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Abstract

We study the following extremal problem for geomet-
ric graphs: How many arbitrary edges can be removed
from a complete geometric graph with n vertices such
that the remaining graph still contains a certain non-
crossing subgraph. In particular we consider perfect
matchings and subtrees of a given size. For both
classes of geometric graphs we obtain tight bounds
on the maximum number of removable edges. We
further present several conjectures and bounds on the
number of removable edges for other classes of non-
crossing geometric graphs.

1 Introduction

A geometric graph is a graph G = (V,E) drawn in the
plane, such that V is a point set in general position
(meaning that no three points of V lie on a common
line) and E is a set of straight-line segments whose
endpoints belong to V. A geometric graph is called
non-crossing if no two edges intersect in their inte-
rior, but two edges might have an endpoint in com-
mon. Two edges are disjoint if they have no point in
common.

Extremal problems for geometric graphs have re-
ceived considerable attention. One problem consid-
ered in this area, studied by Erdős, Perles, Kupitz,
and Avital and Hanani [1, 11], is to determine the
smallest number ek(n) such that every geometric
graph with n vertices and m > ek(n) edges con-
tains k + 1 pairwise disjoint edges. Erdős [5] proved
that e1(n) = n. For three pairwise disjoint edges,
bounds on e2(n) were given in [1, 7], culminating in
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§Departament de Matemàtica Aplicada II, Uni-
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e2(n) = 2.5n (plus a constant), as shown recently by
Černý [3]. Bounds for e3(n) have been obtained in
[7, 14].

For general values of k, Goddard et al. [7] showed
that ek(n) ≤ cn(log n)k−4 for some constant c.
This was improved by Pach and Törőcsik [12] to
ek(n) ≤ k4n, the first upper bound linear in n.
Tóth and Valtr [14] further improved this bound
to ek(n) ≤ k3(n + 1), and finally Tóth [13] showed
that ek(n) ≤ 29k2n, where the constant 29 has since
been improved by Felsner [6] to 256. Kupitz proved
a lower bound of ek(n) > kn, which was improved
to ek(n) ≥ 3

2 (k − 1)n − 2k2 by Tóth and Valtr [14].
It is conjectured that ek(n) ≤ ckn for some constant c.

Research on ek(n) has focused on small values of k.
But k can be as large as n

2 − 1, in which case we
obtain a non-crossing perfect matching. Looking at
the problem from this angle, we ask for en−1(2n), or
in other words, we investigate how many (arbitrary)
edges can be removed from a complete geometric
graph, such that it still contains a non-crossing
perfect matching. We show that every complete
geometric graph on 2n vertices still contains a non-
crossing perfect matching after removing any set of
n− 1 edges; that is en−1(2n) =

(
2n
2

)
− n. This bound

is achieved for complete geometric graphs on point
sets in convex position, meaning that there exists a
set of n edges whose removal disallows a non-crossing
perfect matching in the remaining graph. For point
sets in convex position this question was completely
settled by Kupitz and Perles for each k. They showed
that if a geometric graph on n vertices in convex
position has at least (k − 1)n + 1 edges then the
graph contains k disjoint edges, and this bound is
tight; see [7].

Our research was motivated by a closely related
problem posed by Micha Perles in 2002 and studied
by Černý, Dvořák, Jeĺınek and Kára [4]: How many
arbitrary edges can be removed from a complete
geometric graph on n vertices such that the remaining
graph still contains a non-crossing Hamiltonian path.
It is of interest to study this problem for other classes
of non-crossing geometric graphs. We consider sub-
trees of a given size. For the case of spanning trees,
removing n − 2 arbitrary edges from any complete
geometric graph on n vertices leaves a graph that still
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contains a non-crossing spanning tree [9]. Removal of
more edges is possible if the set of removed edges has
certain properties. Benediktovich [2] recently showed
that each complete geometric graph on n ≥ 5 vertices
still contains a non-crossing spanning tree after
removing any self-crossing 2-factor, i.e., a 2-regular
spanning subgraph with two edges sharing an interior
point. We show that every complete geometric graph
on n vertices still contains a non-crossing subtree that
spans n − k vertices after removing

⌈
kn
2

⌉
arbitrary

edges, for k ≥ 2, and this bound is tight.

Examples bounding the number of removable edges
often are defined on point sets in convex position. We
conjecture that for point sets with many points in the
interior of the convex hull many more edges can be
removed from the complete geometric graph to still
guarantee the considered subgraph. We finally briefly
consider this problem for other classes of geometric
graphs.

In the following, removal of a set E′ of edges of a
complete geometric graph G is expressed by G − H,
where E′ is the edge set of a subgraph H of G. The
edges of E′ are called removed or forbidden edges. We
omit several proofs in this abstract.

