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Abstract

Let S be a finite set of n points in the plane in general
position. A k-hole of S is a simple polygon with
k vertices from S and no points of S in its interior.
A simple polygon P is l-convex if no straight line
intersects the interior of P in more than l connected
components. Moreover, a point set S is l-convex if
there exists an l-convex polygonalization of S.

Considering a typical Erdős-Szekeres type problem
we show that every 2-convex point set of size n contains
a convex hole of size Ω(log n). This is in contrast to
the well known fact that there exist general point sets
of arbitrary size that do not contain a convex 7-hole.
Further, we show that our bound is tight by providing
a construction for 2-convex point sets with holes of
size at most O(log n).

1 Introduction

Let S be a set of n points in the plane in general
position, i.e., S does not contain a collinear point triple.
A k-hole of S is a simple polygon whose k vertices are
a subset of S and whose interior does not contain any
point of S. Erdős [4] asked for the smallest integer
h(k) such that every set of h(k) points in the plane
contains at least one convex k-hole. Here, we consider
this question for a restricted class of point sets.

A simple polygon P with boundary ∂P is l-convex
if there exists no straight line that intersects the in-
terior of P in more than l connected components [1].
We call a line that intersects ∂P in a finite set of at
least j points a j-stabber ; for an l-convex polygon,
there cannot be a (2l + 1)-stabber. Clearly, a convex
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polygon is 1-convex. In [2], the notion of l-convexity
was transcribed to finite point sets. A point set S is
l-convex if there exists a polygonalization P (S) of S
such that P (S) is an l-convex polygon. Note that an
l-convex polygon or point set is also (l+ 1)-convex. In
this paper, we consider the following problem: What
is the smallest number f(k) such that any 2-convex
point set of size f(k) contains a convex k-hole?

Similar problems (for different generalizations of
convexity) have also been considered, see e.g. [7, 8]. It
has been shown that h(k) is finite for k ≤ 6, see e.g. [3]
for details. For general point sets Horton [6] showed
that there exist sets of arbitrary size that do not con-
tain a convex 7-hole, that is, h(7) is not bounded.
In contrast we show that every 2-convex point set of
size n contains a convex hole of size Ω(log n), implying
that f(k) is bounded for any k > 0 (Section 3). Fur-
ther, we show that our bound is tight by providing a
construction for 2-convex point sets with holes of size
at most O(log n) (Section 4). Due to space constraints,
most proofs are omitted.

2 Properties of 2-convex polygons

We follow the definitions used in [1] and [2]. A pocket
of a simple polygon P is a maximal chain on the
boundary of P not containing any vertices of CH(P )
except for its endpoints. For 2-convex polygons, the
following is known about the structure of the pockets.

Lemma 1 ([1], Lemma 12) Let K = 〈p0, . . . , pt〉
be a pocket of a 2-convex polygon between two extreme
points p0 and pt. Then K can be partitioned into three
chains C1 = 〈p0, p1, . . . , pr〉, C2 = 〈pr+1, . . . , ps〉, and
C3 = 〈ps+1, . . . , pt〉 for 0 ≤ r ≤ s < t, such that all
vertices in C1 and C3 are convex vertices of P , while
all vertices in C2 are reflex.

We call the segment p0pt the lid of the pocket. If
C2 is empty, the pocket consists solely of a convex
hull edge. Otherwise, we call the edges prpr+1 and
psps+1 the two inflection edges of the pocket. Consider
the (convex) polygons defined by C1, C2, and C3,
respectively. The next lemma follows from the proof
of Lemma 12 in [2].

Lemma 2 ([2]) The interior of a convex polygon de-
fined by C1, C2, or C3 does not intersect ∂P .
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Figure 1: The order of the vertices defined by the
inflection edges of a pocket ([2, Figure 9], relabeled).
The gray wedge is the kernel region.

Lemma 3 ([2], Lemma 10) Let P be a 2-convex
polygon and let e1 and e2 be the inflection edges of a
pocket K directed from the convex to the reflex vertex,
with the vertices defined as in Lemma 1. Without loss
of generality, pr is left of e2, i.e., e1 = prpr+1 and
e2 = ps+1ps. Let C be the part of ∂P defined by
the vertices that are to the left of e2 and not part of
the pocket (starting at p1, the left endpoint of the lid
of K). Then the order of the points in C along ∂P is
the same as the radial order around any point p on e2.
An analogous statement holds for any point on e1 and
the points of ∂P to the right of e1.

