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Abstract

We consider a variation of a problem stated by Erdös and Guy in 1973 about the number
of convex k-gons determined by any set S of n points in the plane. In our setting the points
of S are colored and we say that a spanned polygon is monochromatic if all its points are
colored with the same color.

As a main result we show that any bi-colored set of n points in R
2 in general position

determines a super-linear number of empty monochromatic triangles, namely Ω(n5/4).

1 Introduction

Erdös and Guy [9] asked the following question. “What is the least number of convex k-gons
determined by any set of n points1 in the plane?” The trivial solution for the case k = 3 is

(

n
3

)

.
In addition, if we require the triangles to be empty then Katchalski and Meir [12] showed that
for all n ≥ 3 a lower bound is given by

(

n−1
2

)

and that there exists a constant c > 0 such that
there exist sets with at most cn2 empty triangles. Around the same time Bárány and Füredi [3]
showed that any set of n points has at least n2 −O(n log n) empty triangles and they also gave
examples with at most 2n2 empty triangles if n is a power of 2.

Valtr [17] described a configuration of n points related to Horton sets [11] with fewer than
1.8n2 empty triangles and also provided examples for the number of empty k-gons, e.g. with at
most 2.42n2 empty quadrilaterals. Later Dumitrescu [8] improved the construction for triangles
to ≈ 1.68n2, which then consequently was further improved by Bárány and Valtr [4] to ≈ 1.62n2,
the currently best bound. It is still unknown whether the constant could be smaller than 1,
that is, whether there exists a family of n-element sets with fewer than n2 empty triangles.

We consider a related problem, where the points of the given set S are colored. A polygon
spanned by points in S is called monochromatic if all its points are colored with the same
color. In contrast to the above described race for the best constant in the uncolored case, we
give the first (non-trivial) lower bound for the asymptotic behavior of the number of empty
monochromatic triangles for bi-colored point sets.
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1Throughout, all considered point sets are in general position, that is, they do not contain three collinear

points.
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A result in this direction was obtained by Devillers et al. [6]. They proved that any bi-
colored point set in the plane exhibits at least ⌈n

4 ⌉ − 2 interior disjoint empty monochromatic
triangles. In a generalization Urrutia [16] showed that in any 4-colored point set in R

3 there is
at least a linear number of interior disjoint monochromatic tetrahedra.

One might also be interested in the minimum number of colors so that we can color any
given set S of n points in a way such that S does not determine an empty monochromatic
triangle (or in general an empty monochromatic convex k-gon). In [6] (Theorem 3.3) this
question has been settled by showing that already for three colors there are sets not spanning
any empty monochromatic triangle. For a number of similar problems on colored point sets see
e.g. Chapter 8 of [5].

The remaining question is to determine the asymptotic behavior of the number of empty
monochromatic triangles for bi-colored sets. We show that any bi-colored set of n points in
R

2 in general position determines Ω(n5/4) empty monochromatic triangles. To the best of our
knowledge no non-trivial bounds have been known before.

2 Lower Bound Construction

We start with a technical lemma which shows that for point sets with a triangular convex hull
there exists a triangulation such that a sufficient fraction of its triangles are incident to vertices
of the convex hull.

Lemma 1. Let S be a set of n points in general position in the plane with 3 extreme points,
that is, with a triangular convex hull and m = n−3 interior points. Then S can be triangulated
such that at least m +

√
m + 1 triangles have (at least) as one of their vertices an extreme point

of S.

Proof. Let ∆ be the convex hull of S, E(∆) the edges of ∆, and M = S \ ∆ = {q1, ..., qm} the
interior points of S, |M | = m = n − 3.

We first define a partial order ≤e on the elements of M . Two points p1, p2 ∈ M are
comparable with respect to an edge e ∈ E(∆) if the open triangle formed by e and p1 is
contained in the closed triangle formed by e and p2 (p1 ≤e p2) or vice versa (p2 ≤e p1), see
Figure 1 for an example.
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Figure 1: Two points that are comparable w.r.t. e1 (p1 ≤e1
p2) and e3 (p2 ≤e3

p1), but
incomparable w.r.t. e2.

