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Abstract

We study a generalization of the classical problem of
illumination of polygons. Instead of modeling a light
source we model a wireless device whose radio sig-
nal can penetrate a given number k of walls. We call
these objects k-modems and study the minimum num-
ber of k-modems necessary to illuminate monotone
and monotone orthogonal polygons. We show that
every monotone polygon on n vertices can be illumi-
nated with

⌈

n
2k

⌉

k-modems and exhibit examples of

monotone polygons requiring
⌈

n
2k+2

⌉

k-modems. For

monotone orthogonal polygons, we show that every
such polygon on n vertices can be illuminated with
⌈

n
2k+4

⌉

k-modems and give examples which require
⌈

n
2k+4

⌉

k-modems for k even and
⌈

n
2k+6

⌉

for k odd.

1 Introduction

New technologies inspire new research problems, and
wireless networking is a clear example of this. One
such new problem is what we call here modem illu-
mination of polygonal regions. Our problem arises in
the following setting. It is well known that while try-
ing to connect a laptop to a wireless modem, there are
two factors that have to be considered, the distance
to the wireless modem and, perhaps more important
in most buildings, the number of walls separating our
laptop from the wireless modem. (From now on, the
term modem will be used to refer to a wireless mo-
dem.) We call a modem a k-modem if it is strong
enough to transmit a stable signal through at most k
walls along a straight line. Thus we say that a point
p in a polygon P is covered by a k-modem m in P
if the line segment joining p to m crosses at most k
walls (edges) of P .
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We point out that we allow a modem to be located
at a point q on an edge e of P ; In this case, if p is an
interior point of P , the line segment connecting p to q
may cross an odd number of edges of P . This follows
from the fact, that the line segment connecting p to
q does not cross the edge e of P containing q. In this
paper we consider the following problem:

Modem Illumination Problem: Let P be an art
gallery modeled by a polygon P with n vertices. How
many k-modems located at points of P are always
sufficient, and sometimes necessary, to cover all points
in P?

For k = 0 our problem corresponds to Chvátal’s
Art Gallery Theorem [2] which states that

⌊

n
3

⌋

watch-
men are always sufficient and sometimes necessary to
guard an art gallery with n walls. Many generaliza-
tions of the original Art Gallery problem have been
studied, see [4] for a comprehensive survey.

Illumination of polygons with wireless devices has
been studied recently in [3, 1] in a slightly differ-
ent context, the so-called sculpture garden problem.
There, each device only broadcasts a signal within a
given angle of the polygon and has unbounded range.
The task is to describe the polygon (distinguish it
from the exterior) by a combination of the devices,
meaning that for each point p in the interior of the
polygon no point outside the polygon receives signals
from the same devices as p. See also [5] for related
problems on wireless guarding.

In this paper we provide lower and upper bounds
for the Modem Illumination Problem for monotone
polygons and monotone orthogonal polygons, which
perfectly model most real life buildings.

For technical reasons we make the following as-
sumptions: for a non-orthogonal monotone polygon,
we assume that no two of its edges are parallel; when
we speak of a polygon we refer to both the boundary
and the interior of the polygon.

2 Modem Illumination of Monotone and Mono-

tone Orthogonal Polygons

2.1 Monotone Polygons

The next lemma provides our main tool for proving
upper bounds on the number of modems required to
illuminate monotone polygons. It allows us to split
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Figure 1: Illustrating the proof of Lemma 1.

monotone polygons into smaller ones, in such a way
that we can illuminate these sub-polygons indepen-
dently of each other.

Lemma 1 (Splitting Lemma) Let P be a monotone
polygon with vertices p1, p2, . . . , pn, ordered from left
to right. For every positive integer m < n, there exist
a vertical line segment l and two monotone polygons
L and R, such that:

• L has m vertices and R has n − m + 2 vertices.

• Either l is chord of L and an edge of R, or l is an
edge of L and a chord of R.

• pm or pm+1 is an end point of l.

• Denote as L′ the subset of L to the left of l, and
denote as R′ the subset of R to the right of l;
then P = L′ ∪ l ∪ R′.

Proof. Without loss of generality we assume that
pm−1 lies on the upper polygonal chain of P . Let
f be the edge of P directly below pm−1 and let e be
the edge of P having pm−1 as its left endpoint. Also
let el = pm−1 and er be the left and right endpoints
of e, respectively. Likewise let fl and fr denote the
left and right endpoints of f , respectively.

We extend both e and f to straight lines, so that Le

is the straight line containing e and Lf is the straight
line containing f .