See Figure 1 for an illustration (taken from [2, Fig-
ure 9]). The kernel region of the pocket K with non-
empty C2 is the region that is to the left of e1, to the
right of e2, and, if r + 1 6= s, to the left of pr+1ps.
Observe that, for a star-shaped 2-convex polygon, the
kernel of the polygon is the intersection of the kernel
regions of all the pockets.

3 The lower bound

Let S be a 2-convex point set in the plane in general
position and let P be a 2-convex polygon that is a
polygonalization of S. In this section, we prove the
following.

Theorem 4 Every 2-convex point set of size n con-
tains a convex k-hole for k ∈ Ω(log n).

Let us first sketch the proof: If P has a large pocket,
Lemma 2 implies the existence of a large k-hole. When
P has no large pocket, we will use Lemma 5 to find
a large set Q ⊂ S of points in convex position. If Q
forms a hole in S, we are done. Finally, if Q does not
form a hole in S, we will use Lemma 7 and Lemma 10
to find a big enough convex hole.

Lemma 5 Let m be the size of the largest pocket
in S. Then there exists a point p (probably not in S)
s.t. there is a sequence σ of

⌈
n
3m

⌉
− 1 points of S that

are separated by a line from p, and their order around

p matches the order along ∂P , where they appear
consecutively.

Proof. Suppose first that P is star-shaped and let
p /∈ S be a point in the kernel of P . Consider any
half-plane H defined by a line through p that contains⌈
n
2

⌉
points of S. The radial order of the points in

S ∩H around p is the same as the order along P .
Suppose now that P is not star-shaped, i.e., its

kernel is empty. The kernel of P is determined by the
intersection of the kernel regions of all the pockets. A
non-empty kernel region is the intersection of two half-
planes defined by inflection edges (as discussed in [2]).
By Helly’s theorem [5], we know that, if the kernel
of P is empty, there exists a triple of inflection edges
such that the intersection of the half-planes (partly)
defining their kernel regions is empty. (Similar to [2,
Lemma 11].) This means that there exists at least one
inflection edge e of a pocket K such that the open half-
plane H defined by e that contains K also contains at
least dn/3e points of S. Due to Lemma 3, the radial
order of the points in S ∩ H and not on K around
any point p on e is the same as their order along ∂P .

Hence, there is a sequence of at least
⌈
dn/3e−(m−2)

m−2

⌉
≥⌈

n
3m

⌉
− 1 points along ∂P that are consecutive in the

order of all points of S around p (not containing a point
of K and linearly separated from p by the supporting
line of an edge of K). �

In the previous proof, when P is star-shaped, the
point p was not part of S. However, we can define
a point set S′ consisting of p and S ∩ H. Then, it
is easy to see that there is a 2-convex polygonization
P ′ of S′ in which p sees all the points in the order as
they appear along ∂P ′. Any convex k-hole of S′ is a
convex (k − 1)-hole or a convex k-hole of S. Thus, for
simplicity, we will assume that p ∈ S.

Let φ ⊆ S3 be the ternary relation representing
the cyclic order of the vertices of P as they appear
on the boundary of P traversed in counterclockwise
direction. That is, a triple (u, v, w) of points of S
is in φ if we can trace u, v, w in this order along
the boundary of P in counterclockwise direction. For
u,w ∈ S, a (closed) interval [u,w] from u to w in φ
is the set {v ∈ S : (u, v, w) ∈ φ} ∪ {u,w}. Note that
the intervals [u,w] and [w, u] are in general distinct.
Each point u ∈ S defines a linear order <u on S \ {u}
where x <u y if and only if (x, y, u) ∈ φ.

Note that vertices of a pocket K = 〈p0, . . . , pt〉 of
P induce a closed interval [p0, pt] in φ. Consequently,
φ induces a cyclic order of pockets of P . We choose
an arbitrary pocket K0 of P and use K0, . . . ,Km−1
to denote this cyclic order where m is the number of
pockets of P . In the rest of the section, the indices of
pockets are always taken modulo m.

For r, s ∈ {0, . . . ,m− 1}, we use [Kr,Ks] to denote
the interval consisting of pockets Kr,Kr+1, . . . ,Ks.
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Figure 2: (a) An example of a reversed triple (u, v, w).
(b) The point w controls the interval [Kr,Ks].