Observe that two fixed points p1, p2 ∈ M are comparable w.r.t. exactly 2 out of 3 edges of ∆.
This can be seen by considering the supporting line of the edge p1, p2, see Figure 1. Two points
are comparable w.r.t. an edge e of ∆ if and only if this supporting line intersects e. This implies
that if two points are not comparable w.r.t. e then they are comparable w.r.t. both other edges.
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A chain is an ordered set of (pairwise) comparable points of M and an anti-chain is a set
of pairwise incomparable points of M . By Dilworth’s Theorem [7] there exists a chain or an
anti-chain in M w.r.t. a given edge e of ∆ of size

√
m. Because an anti-chain for e is a chain for

the other two edges of ∆, we may assume w.l.o.g. that there exists a chain qi1 ≤e · · · ≤e qi√m

w.r.t. e.

e e

Figure 2: Left: A chain w.r.t. e (oriented upwards) and its triangulation. Right: Extended
triangulation.

We obtain a triangulation of ∆ ∪ {qi1 , . . . , qi√m
} by joining each qij , 1 ≤ j <

√
m, to qij+1

and to the end-points of e, and qi√m
to the vertices of ∆, see Figure 2 left. There are 2

√
m + 1

triangles in this triangulation and all of them have at least one vertex on the convex hull. We
now extend the triangulation to cover the remaining points. For each point qi not in the chain
there is precisely one end-point p of e visible to qi and we add the edge joining qi and p.

We have, so far, a collection of pairwise non-crossing edges, and we complete this to a
triangulation of ∆∪{q1, . . . , qm}, see Figure 2 right. There are 2

√
m+m−√

m+1 = m+
√

m+1
triangles in this triangulation with at least one of its vertices on the convex hull.

We now generalize the above result to sets with larger convex hulls. Let CH(S) denote
the set of vertices of the convex hull of S and |CH(S)| its cardinality, that is, the number of
extreme points of S.

Lemma 2. (Order Lemma) Let S be a set of n points in general position in the plane with
h = |CH(S)| extreme points. Then S can be triangulated such that at least n +

√
n − h − 2

triangles have (at least) as one of their vertices an extreme point of S.

Proof. Consider an arbitrary triangulation of the h convex hull points of S (ignoring inner
points). Let τ1, . . . , τh−2 be the obtained triangles and let si be the number of points of S

interior to τi. By Lemma 1 each triangle τi can be triangulated such that at least si +
√

si + 1
triangles have one of its vertices on the convex hull of τi and therefore on the convex hull of S.
Taking the sum over all τi we have:

∑h−2
i=1 (si +

√
si + 1) =

∑h−2
i=1 si +

∑h−2
i=1

√
si +

∑h−2
i=1 1 =

(n − h) +
∑h−2

i=1

√
si + (h − 2) ≥ n +

√

∑h−2
i=1 si − 2 = n +

√
n − h − 2.

For the next result we consider bi-colored sets. We will show that if the cardinality of the
two color classes differs significantly then this implies the existence of a large number of empty
monochromatic triangles.

Lemma 3. (Discrepancy Lemma) Let S be a set of n points in general position in the plane,
partitioned in a red set R and a blue set B with |R| = |B| + α, α ≥ 2. Then S determines at

least (α−2)
6 (n + α) empty monochromatic triangles.
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Proof. Consider a red point r ∈ R and the star connecting r to all vertices R \ r. Completing
this star to a triangulation of R gives at least |R| − 2 triangles having r as a vertex. At least
α − 2 of these triangles are empty of points from B, as |B| = |R| − α. Repeating this process

for all points in R we obtain at least (α−2)
3 |R| = (α−2)

3
n+α

2 = (α−2)
6 (n + α) empty red triangles,

since we over-count a triangle at most 3 times.

Note that for the monochromatic case the Discrepancy Lemma implies the Ω(n2) bound on
the number of empty triangles given in [12], although the constants are slightly worse.

