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Abstract
5

Let S be a set of 2n points on a circle such that for each point p ∈ S also its antipodal6

(mirrored with respect to the circle center) point p′ belongs to S. A polygon P of size n is called7

antipodal if it consists of precisely one point of each antipodal pair (p, p′) of S.8

We provide a complete characterization of antipodal polygons which maximize (minimize,9

respectively) the area among all antipodal polygons of S. Based on this characterization, a simple10

linear time algorithm is presented for computing extremal antipodal polygons. Moreover, for the11

generalization of antipodal polygons to higher dimensions we show that a similar characterization12

does not exist.13

Keywords: Antipodal points; extremal area polygons; discrete and computational geometry.14

1 Introduction15

For a point p = (x1, x2) ∈ IR2, let p′ := (−x1,−x2) be the antipodal point of p. Consider a set S16

of points on a circle centered at the origin such that for each point p ∈ S also its antipodal point17

p′ belongs to S. We choose one point from each antipodal pair of S such that their convex hull is18

as large or as small (w.r.t. its area) as possible. Intuitively speaking, the largest polygon will have19

to contain the center of the circle, but the smallest one does not. In Figure 1 an example of a thin20

(not containing the center) and a thick (containing the center) polygon is shown. An interesting21

question, which immediately suggests itself, is whether any thick polygon of S has larger area than22

any thin polygon of S? In this paper, we will formalize the mentioned concepts of thin and thick23

polygons and answer this question for sets in the plane as well as for higher dimensions.24

We start by introducing the problem formally in the plane. The generalization for higher dimensions25

is straightforward. A set of 2n points on the unit circle centered at the origin is called an antipodal26
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Figure 1: A thin (left) and a thick (right) antipodal polygon.

point set if for every point p it also contains its antipodal point p′. Let S := {p1, p′1, p2, p′2, . . . , pn, p′n}27

be such a set. An antipodal polygon on S is a convex polygon having as vertices precisely one point28

from each antipodal pair (pi, p
′
i) of S. A thin antipodal polygon is an antipodal polygon whose29

vertices all lie in a half-plane defined by some line through the origin. A thick antipodal polygon is30

an antipodal polygon such that at least
⌈
n−2
2

⌉
of its vertices lie in both closed half-planes defined31

by any given line through the origin. See Figure 1. Note that a non-thin antipodal polygon does32

not need to be thick, but a thick antipodal polygon can never be thin. Moreover, a thin antipodal33

polygon does not contain the center of the circle and a non-thin antipodal polygon always contains34

it.35

In this paper we investigate the following questions:36

• Does a thick antipodal polygon always have larger area than a thin antipodal polygon?37

• How efficiently can one compute an antipodal polygon with minimal (maximal) area?38

• What can be said about antipodal polygons in higher dimensions?39

1.1 Related work40

The questions studied here are related to several other geometric problems, some of which we41

mention below.42

Extremal problems: Plane geometry is rich of extremal problems, often dating back till the ancient43

Greeks. During the centuries many of these problems have been solved by geometrical reasoning.44

Specifically, extremal problems on convex polygons have attracted the attention of both fields,45

geometry and optimization. In computational geometry, efficient algorithms have been proposed46

for computing extremal polygons w.r.t. several different properties [5]. In operations research,47

global optimization techniques have been extensively studied to find convex polygons maximizing48

a given parameter [2]. A geometric extremal problem similar to the one studied in this paper was49

solved by Fejes Tóth [11] almost fifty years ago. He showed that the sum of pairwise distances50

determined by n points contained in a circle is maximized when the points are the vertices of a51

regular n-gon inscribed in the circle. Recently, the discrete version of this problem has been reviewed52

in [12] and problems considering maximal area instead of the sum of inter-point distances have been53

solved in [9].54

Stabbing problems: The problem of stabbing a set of objects by a polygon (transversal problems55

in the mathematics literature) has been widely studied. For example, in computational geometry,56
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Figure 2: The subsets in a) and b) represent maximally even scales with and without tritones,
respectively.