The length of [Kr,Ks] is the number of pockets in
[Kr,Ks]. A subinterval of [Kr,Ks] is any interval that
can be obtained from [Kr,Ks] by deleting the first i
and the last j consecutive pockets of [Kr,Ks] for some
i, j ∈ N0.

We say that a triple (u, v, w) ∈ φ is reversed if the
triangle with the vertices u, v, w traced in this order
is oriented clockwise.

For an interval [Kr,Ks], a point v from S \
(∪s+1

i=r−1Ki) controls [Kr,Ks] if the following condi-
tions are satisfied:

(i) There is no reversed triple (x, y, v) with x and y
contained in distinct pockets of [Kr,Ks],

(ii) CH(∪si=rKi) contains no point of S \ (∪si=rKi),

(iii) CH(∪si=rKi ∪ {v}) contains no point of S \
(∪si=rKi) except of vertices of pockets contain-
ing v.

We note that Condition (i) especially implies that
there is no reversed triple (x, y, v) with x and y being
vertices of pockets in [Kr,Ks] and x or y being a con-
vex hull vertex. Hence, if v controls [Kr,Ks], then v
also controls every subinterval of [Kr,Ks]. Further,
Condition (i) implies that v is linearly separable from
[Kr,Ks].

Lemma 6 Let (u, v, w) be a reversed triple of points
in S and let ab be the lid of the pocket K of v s.t.
(a, v, b) ∈ φ. If uw separates v from ab, then the
order <v is the same as the radial order around v for
[u, a] and for [b, w].

Proof. We prove the statement for [u, a], as the ar-
gument for [b, w] follows by symmetry. Let C be the
part of ∂P defined by the interval [u, a]. Since uw sep-
arates v from ab and thus intersects K twice, its only
intersection with C is at u. Hence, any line through v
crossing C has exactly one ray starting at v crossing C.
Suppose there exists a line ` through v s.t. the ray r
crossing C has a crossing with C where it enters P .
We claim that a perturbation of ` is a 6-stabber of P ,
contradicting 2-convexity. Let r′ be the complement
of r on `.

Suppose first that r enters the interior of P at v.
Then r intersects ∂P in at least three points other than
v. Since ab is separated from v by uw, r′ crosses ∂P
in a point not on the pocket K. Thus, if r′ leaves P

at v, then ` is a 6-stabber. If r′ does not leave P
at v, then ` supports ∂P at v, in which case there is a
perturbation of ` that is a 6-stabber.

Suppose now that r leaves P at v. Since ab is an
edge of the convex hull of S and r crosses C, r cannot
cross ab. Hence, it enters P again at the pocket K,
implying that there are at least four points other than v
where r crosses ∂P . The fact that r′ intersects ∂P in
a point not on C makes ` a 6-stabber.

Therefore, there is no ray starting at v entering P
at C, which completes the proof. �

Lemma 7 Let Ki,Kj , and Kl be pockets in a se-
quence of pockets that is controlled by a point p ∈ S.
Let (u, v, w) be a reversed triple of points from S such
that u, v, and w are contained in Ki, Kj , and Kl, re-
spectively. Then v controls the intervals [Ki+1,Kj−2]
and [Kj+2,Kl−1], provided that uw separates v from
the endpoints of Kj .

Lemma 8 Let [Kr,Kr+3d+3] be an interval con-
trolled by some point p ∈ S. Then there is a subinter-
val of [Kr,Kr+3d+3] of length d controlled by a point
of a pocket that is contained in [Kr,Kr+3d+3].

Let H be a hole in S. If H contains at most one
point from every pocket of S, then H is transversal.
We say that an interval [Kr,Ks] of pockets contains
a hole H if every vertex of H is contained in some
pocket of the interval [Kr,Ks]. We call a hole H nice,
if there is no reversed triple of vertices of H.

Lemma 9 For every integer k ≥ 2, let [Kr,Ks] be
an interval of pockets that contains a nice convex
transversal (k − 1)-hole. If a point p of S controls
[Kr,Ks], then there is a pocket K containing p such
that the intervals [Kr,K] and [K,Ks] contain a nice
convex transversal k-hole.

First, we prove the following lemma and then we
show how it implies Theorem 4.

Lemma 10 For every positive integer k and every
interval [Kr,Ks] of pockets, if the length of [Kr,Ks]
is at least 2 · 3k − 2 and [Kr,Ks] is controlled by
some point of S, then [Kr,Ks] contains a nice convex
transversal k-hole.