We are now ready to prove our main result.

Theorem 1. Any bi-colored set of n points in the plane in general position determines Ω(n5/4)
empty monochromatic triangles.

Proof. The general idea behind the proof is to iteratively peel a monochromatic convex layer of
the point set. For each layer we use the Order Lemma to obtain roughly

√
n empty monochro-

matic triangles. If at any moment the difference of the cardinality of the two color classes is too
large we utilize the Discrepancy Lemma and terminate the process. Otherwise we stop after at
most 1

3n3/4 steps.
Let S1 be the given bi-colored set of n points, with R1 the set of red and B1 the set of blue

points. Let ñ = n
6 . For each iteration step we construct smaller sets Si+1 ⊂ Si, Ri+1 ⊆ Ri, and

Bi+1 ⊆ Bi, respectively, with Si+1 = Ri+1 ∪Bi+1. As an invariant we will have that in any step
|Si| ≥ 2ñ holds. The iteration stops either if at some step the discrepancy between the two sets
is larger than ñ1/4 or after at most 1

3n3/4 steps.
Consider the i-th step of the iteration and w.l.o.g. let |Ri| ≥ |Bi|. There are two possible

cases.

(a) If |Ri|−|Bi| ≥ ñ1/4 we apply the Discrepancy Lemma and get at least (ñ1/4−2)
6 (2ñ+ñ1/4) =

Ω(n5/4) empty monochromatic triangles.

(b) Otherwise build the convex hull of the red points and let B′
i ⊆ Bi be the blue points outside

of this convex hull. We denote by ri = |Ri| and bi = |Bi \ B′
i|. We have ri ≥ ñ by our

invariant assumption, ri ≥ bi, and ri ≤ bi + ñ1/4, as otherwise we apply the Discrepancy
Lemma to Ri ∪ Bi \ B′

i and terminate the iteration with Ω(n5/4) empty monochromatic
triangles as above. Note that the latter inequality implies that |B′

i| < ñ1/4.

We apply the Order Lemma to Ri and get at least ri +
√

ri − |CH(Ri)| − 2 monochro-
matic (red) triangles which are by construction a subset of a triangulation of Ri incident
to CH(Ri). At most bi of these triangles may contain a blue point, so we get at least
ri − bi +

√

ri − |CH(Ri)| − 2 ≥
√

ri − |CH(Ri)| − 2 empty monochromatic triangles.

Now we show that |CH(Ri)| < 2ñ1/4. Assume to the contrary that |CH(Ri)| ≥ 2ñ1/4

and consider the set (Ri \CH(Ri))∪ (Bi \B′
i). This set has at most ri − 2ñ1/4 red points

and bi ≥ ri − ñ1/4 blue points, so the difference is at least ñ1/4 and as above we apply the
Discrepancy Lemma and terminate.

Thus, if we don’t terminate, in step i we get at least
√

ñ − 2ñ1/4 − 2 ≥
√

ñ
2 empty

monochromatic triangles with at least one vertex in CH(Ri). Note that the last inequality
holds for sufficiently large ñ.

For the next iteration step let Ri+1 = Ri\CH(Ri), Bi+1 = Bi\B′
i, and Si+1 = Ri+1∪Bi+1.

Note that all the empty monochromatic triangles we have constructed in step i had at
least one vertex in CH(Ri), that is, we will not use these vertices for the next iterations,
and therefore we do not over-count.
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The process ends either by applying the Discrepancy Lemma, or after 1
3n3/4 steps. As in

each step we obtain at least
√

ñ
2 empty monochromatic triangles, we get in both cases a total

of Ω(n5/4) empty monochromatic triangles.
It remains to show that the invariant |Si| ≥ 2ñ holds. In step i we remove |B′

i|+ |CH(Ri)| <

ñ1/4 + 2ñ1/4 = 3ñ1/4 points. Thus after 1
3n3/4 steps we have at least n − 1

3n3/4 · 3ñ1/4 ≥ 2ñ
points left.