Since we are assuming non-parallel edges, Le and
Lf intersect at a point x. There are two cases (see
Figure 1):

1. x is to the left of pm−1.
Draw a vertical line through pm−1 and let l be
its intersection with P . Let P− be the subset of
P to the left of l and set L = P− ∪ l. We define
R as the polygon enclosed by:

• the upper polygonal chain of P from er to
pn,

• the lower polygonal chain of P from fr to
pn,

• the line segment from x to er and the line
segment from x to fr.

2. x is to the right of pm−1.
Draw a vertical line through pm and let l be its
intersection with P . Let P+ be the subset of P
to the right of l and set R = P+ ∪ l. We define
L as the polygon enclosed by:

• the upper polygonal chain of P from p1 to
pm−1,

• the lower polygonal chain of P from p1 to
fl,

• the line segment from el = pm−1 to x and
the line segment from fl to x.

Note that in both cases the three stated properties
between L, R, l and P hold. �

Before stating our main theorem for monotone
polygons, we remark two useful lemmas.

Lemma 2 Every (k+2)-gon can be illuminated with
a k-modem placed anywhere in the interior or on the
boundary of the polygon.

Proof. A (k + 2)-gon P contains k + 2 edges. Note
that any line segment joining points of the boundary
of P intersects at most k edges of P in its interior.
Therefore a k-modem placed anywhere in the interior
or on the boundary of P illuminates the whole poly-
gon. �

Lemma 3 Every (2k + 2)-gon can be illuminated
with a k-modem placed either at its (k + 2)-th or
(k + 1)-th vertex.

Proof. We apply Lemma 1 to P and obtain a line
segment l and two monotone polygons L and R of
k + 2 vertices each; all of them satisfying the proper-
ties given by Lemma 1. We place a k-modem at an
endpoint of l. By Lemma 2 this k-modem illuminates
both L and R. Since in particular it also illuminates
L′ and R′, by Lemma 1 all of P is illuminated. �

We remark that for the particular cases of k =
1, 2, 3, Lemma 3 can be strengthened as follows (for
lack of space, we omit the proofs):

Lemma 4 For every monotone heptagon there ex-
ists a point inside the polygon, between its second
and sixth vertex, where a 1-modem can be placed to
illuminate the whole polygon.

Proof. Omitted. �

Lemma 5 Every monotone 8-gon can be illuminated
with one 2-modem, placed either at its fourth or fifth
vertex.

Proof. Omitted. �
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Figure 2: A monotone n-gon requiring ⌈ n
2k+2

⌉ k-
modems.

Lemma 6 Every monotone 9-gon can be illuminated
with one 3-modem placed at its fifth vertex.

Proof. Omitted. �

We are now ready to state our main theorem.

Theorem 7 Every monotone n-gon can be illumi-
nated with ⌈ n

2k
⌉ k-modems, and there exist monotone

n-gons that require at least ⌈ n
2k+2

⌉ k-modems to be
illuminated.

Proof. An example achieving the lower bound is
given in Figure 2. So it remains to prove the up-
per bound. Using Lemma 1 recursively, we split the
n-gon into m = ⌈ n

2k
⌉ (2k + 2)-gons as follows: apply

Lemma 1 to P and obtain a line segment l1, a mono-
tone polygon L1 of 2k + 2 vertices and a monotone
polygon R1 of n− 2k vertices; all satisfying the prop-
erties of Lemma 1. Apply now Lemma 1 to R1 to
obtain a line segment l2, a monotone polygon L2 of
2k + 2 vertices and monotone polygon R2 of n − 4k
vertices.

Continue this process and obtain the
⌈

n
2k

⌉

mono-
tone (2k + 2)-gons L1, L2, . . . , Lm and the line seg-
ments l1, . . . , lm−1; all satisfying the properties of
Lemma 1.

For each Li (1 < i < m), let Qi be the subset of Li

to the left of li and to the right of li−1. For L1 and
Lm, let Q1 be the subset of L1 to the left of l1 and
Qm the subset of Lm to the right of lm−1.

By Lemma 3, each Li can be illuminated with a
k-modem placed in Qi. Note that since P = (

⋃

Qi)∪
(
⋃

li), this
⌈

n
2k

⌉

modems of power k illuminate all
of P . �

The proof of the upper bound in Theorem 7 uses
Lemma 3, however for k = 1, 2, 3 the corresponding
strengthened version of Lemma 3 can be used instead
to obtain the following (better) upper bound:

Theorem 8 For k = 1, 2, 3, any monotone n-gon can

be illuminated using
⌈

n
k+4

⌉

k-modems.

Proof. Omitted. �

We remark that for the particular case of 1-
modems, Theorem 8 gives an upper bound of

⌈

n
5

⌉

1-modems, and that there exist monotone n-gons (see
Figure 3) that achieve this as a lower bound.

Figure 3: A monotone n-gon requiring
⌈

n
5

⌉

1-modems.