Proof. We prove the lemma by induction on k. For
k = 1, the lemma follows from the fact that every
interval of length 1 contains a 1-hole. For the induction
step, let k > 1. For d := 2 · 3k−1 − 2, let [Kr,Ks] be
the interval of length at least 3d+ 4 = 2 · 3k− 2 that is
controlled from some point of S. By Lemma 8, there
is a point q contained in a pocket from [Kr,Ks] such
that q controls a subinterval [Ki,Kj ] of [Kr,Ks] with
length at least d. Using the induction hypothesis, it
follows that [Ki,Kj ] contains a nice convex transversal
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(k − 1)-hole H. By Lemma 9, the hole H can be
extended to a nice convex transversal k-hole contained
in [Kr,Ks]. �

Proof of Theorem 4. To show that Lemma 10
implies Theorem 4, we prove that in every 2-convex
point set S of size n there is a convex k-hole for k ≥
log n/3, or we have an interval of length Ω(n/ log3 n)
that is controlled by a point from S. In the latter case
we then apply Lemma 10 and obtain a convex k-hole
with k ≥ c log n for an absolute constant c > 0.

First, assume that there is a pocket K = 〈p0, . . . , pt〉
in P with t ≥ log n in P . By Lemma 1, the
pocket K can be partitioned into three chains C1 =
〈p0, p1, . . . , pr〉, C2 = 〈pr+1, . . . , ps〉, and C3 =
〈ps+1, . . . , pt〉 for 0 ≤ r ≤ s < t, such that all ver-
tices in C1 and C3 are convex in P , while all vertices
in C2 are reflex. Since K contains at least log n ver-
tices, at least one of the chains C1, C2, and C3 contains
at least log n/3 vertices. For some i ∈ {1, 2, 3}, let
Ci be such a chain. By Lemma 2, the vertices of Ci

are vertices of a convex k-hole for k ≥ log n/3. See
Figure 3 (a).
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Figure 3: (a) A large pocket gives a large hole. (b) If
no point of S interferes, then Q is a hole. (c) If there
is a point inside Q, then we use Lemma 7 and apply
Lemma 10.

In the rest of the proof we thus assume that every
pocket of P contains less than log n vertices. In par-
ticular, there are more than n/ log n pockets in P and
CH(S) has more than n/ log n vertices. By Lemma 5,

there are at least m :=
⌈

n
3 logn

⌉
− 1 points that are

“controlled” by a point p (that is not necessarily in S).
We call these points the initial interval. However, by
the discussion after Lemma 5 we can assume for the
following that p ∈ S. Let q0, . . . , qlogn−1 be vertices
of CH(S) traced in counterclockwise direction along
the boundary of P in the initial interval such that the
points in each interval [qi, qi+1] for i = 0, . . . , log n− 1
(indices taken modulo log n) form at least m/ log2 n
pockets. Clearly, if the polygon Q with the vertices
q0, . . . , qlogn−1 is a hole, then we are done; see Fig-
ure 3 (b). Otherwise there is a point q in the interior
of Q and we have a reversed triple (qi, q, qj) for some
i, j ∈ {0, . . . , log n−1}. Let K, K ′, and K ′′ be pockets
containing qi, q, and qj , respectively. The endpoints
of K ′ are separated from q by qiqj , as qi and qj are
vertices of CH(S); See Figure 3 (c). By Lemma 7,
the point q controls the interval of pockets that are
between K and K ′ and between K ′ and K ′′. From the

choice of Q, at least one of these intervals has length
at least m/(2 log2 n) = Ω(n/ log3 n). �

4 An upper-bound construction

Theorem 11 For any n there exists a 2-convex point
set S of size n such that all convex holes it contains
have size O(log n).

Proof. The set is constructed recursively, following
the idea shown in Figure 4. We define Si = Li ∪Ri ∪
{ci}, where Li and Ri are flattened enough copies
of Si−1. For i = 0, we set L0 = R0 = ∅.

An empty convex hole K intersecting Ri cannot
intersect both the left and right part of Li, and this is
true for every level in the recursion. Of course, an ana-
logus statement is true if K intersects Li. Therefore,
|K| = O(log n). �

Si

ci

Li Ri

Figure 4: Recursive operation for the construction of
an upper bound example.
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