Arkin et al. [1] considered the following problem: a set S of segments is stabbable if there exists57

a convex polygon whose boundary C intersects every segment in S; the closed convex chain C is58

then called a (convex) transversal or stabber of S. Arkin et al. proved that deciding whether S is59

stabbable is an NP-hard problem. In a recent paper [6], the problem of stabbing the set S of line60

segments by a simple polygon but with a different criterion has been considered. A segment s is61

stabbed by a simple polygon P if at least one of the two endpoints of s is contained in P . Then62

the problem is: Find a simple polygon P that stabs S and has minimum(maximum) area among63

those that stab S. In [6], it is shown that if S is a set of n pairwise disjoint segments, the problem64

of computing the minimum and maximum area (perimeter) polygon stabbing S can be solved in65

polynomial time. However, for general (crossing) segments the problem is APX-hard. Notice that66

our problem is a constrained version of the problem studied in [6] in which each segment joins two67

antipodal points on a circle. As we will show later, our antipodal version (in which all segments68

intersect at the origin) can be computed in linear time.69

Music Theory: There exists a surprisingly high number of applications of mathematics to music70

theory. Questions about variation, similarity, enumeration, and classification of musical structures71

have long intrigued both musicians and mathematicians. In some cases, these problems inspired72

mathematical discoveries. The research in music theory has illuminated problems that are appealing,73

nontrivial, and, in some cases, connected to deep mathematical questions. See for example [3, 4]74

for introductions to the interplay between mathematics and music.75

In our case, an antipodal polygon is related with the tritone concept in music theory. Typically,76

the notes of a scale are represented by a polygon in a clock diagram. In a chromatic scale, each77

whole tone can be further divided into two semitones. Thus, we can think in a clock diagram with78

twelve points representing the twelve equally spaced pitches that represent the chromatic universe79

(using an equal tempered tuning). The pitch class diagram is illustrated in Figure 2 . A tritone is80

traditionally defined as a musical interval composed of three whole tones. Thus, it is any interval81

spanning six semitones. In Figure 2 a), the polygon represents a scale containing the tritones82

CF#, DG#, EA#. The tritone is defined as a restless interval or dissonance in Western music83

from the early Middle Ages. This interval was frequently avoided in medieval ecclesiastical singing84

because of its dissonant quality. The name diabolus in musica (the Devil in music) has been applied85

to the interval from at least the early 18th century [10].86

In this context, an antipodal polygon corresponds to a subset of notes or harmonic scale avoiding87

the tritone and, according to [9, 12], a maximal antipodal polygon represents a maximally even set88
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that avoids the tritone.89

1.2 Our results90

In this paper we show that:91

Claim 1.1 For a given antipodal point set S ∈ IR2 every thin antipodal polygon on S has less area92

than any non-thin antipodal polygon on S.93

In addition we show that the 2-dimensional case is special in the sense that the above result can94

not be generalized to higher dimensions.95

The analogue result holds for thick antipodal polygons when n is odd but surprisingly turns out96

to be wrong when n is even; for n even we provide an example of an antipodal non-thick polygon97

having larger area than a thick antipodal polygon. However we are able to show that:98

Claim 1.2 For a given antipodal point set S ∈ IR2 and every non-thick antipodal polygon on S,99

there exists a thick antipodal polygon on S with larger area.100

Note that above claims imply that an antipodal polygon with minimum (resp. maximum) area is101

thin (resp. thick).102

2 Thin antipodal polygons103

Assume that the clockwise circularly order of S around the origin is p1, p2, . . . , pn, p
′
1, p
′
2, . . . , p

′
n.104

For every point q in S, let Sq be the thin antipodal polygon that contains q as a vertex and all n−1105

next consecutive points clockwise from q. Note that all thin antipodal polygons are of this form106

and that Sq and S′q are congruent.107

First, we prove a lemma regarding the triangles containing a given point of S.108

Lemma 2.1 For a point p ∈ S let ` be the line containing p and p′. Let τ be the triangle determined109

by p, and its two neighbors in S. Among all triangles that have as vertices p and one point of S in110

each of the two half-planes defined by `, τ has strictly the smallest area.111

Proof. Let τ ′ be a triangle with vertices in S, containing p as a vertex and with a vertex in each112

of the two half-planes defined by `. Assume that τ ′ is different from τ . Let b be the side opposite113

to p in τ and b′ be the side opposite to p in τ ′. Note that b′ is at least as large as b, because S is114

an antipodal point set and ` contains the origin. The height of τ ′ with respect to p is greater than115

the height of τ with respect to p, as otherwise b′ would have to intersect b, which is not possible by116

construction. Thus the area of τ ′ is larger than the area of τ . �117

We split the proof of Claim 1.1 into the three cases n = 3, n = 4, and n ≥ 5.118

Lemma 2.2 For n = 3, every thin antipodal polygon on S has an area strictly less than that of any119

non-thin antipodal polygon on S.120
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Figure 3: The rotation in the proof of Lemma 2.3 and its limit case.