3 Conclusions and Open Problems

We have not been able to construct a point set with o(n2) empty monochromatic triangles.
Usually Horton sets are a good candidate to provide minimal examples with respect to deter-
mining empty convex polygons. But it turns out that every two-coloring of a Horton set has
Ω(n2) empty monochromatic triangles. A brief sketch of that fact looks as follows. Take any
bi-coloring of the Horton set and note that the upper and lower part must have a linear number
of red and blue points, as otherwise by the Discrepancy Lemma there would be a quadratic
number of empty monochromatic triangles. Now take any triangle of three consecutive points
in the upper part which form a cap. Any edge of this triangle, where at least one is monochro-
matic, say red, and any point from the lower part spans an empty triangle. Thus, together with
the Θ(n) red points from below, it forms a linear number of empty red triangles. Since there is
a linear number of such caps, we get a quadratic number of empty monochromatic triangles for
the Horton set.

Other interesting sets with O(n2) empty triangles, which are not based on Horton sets, can
be found in the constructions of Katchalski and Meir [12].

Considering results in [4] and [15] one can see that in the uncolored case and for sufficiently
large n there is always a quadratic number of empty triangles and empty convex quadrilaterals.
Moreover, there is at least a linear number of empty pentagons, but the correct bound seems
to be quadratic. The status for empty convex hexagons was a long-standing open problem:
Does there always exist an empty convex hexagon for sufficiently large point sets? This ques-
tion has been answered only recently in the affirmative. Nicolás [13] and Gerken [10] showed
independently that for large enough sets there always exists at least one empty convex hexagon.
This of course implies that there exists a linear number of them, but the best upper bound is
again quadratic. Finally, no empty convex 7-gons may exist. So it seems that either none, or
a quadratic number of empty k-gons exists, and we believe that this might translate to colored
point sets. We therefore state the following conjecture.

Conjecture 1. Any bi-colored set of n points in R
2 in general position determines a quadratic

number of empty monochromatic triangles.

In fact we did not obtain a single family of sets where the asymptotics of the number of empty
triangles and empty monochromatic triangles differ. What we have been able to construct are
sets which have 5 times fewer empty monochromatic triangles than empty triangles. The idea
behind the construction is to start with a set S of n points with t(S) empty triangles. W.l.o.g.
S has no two points on a horizontal line. We then add a copy of S which is shifted horizontally
to the right by some sufficiently small ε and color the points of S red and their duplicates blue.
For each ε-near pair we get 2n − 2 empty bi-chromatic triangles. For each empty triangle in S

we get 3 new bi-chromatic triangles (not using an ε-near pair of points), but only one empty

monochromatic triangle. Thus the ratio of empty triangles to monochromatic ones is 4+ 2n2−2n
t(S) .

Taking the sets constructed by Bárány and Valtr [4] with t(S) ≈ 1.62n2 empty triangles gives
a factor of ≈ 5.23.
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Another interesting question is to consider empty monochromatic convex k-gons for k > 3.
Devillers et al. [6] (Theorem 3.4) showed that for k ≥ 5 and any n there are bi-colored sets
where no empty monochromatic convex k-gon exists. Recently in [1] it has been shown that any
sufficiently large bi-colored point set contains at least one empty monochromatic, not necessarily
convex, quadrilateral.

For the remaining case of empty monochromatic convex quadrilaterals it is known that they
always exist in any bi-colored Horton set for n ≥ 64 [6]. This leads to Conjecture 3.1 in [6]
which states that for sufficiently large n any bi-colored set contains at least one monochromatic
convex quadrilateral.

Recently, during the preparation of the journal version of this paper, and based on our
work, the lower bound on the number of empty monochromatic triangles has been improved
to Ω(n4/3) [14].

Let us finally mention that in a forthcoming paper we have been able to prove an analogous
lower bound on the number of empty monochromatic simplices in R

d, namely that any bi-colored
set of n points in R

d determines Ω(nd−3/4) empty monochromatic simplices [2].
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