower bounds on cr2(Kn) and cr2(Kn)

The following result shows that from the 2-colored rectilinear crossing number of small sets
we can obtain lower bounds for larger sets.

I Lemma 4.1. Let cr2(n̂) = ĉ for some n̂ ≥ 4. Then for n > n̂ we have cr2(Kn) ≥
24ĉ

n̂(n̂−1)(n̂−2)(n̂−3)
(

n
4
)
which implies cr2 ≥ 24ĉ

n̂(n̂−1)(n̂−2)(n̂−3)

Proof. Every subset of n̂ points of Kn induces a drawing with at least ĉ crossings, and thus
we have ĉ

(
n
n̂

)
crossings in total. In this way every crossing is counted

(
n−4
n̂−4

)
times. This

results in a total of 24ĉ
n̂(n̂−1)(n̂−2)(n̂−3)

(
n
4
)
crossings. J

With a strategy based on the intersection graph of a given straight-line drawing, we have
been able to determine all the 2-colored crossing numbers of all straight-line drawings of
K9 and prove that cr2(K9) = 2. More details about this strategy can be found in the full
version. Using Lemma 4.1 for n̂ = 9 and ĉ = 2 we get a bound of cr2 ≥ 1/63. Repeating the
process of computing lower bounds for sets of small cardinality we checked all order types of
size 11 [5]. We obtained cr2(K11) = 10 and by Lemma 4.1 this gives the even better bound
of cr2 ≥ 1/33.

4.1 Staight-line versus general drawings
The best straight-line drawings of Kn with n ≤ 8 have no monochromatic crossing, see
Figure 2 left for a straight-line 2-colored crossing-free drawing of K8. In [13], Section 3,
the authors claim that up to now no graph was known were the k-colored crossing number
was strictly smaller than the rectilinear k-colored crossing number for any k ≥ 2. From the
previous section we know that cr2(K9) = 2. Inspecting rotation systems for n = 9 [1] which
have the minimum number of 36 crossings, we have been able to construct a drawing of K9
which has only one monochromatic crossing, see Figure 2 right. As the graph thickness of

EuroCG’19
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K9 is 3 [8, 14], we can not draw K9 with just two colors without monochromatic crossings.
Thus, the biplanar crossing number for K9 is 1 and thus strictly smaller than cr2(K9) = 2.

5 Conclusion and open problems

In this paper we have shown lower and upper bounds on the rectilinear 2-colored crossing
number for Kn as well as its relation to the rectilinear crossing number for fixed drawings
of Kn. Besides improving the given bounds, some open problems arise from our work. The
first question is how fast we can compute the best edge-coloring of a given rectilinear drawing
of Kn. A second question is on the structure of 2-colored crossing minimal sets. For the
rectilinear crossing number it is known that optimal sets have a triangular convex hull [6].
For n = 8, 9 we have optimal sets with 3 and 4 extreme points, but so far all minimal sets
for n ≥ 10 have a triangular convex hull.
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