Proof. In this case the only non-thin polygons are the two triangles τ and τ ′ with vertex sets121

{p1, p′2, p3} and {p′1, p2, p′3}, respectively. Note that τ has the same area as τ ′. In addition, by122

Lemma 2.1, τ has greater area than Sp2 and τ ′ has greater area than Sp1 and Sp3 . �123

Lemma 2.3 For n = 4, every thin antipodal polygon on S has an area strictly less than that of any124

non-thin antipodal polygon on S.125

Proof. In this case a non-thin antipodal polygon P has exactly two consecutive points; without126

loss of generality assume that they are p1 and p2. Thus P is the convex quadrilateral p1, p2, p4, p
′
3.127

We show that P has greater area than Sp1 , Sp2 , Sp′3 and Sp′4 .128

By Lemma 2.1 the triangle p′4p1p2 has less area than the triangle p′3p1p2. By Lemma 2.2 the triangle129

p′3p2p4 has an area greater than the triangle p′3p
′
4p2 and also greater than the triangle p′4p2p3. Thus130

P has an area greater than Sp′3 and also greater than Sp′4 . By Lemma 2.1 the triangle p1p2p3 has131

less area than the triangle p1p2p4. By Lemma 2.2 the triangle p′3p1p4 has an area greater than the132

triangle p1p3p4. Thus P has an area greater than Sp1 .133

It remains to show that P has area greater than Sp2 . Let ` be the line passing through p1 and p′1.134

Rotate ` clockwise continuously around the origin, until p1 meets p2 and p′1 meets p′2. See Figure 3.135

Note that throughout the motion the area of Sp2 is strictly increasing. To see that, notice that the136

height of the triangle with vertices p2, p4 and p1 is strictly increasing, as otherwise, at some point p′1137

must intersect the perpendicular bisector of the segment p2p4. However, this cannot happen since138

p′1 reaches p′2 before it reaches this line.139

On the other hand, the area of P might at first be strictly increasing, then at some point be strictly140

decreasing. Moreover, if this is the case, there is a point in time, at which P has the same area141

as in the beginning of the motion (and will strictly decrease afterwards) and the area of Sp2 has142

increased. Assume then that the motion is such that the area of P is strictly decreasing and the143

area of Sp2 is strictly increasing.144

We show that at the end of the motion P and Sp2 have equal area, this implies that at the beginning145

of the motion the area of P is greater than the area of Sp2 .146

At the end of the motion P coincides with the triangle p2p4p
′
3 and Sp2 with the quadrilateral147

p2p3p4p
′
2. We split the the quadrilateral p2p3p4p

′
2 into the triangles p2p3p4 and p′2p2p4, sharing the148

side p2p4. The height of the triangle p2p4p
′
3 with respect to p2p4 has the same lenght that the sum149

of the heights of the triangles p2p3p4 and p′2p2p4 with respect to p2p4 (It is easy to see by using the150

triangle p′4p
′
3p
′
2). Hence Area(p2p4p

′
3) equals Area(p2p3p4p

′
2). �151
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We are ready now to prove our first claim.152

Theorem 2.4 Every thin antipodal polygon on S has less area than any non-thin antipodal polygon153

on S.154

Proof. We proceed by induction on n. By Lemmas 2.2 and 2.3, we assume that n ≥ 5. Let P be a155

non-thin antipodal polygon on S. Let T be any triangulation of P . Let p be a vertex of degree two156

in T and let p′ be its antipodal point. Let τ be the only triangle of T having p as a vertex. Let q157

and r be the two neighbors of p in S. Let τ ′ be the triangle with vertices p, q and r. By Lemma 2.1158

the area of τ ′ is equal or less than the area of τ .159

Now, suppose that τ does not contain the origin in its interior, then the polygon P ′ with vertices160