2.2 Monotone Orthogonal Polygons

In this section we give lower and upper bounds on the
number of k-modems needed to illuminate orthogo-
nal and monotone orthogonal polygons. Recall that
for the main motivation of our research, namely to
place modems inside buildings in order to cover the
interior of the building with wireless reception, often
orthogonal polygons are a quite realistic scenario.

Proposition 9 Every orthogonal at most (k+4)-gon
P is illuminated by a k-modem placed anywhere in the
interior or on the boundary of P .

Proof. Any line segment l with endpoints inside or
on the boundary of the polygon P cannot properly
(i.e., in the interior of l) intersect any of the left-
most vertical, topmost horizontal, rightmost vertical
or bottom-most horizontal edge of P . Therefore, be-
ing at most k +4 edges in total, at most k+4−4 = k
edges are intersected by l. Thus, a k-modem placed
anywhere inside or on the boundary of P illuminates
the whole polygon. �

Proposition 10 For any x-monotone orthogonal
(k + 5)-gon there is a point on its leftmost (or right-
most) edge where a k-modem can be placed to illumi-
nate the polygon.

Proof. If (at least) one of the two horizontal edges
adjacent to the leftmost vertical edge, say e, is not the
topmost or bottom-most horizontal edge, respectively,
then placing the modem at the common vertex of e
and the leftmost vertical edge illuminates the polygon.
This follows from the proof of Proposition 9 and the
fact that e does not block the rays of the modem.

Otherwise consider the two horizontal edges adja-
cent to the rightmost vertical edge. At least one of
them is not the topmost or bottom-most horizontal
edge. Let e′ be this edge and w.l.o.g. assume that
the interior of the polygon lies below e′. The horizon-
tal line supporting e′ intersects the leftmost vertical
edge in its interior. Placing the modem on the left-
most vertical edge and below this intersection point
illuminates the whole polygon by arguments similar
to the previous case. Note that this is where we need
the x-monotonicity of the polygon to guarantee that
e′ cannot block the rays of the modem. �

Using the previous observations we now can prove
the following.
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Proposition 11 Every x-monotone orthogonal (2k+
6)-gon can be illuminated with a k-modem.

Proof. If k is even, we split the polygon vertically
into two (k + 4)-gons and place a k-modem in their
common intersection; Proposition 9 ensures that the
whole polygon is illuminated.

For odd k, split the polygon into one (k + 3)-gon
and one (k+5)-gon. By Proposition 10, there exists a
point in their common intersection where a k-modem
can be placed to illuminate the (k + 5)-gon; Propo-
sition 9 ensures that the (k + 3)-gon is also illumi-
nated. �

Our main result for monotone orthogonal polygons
is thus:

Theorem 12 Every x-monotone orthogonal polygon
on n vertices can be illuminated with ⌈ n−2

2k+4
⌉ k-

modems.

Proof. Split the n-gon into (2k + 6)-gons and apply
Proposition 11. �

For the case when k is even, the bound of Theo-
rem 12 is tight, as shown by Figure 4 (right), where
a monotone orthogonal n-gon requiring ⌈ n−2

2k+4
⌉ k-

modems to be illuminated is shown. For odd k, the
same example gives a lower bound of ⌈ n−2

2k+6
⌉.

However, for 1-modems, an example of a monotone
orthogonal n-gon requiring ⌈n−2

6
⌉ 1-modems to be il-

luminated is shown in Figure 4 (left). Thus in this
case the bound is also tight.

Figure 4: Lower bound constructions for monotone
orthogonal polygons.

3 Conclusions

Inspired by current wireless networks, we studied a
new variant of the classic polygon-illumination prob-
lem. To model the way wireless devices communicate
within a building, we now allow light to cross a vari-
able number of walls.

Using as a main tool the Splitting Lemma that al-
lows us to divide a polygon into simpler, overlapping

polygons, we give an upper bound on the number of
k-modems needed to illuminate any given monotone
polygon. We also presented a family of monotone
polygons that need at least a number of k-modems
close to that of our upper bound.

Moreover we studied the particular case when the
monotone polygons are orthogonal, where we have
been able to give, in most cases, tight bounds.

The natural open problem remaining is to close the
gap between lower and upper bounds for both types
of polygons, monotone and monotone orthogonal.

The modem illumination problem for general poly-
gons, has proved to be rather challenging. We be-
lieve that obtaining tight bounds for this case is a
non-trivial problem. At the moment the best lower
bounds we have, are those we have for monotone poly-
gons, and no significant upper bounds are known to
us. Noteworthy, we might not be surprised if the lower
bounds for general polygons happen to be realized by
monotone polygons also; note that this happens for
the ⌊n/3⌋ lower bound for the classical polygon illu-
mination problem.
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