2 Perfect matchings

In this section we investigate the maximum number of
removable edges in a complete geometric graph such
that the remaining graph contains a non-crossing per-
fect matching. We first show a result for abstract
graphs.

Theorem 1 For all p ≥ 2, for every spanning sub-
graph H = (V,E′) of the complete graph Kkp with
|E′| ≤ k − 1, the graph Kkp − H contains the com-
plete p-partite graph Kk,...,k.

Proof. For each p we prove the theorem by induction
on k. For k = 1 the statement is trivial. Assume the
statement is true for every number k′ < k. Now, we
are given the complete graph Kkp and we are given
a spanning subgraph H = (V,E′) with |E′| ≤ k − 1.
Assume that |E′| > 0, as otherwise nothing has to be
proved. Observe that there exists a set Q of at least
p− 1 isolated vertices in H and there exists a vertex
v /∈ Q whose degree is at least 1 in H. Let N(v) de-
note the set of neighbors of v in H. Define a graph
H ′ = (V \(Q∪{v}), E∗) where E∗ is obtained by first
taking the set of edges of the induced subgraph of
(V \(Q ∪ {v}), E′) and then adding a minimum num-
ber of edges to the resulting set, such that N(v) is
connected. We have |E∗| ≤ |E′| − 1 ≤ k − 2, be-
cause we removed degH(v) edges and added at most
degH(v)−1 edges to restore the connectedness. By in-
duction, K(k−1)p−H ′ contains the complete p-partite

v

Figure 1: Two examples where removing n edges from
the complete geometric graph on a set of 2n points
disallows a non-crossing perfect matching.

graph Kk−1,...,k−1. Since N(v) is connected in H ′, all
the vertices of N(v) belong to the same vertex class
of Kk−1,...,k−1. Add v to the vertex class containing
N(v), and add one vertex in Q to each of the other
vertex classes so that Kk,...,k ⊆ Kkp −H. �

Corollary 2 For every complete geometric graph G
on 2n vertices and for every subgraph H of G with at
most n−1 edges, the geometric graph G−H contains
a non-crossing perfect matching. This bound is tight
with respect to the cardinality of the set of forbidden
edges.

Proof. Apply the case p = 2 of Theorem 1, which
states that G−H contains a complete bipartite graph
Kn,n. Color the point set according to this bipartition,
say red and blue. This 2-colored point set has a non-
crossing red-blue matching; that is, each edge of the
matching connects a red and a blue point. Thus, this
matching does not use edges of H.

Removing n edges from G does not always leave
a non-crossing perfect matching, as can be seen in
Figure 1 (left). There, if vertex v is matched to an-
other point not using the drawn ‘forbidden’ edges,
then this segment splits the point set into two sets
of odd size, which disallows a non-crossing perfect
matching. Thus, the bound of n−1 edges is tight. �

Another example that prohibits a non-crossing per-
fect matching without forbidden edges is shown in
Figure 1 (right). In both examples the graph defined
by the forbidden edges has one component that con-
tains n+1 vertices. The size of the largest component
in this graph turns out to be crucial for the existence
of a non-crossing perfect matching without forbidden
edges. To show this, we first show a result for colored
point sets (which extends a known proof for 2-colored
point sets).

Theorem 3 Let S be a set of colored points in gen-
eral position in the plane with |S| even. Then S ad-
mits a non-crossing perfect matching such that every
edge connects two points of distinct colors if and only
if at most half the points in S have the same color.

A related problem considering long alternating
paths for multicoloured point sets was studied in [10].
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Corollary 4 For every complete geometric graph G
on 2n vertices, and for every subgraph H of G with
at most n vertices in each component, the geometric
graphG−H contains a non-crossing perfect matching.

Note that Corollary 4 also implies Corollary 2.

Conjecture 1 For every complete geometric graph
G on a set of 2n points with k ≥ n− 2 of them in the
interior of the convex hull and for every subgraphH of
G which has at most k+1 edges, the geometric graph
G−H contains a non-crossing perfect matching.

3 Non-crossing subtrees

In this section we investigate how many arbitrary
edges can be removed from any complete geometric
graph such that the remaining graph still contains a
non-crossing tree of a given size. It turns out that
the connectivity of the subgraph H defined by the re-
moved edges is crucial for the size of the largest non-
crossing subtree. We recall that the connectivity of a
graph G is the size of a smallest vertex cut. A vertex
cut of a connected graph G is a set of vertices whose
removal disconnects G. A graph is called k-connected
if its connectivity is k or greater.