V (P ) \ {p} is a non-thin antipodal polygon for S \ {p, p′}. By induction P ′ has area greater area161

than any thin antipodal polygon on S \ {p, p′}. Some of these thin polygons together with τ ′ form162

antipodal polygons on S. Using this observation and the fact that the area of Spi is the same as163

the area of Sp′i , we can show that except for Sp and Sq all antipodal thin polygons on S have area164

strictly less than P . However, for n ≥ 5, P can be triangulated so that p is not the middle nor the165

last vertex (clockwise) of an ear. As any triangulation has two ears. There is an ear that does not166

contain the origin. The previous arguments (for this ear) show that the area of P is strictly greater167

than the area of Sp, similarly for Sq. �168

3 Thick antipodal polygons169

In this section we present two area increasing operations on antipodal polygons. Using a sequence of170

these operations a non-thick antipodal polygon can be transformed into a thick antipodal polygon,171

this sequence proves Theorem 3.3.172

We begin with an antipodal polygon P . Let q be a point in S. By flipping q, we mean the following173

operation: if q is a vertex of P , then choose q′ instead; if q is not a vertex of P then choose q instead174

of q′. The two operations described in Lemmas 3.1 and 3.2 are sequences of such flips.175

Lemma 3.1 If P has three consecutive points q1, q2 and q3 of S as vertices, then flipping q2, provides176

a polygon P of greater area.177

Proof. Let q′4 be the point after q′3 in P and q′0 be the point before q′1 in P . Let τ1 be the triangle178

with vertex set {q1, q2, q3} and τ2 the triangle with vertex set {q′0, q′2, q′4}. The difference of the areas179

of P and P ′ is equal to the difference in the areas of τ1 and τ2. However, τ1 has the same area180

as the triangle with vertex set {q′1, q′2, q′3}; by Lemma 2.1 the area of this triangle is less than that181

of τ2. �182

From now on, we assume that P does not contain three consecutive points of S as vertices. Otherwise183

we apply the operation described in Lemma 3.1.184

Lemma 3.2 Let q1, q2, . . . , qm (4 ≤ m < n) be consecutive points of S. Suppose that:185

• P contains q1 and q2.186

• P contains either both qm−1 and qm, or neither of them.187
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Figure 4: Schematic diagram of the two flip operations described in Lemma 3.2. P is drawn solid
and P ′ is dashed.

• The points from q2 to qm−1 alternatingly belong to P or not.188

Let P ′ be the antipodal polygon obtained from P , by flipping each point qi (2 ≤ i ≤ m− 1). Then189

P ′ has greater area than P .190

Proof. For each p in {q2, q′2, . . . , qm−1, q′m−1}, let τ(p) be the triangle such that: has p as a vertex;191

if p is a vertex of P then the two sides of τ(p) that contain p, are contained in the boundary of P ,192

while its opposite side is contained in P ′; if p is a vertex of P ′ then the two sides of τ(p) that contain193

p, are contained in the boundary of P ′, while its opposite side is contained in P . The difference in194

the area of P and the area of P ′ equals the difference in the areas of those triangles contained in P195

and those contained in P ′. For 4 ≤ i ≤ m− 3, the area of τ(qi) equals the area of τ(q′i) and one of196

them is contained in P while the other is contained in P ′. Thus the difference in the areas of P and197

P ′ depends only on the areas of τ(q2), τ(q′2), τ(q3), τ(q′3), τ(qm−2), τ(q′m−2), τ(qm−1), and τ(q′m−1)198

Note that the area of τ(q2) is smaller than the area of τ(q′2) and that P contains τ(q2) while P ′199

contains τ(q′2). Similarly for τ(q3) and τ(q′3)). See Figure 4.200

If P contains both qm−1 and qm, then τ(qm−1) is contained in P and τ(q′m−1) is contained in P ′.201

In this case the area of τ(qm−1) is smaller than the area of τ(q′m−1).202

If P does not contain qm−1 and qm, then τ(q′m−1) is contained in P and τ(qm−1) is contained in P ′.203

In this case the area of τ(q′m−1) is smaller than the area of τ(qm−1). The same argument can by204

apply to τ(qm−2) and τ(q′m−2)). Thus, in all cases the area of P is smaller than the area of P ′. �205

Note that in the operation described in Lemma 3.2 the number of pairs of consecutive points that206

are either both on P or not in P decreases. Moreover, no three consecutive points all in P or all207

not in P are created at the same time .208

We are now ready to prove the second claim.209

Theorem 3.3 For every non-thick antipodal polygon on S, there exists a thick antipodal polygon210

on S of greater area.211

Proof. For n odd, an antipodal polygon Q is thick if and only if its points alternate between being212

in Q and not being in Q. For n even, an antipodal polygon is thick if and only if its points alternate213

between being in Q and not in Q, with the exception of exactly one pair of consecutive points which214

are both in Q (and its antipodal points not in Q).215
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Assume that all possible operations of Lemmas 3.1 and 3.2 have been applied to a non-thick an-216

tipodal polygon P , then P contains at most one pair of consecutive points in S as vertices and P217

is a thick polygon. �218

Corollary 3.4 For n odd, every thick antipodal polygon on S has greater area than a non-thick219

antipodal polygon on S.220

Proof. In this case there are only two antipodal thick polygons and they have the same area. �221

We now provide an example of a set of points and a non-thick antipodal polygon that has greater222

area than a thick antipodal polygon on this set.223

Theorem 3.5 For n ≥ 6 even, there exist point sets with a non-thick antipodal polygon of greater224

area than a thick antipodal polygon.225

Proof. Place p1 and p2 arbitrarily close to (1, 0); thus p′1 and p′2 are arbitrarily close to (−1, 0).226

Place p3, . . . , pn arbitrarily close to (0, 1); thus p′3, . . . , p
′
n are arbitrarily close to (0,−1). Let P227

be the thick antipodal polygon that contains both p1 and p2 as vertices. Let Q be any non-thick228

antipodal polygon that contains p1, p
′
2, p3 and p′4 as vertices. Note that P is arbitrarily close to229

the triangle with vertices (0, 1), (0,−1) and (1, 0); Q is arbitrarily close to the quadrilateral with230

vertices (−1, 0), (0, 1), (1, 0), and (0,−1). Thus the area of P is arbitrarily close to 1, while the231

area of Q is arbitrarily close to 2. �232

4 The algorithms233

It is worth mentioning that the general algorithmic version of the problem in which the input is a234

set of line segments, each connecting two points on the circle, has been proved to be NP-hard [6].235

Surprisingly, the antipodal version can be easily solved by using above characterizations.236

Theorem 4.1 Antipodal polygons with minimum or maximum the area can be computed in linear237

time.238

Proof. According to Theorem 2.4, an antipodal polygon with minimum area is a thin antipodal239

polygon. Thus, since there exist O(n) thin polygons, we can sweep in a linear number of steps240

around the circle and update in constant time the area of two consecutive thin polygons. On the241

other hand, according to Theorem 3.3, if n is odd, there are only two thick antipodal polygons242

(the alternating polygons). For n even, there exists a linear number of thick polygons (having two243

consecutive points and the rest in alternating position). In the last case, a linear sweep around244

the circle can also be used to compute in linear time a thick antipodal polygon that maximizes the245

area. �246

5 Higher Dimensions: Antipodal Polytopes247

In this section we consider the analogous problem in higher dimensions. Assume therefore that all248

points are now placed on the unit d-dimensional sphere. Instead of antipodal polygons we thus have249
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antipodal polytopes. For a thin antipodal polytope all its points lie on one side of some hyperplane250

passing through the origin.251

In dimension 3 or greater Theorem 2.4 does not hold—there are antipodal point sets S ⊂ IRd such252

that there exists an antipodal thin polytope with greater d-dimensional volume than a non-thin253

antipodal polytope on S. We start by providing a three dimensional example and then argue how254

to generalize it to higher dimensions.255

For some small ε > 0, let δ =
√

1− 2ε2 and consider the set S1 of the five points v1 := (0, 0, 1),256

v2 := (δ, ε, ε), v3 := (−δ, ε, ε), v4 := (ε, δ, ε), and v5 := (ε,−δ, ε). Let S be the antipodal point set257

consisting of S1 and all its antipodal points. The convex hull of S1 is a pyramid with a square base258