Lemma 5 For every complete geometric graph G on
n vertices and for every subgraph H of G with con-
nectivity k, the geometric graph G − H contains a
non-crossing subtree on n− k vertices.

In particular, Lemma 5 implies that for every sub-
graph H with n − 1 edges of a complete geometric
graph G on n vertices, the geometric graph G − H
contains a non-crossing subtree that spans n− 1 ver-
tices. Also, for every disconnected subgraph H of
a complete geometric graph G, the geometric graph
G−H contains a non-crossing spanning tree.

Theorem 6 For every 2 ≤ k ≤ n− 1, for every com-
plete geometric graph G on n vertices, and for every
subgraph H of G with at most dkn/2e edges, the ge-
ometric graph G−H contains a non-crossing subtree
that spans n− k vertices. Moreover, the complete ge-
ometric graph G on n points in convex position has a
subgraph H with dkn/2e edges such that G−H has
no non-crossing tree on n− k + 1 vertices.

Again we omit the proof and remark that for the
convex complete geometric graph G considering as
subgraph H the Harary graph Hk,n [8], see Figure 2,
yields the desired result.

We remark that also for point sets with many inte-
rior points we can not remove more edges than in the
convex case to guarantee a non-crossing subtree of a
given size in the remaining graph.
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Figure 2: The Harary graphs H4,10, H5,10 and H5,11.

4 More classes of non-crossing geometric graphs

4.1 Spanning paths

Černý et al. [4] showed that for any subgraph H =
(V,E′) of the convex complete geometric graph G on
n vertices with |E′| ≤

⌈
n
2

⌉
− 1, the geometric graph

G−H contains a non-crossing spanning path.
If the set S of n points has k ≤ n

2−2 interior points,
then we can not remove more than

⌈
n
2

⌉
− 1 edges

of G; because each spanning path contains a perfect
matching, for n even, and Figure 1 (left) shows that
after removal of

⌈
n
2

⌉
edges, the remaining graph does

not even contain a non-crossing perfect matching.

Conjecture 2 For every complete geometric graph
G on a set of n points with k ≥

⌈
n
2

⌉
− 2 of them in

the interior of the convex hull and for every subgraph
H of G which has at most k + 1 edges, the geometric
graph G−H contains a non-crossing spanning path.

4.2 Spanning cycles

Point sets in convex position only admit one non-
crossing spanning cycle. Therefore, removal of only
one edge disallows such a cycle.

Conjecture 3 For every complete geometric graph
G on a set of n points with k of them in the interior
of the convex hull and for every subgraph H of G
which has at most

⌈
k
2

⌉
edges, the geometric graph

G−H contains a non-crossing spanning cycle.

Figure 3 shows an example where removal of⌈
k+4
2

⌉
edges disallows a non-crossing spanning cycle,

for k = n− 3.

4.3 Triangulations and pseudo-triangulations

For each point set S there exist edges which appear
in every triangulation of S, for example edges of the
convex hull. We call these edges unavoidable edges.
Edges which do not appear in every triangulation are
called avoidable edges. Clearly, removal of only one
unavoidable edge of the complete geometric graph on
S disallows a triangulation for S. Thus, for removal
we only consider avoidable edges.
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Figure 3: This point set contains no non-crossing
spanning cycle if we disallow the

⌈
k+4
2

⌉
drawn edges.

Figure 4: Removal of two avoidable edges disallows
a triangulation (left) and removal of four avoidable
edges disallows a pseudo-triangulation (right).

Theorem 7 For each subgraph H = (V,E′) of the
complete geometric graph G on n vertices in convex
position where E′ is a set of at most n − 3 avoid-
able edges, the geometric graph G − H contains a
triangulation. This bound is tight with respect to the
cardinality of E′.

Interestingly, in the case of triangulations less
(avoidable) edges can be removed if we also consider
interior points. Figure 4 (left) shows an example.

Lemma 8 There exist point sets with interior points,
such that removal of two avoidable edges disallows a
triangulation.

We finally consider pseudo-triangulations. A
pseudo-triangle is a simple polygon that has ex-
actly three interior angles less than π. A pseudo-
triangulation of a point set S is a partition of the
convex hull of S into pseudo-triangles whose vertex
set is exactly S. For the considered problem, pseudo-
triangulations behave similar to triangulations. Note
that for point sets in convex position triangulations
and pseudo-triangulations coincide.

Lemma 9 There exist point sets with interior points,
such that removal of four avoidable edges disallows a
pseudo-triangulation.

Figure 4 (right) shows an example. The four solid
edges are avoidable. To see that their removal dis-
allows a pseudo-triangulation, observe that the face
incident to the interior vertex with angle greater than
π has to have at least four convex vertices, whereas a
pseudo-triangle has exactly three.
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