(with corners v2, . . . , v5) which lies in the horizontal plane just ε above the origin. The top of the259

pyramid is at height 1. Thus, this pyramid does not contain the origin in its interior, and for ε→ 0260

the volume of the pyramid converges to 2/3.261

To obtain our second polyhedra first flip the vertex v1 to v′1 := (0, 0,−1). This gives a similar upside-262

down pyramid, which contains the origin in its interior. By also flipping v2 to v′2 := (−δ,−ε,−ε),263

we essentially halve the base of the pyramid to be a triangle. We denote the resulting point set by264

S2 = {v′1, v′2, v3, v4, v5} ⊂ S. Note that v′2 and v3 are rather close together. As the triangle v3, v4, v5265

lies above the origin, the convex hull of S2 still contains the origin in its interior. Moreover, the266

volume of the convex hull of S2 converges to 1/3 for ε→ 0, and thus towards half of the volume of267

the convex hull of S1.268

So together these two polyhedra constitute an example which shows that Theorem 2.4 can not be269

generalized to higher dimensions: S is a set of five antipodal pairs of points on the surface of the270

3-dimensional unit sphere such that the convex hull of S1 does not contain the origin, while the271

convex hull of S2 does. But in the limit the volume of the convex hull of S1 becomes twice as large272

as the volume of the convex hull of S2.273

It is straight forward to observe that this example can be generalized to any dimension d ≥ 4. There274

we have 2d− 1 antipodal pairs of points, where we set δ =
√

1− (d− 1)ε2 and every point has one275

coordinate at ±δ and the remaining coordinates at ±ε, analogous to the 3-dimensional case. For276

d−1 of the coordinate axes two such pairs are ’aligned’ as in the 3-dimensional example, and for the277

last axis there is only one such pair. The resulting polytope does not contain the origin. Flipping278

the vertex of the singular pair and one vertex for all but one aligned pairs results in a polytope279

which contains the origin, but has a volume of only 1/2d−2 of the first polytope.280

281

We call a d-dimensional antipodal polytope thick if the number of vertices in any half-space defined282

by a hyperplane through the origin contains at least
⌊
n−d
2

⌋
points of the polytope. Note that this283

definition generalizes the two dimensional case.284

It is not clear that for a given antipodal set in IRd an antipodal thick polytope should exist. However,285

for every n ≥ d, there exists antipodal sets in IRd that admit an antipodal thick polytope. We use286

the following Lemma.287

Lemma 5.1 (Gale’s Lemma [7]). For every d ≥ 0 and every k ≥ 1, there exists a set X ⊂ Sd
288

of 2k + d points such that every open hemisphere of Sd contains at least k points of X.289

From the proof of Gale’s Lemma in [8] (page 64), it follows that the provided set does not contain290

an antipodal pair of points. Let X be the set provided by Gale’s Lemma for k =
⌈
n−d
2

⌉
. If necessary291

remove a point from X so that X consists of exactly n points. Let X ′ be the set of antipodal points292

of X. Set S := X ∪X ′. Let P be the antipodal polytope on S with X as a vertex set. It follows293
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from Gale’s Lemma that P is thick.294

6 Open problems295

Let us assume that we are given a circular lattice with an antipodal set of 2n points (evenly spaced)296

and we would like to compute an extremal antipodal k-polygon with k < n vertices. This problem297

is significantly different to the considered case k = n. Recall that, for k = n, the linear algorithms298

proposed in this paper are strongly based on the simple characterization for the extremal antipodal299

polygons. Namely, the minimal thin antipodal polygon has consecutive vertices and the thick300

one has an alternating configuration. It is not difficult to come up with examples for which that301

characterization does not hold in the general case k < n. On the other hand, finding the extremal302

antipodal (n− 1)-polygon, called (2n, n− 1)-problem for short, can be easily reduced to solve O(n)303

times the (2(n−1), n−1)-problem. To see this, observe that in the (2n, n−1)-problem an antipodal304

pair is not selected and can thus be removed from the input. This approach gives a simple O(nk)305

time algorithm for solving the general (2n, k)-problem. This leaves as open problem to prove if the306

(2n, k)-problem can be solve in subquadratic time.307

Instead of area, it is also interesting to consider other extremal measures, like perimeter or the sum308

of inter-point distances. Finally, for higher dimensions, we leave the existence of thick polytopes309

for arbitrary antipodal point sets as an open problem.310
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