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Abstract. We study the problem of embedding graphs in the plane as
good geometric spanners. That is, for a graph G, the goal is to construct
a straight-line drawing Γ of G in the plane such that, for any two vertices
u and v of G, the ratio between the minimum length of any path from u
to v and the Euclidean distance between u and v is small. The maximum
such ratio, over all pairs of vertices of G, is the spanning ratio of Γ .
First, we show that deciding whether a graph admits a straight-line draw-
ing with spanning ratio 1, a proper straight-line drawing with spanning
ratio 1, and a planar straight-line drawing with spanning ratio 1 are NP-
complete, ∃R-complete, and linear-time solvable problems, respectively.
Second, we prove that, for every ε > 0, every (planar) graph admits a
proper (resp. planar) straight-line drawing with spanning ratio smaller
than 1+ ε. Third, we note that our drawings with spanning ratio smaller
than 1 + ε have large edge-length ratio, that is, the ratio between the
lengths of the longest and of the shortest edge is exponential. We show
that this is sometimes unavoidable. More generally, we identify having
bounded toughness as the criterion that distinguishes graphs that ad-
mit straight-line drawings with constant spanning ratio and polynomial
edge-length ratio from graphs that do not.

1 Introduction

Let P be a set of points in the plane and let G be a geometric graph whose vertex
set is P . We say that G is a t-spanner if, for every pair of points p and q in P ,
there exists a path from p to q in G whose total edge length is at most t times
the Euclidean distance ‖pq‖ between p and q. The spanning ratio of G is the
smallest real number t such that G is a t-spanner. The problem of constructing,
for a given set P of points in the plane, a sparse (and possibly planar) geometric
graph whose vertex set is P and whose spanning ratio is small has received
considerable attention; see, e.g., [11,12,13,14,17,20,22,38,49,50].

In this paper we look at the construction of geometric graphs with small
spanning ratio from a different perspective. Namely, the problem we consider is
whether it is possible to embed a given abstract graph in the plane as a geometric
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graph with small spanning ratio. That is, for a given graph, we want to construct
a straight-line drawing with small spanning ratio, where the spanning ratio of
a straight-line drawing is the maximum ratio, over all pairs of vertices u and v,
between the total edge length of a shortest path from u to v and ‖uv‖.

Graph embeddings in which every pair of vertices is connected by a path sat-
isfying certain geometric properties have been the subject of intensive research.
As a notorious example, a greedy drawing of a graph [5,7,18,23,30,35,39,41,42,47]
is such that, for every pair of vertices u and v, there is a path from u to v that
monotonically decreases the distance to v at every vertex. Further examples
are self-approaching and increasing-chord drawings [3,19,40], angle-monotone
drawings [9,19,36], monotone drawings [4,6,28,29,31,34] and strongly-monotone
drawings [4,24,34]. While greedy, monotone, and strongly-monotone drawings
might have unbounded spanning ratio, self-approaching, increasing-chord, and
angle-monotone drawings are known to have spanning ratio at most 5.34 [32],
at most 2.1 [43], and at most 1.42 [9], respectively. However, not all graphs, and
not even all trees [35,39], admit such drawings.

Our results are the following.
First, we look at straight-line drawings with spanning ratio equal to 1, which

is clearly the smallest attainable value by any graph. We prove that deciding
whether a graph admits a straight-line drawing, a proper straight-line drawing
(in which no vertex-vertex or vertex-edge overlaps are allowed), and a planar
straight-line drawing with spanning ratio 1 are NP-complete, ∃R-complete, and
linear-time solvable problems, respectively.

Second, we show that allowing each shortest path to have a total edge length
slightly larger than the Euclidean distance between its end-vertices makes it
possible to draw all graphs. Namely, for every ε > 0, every graph has a proper
straight-line drawing with spanning ratio smaller than 1 + ε and every planar
graph has a planar straight-line drawing with spanning ratio smaller than 1 + ε.

Third, we address the issue that our drawings with spanning ratio smaller
than 1 + ε have poor resolution. That is, the edge-length ratio of these drawings,
i.e., the ratio between the lengths of the longest and of the shortest edge, might
be super-polynomial in the number of vertices of the graph. We show that this
is sometimes unavoidable, as stars have exponential edge-length ratio in any
straight-line drawing with constant spanning ratio. More in general, we present
graph families for which any straight-line drawing with constant spanning ratio
has edge-length ratio which is exponential in the inverse of the toughness. On the
other hand, we prove that graph families with constant toughness admit proper
straight-line drawings with polynomial edge-length ratio and constant spanning
ratio. Finally, we prove that bounded-degree trees admit planar straight-line
drawings with polynomial edge-length ratio and constant spanning ratio.

Full versions of sketched or omitted proofs can be found in the Appendix.

2 Preliminaries

For a graph G and a set S of vertices of G, we denote by G − S the graph
obtained from G by removing the vertices in S and their incident edges. The



subgraph of G induced by S is the graph whose vertex set is S and whose edge
set consists of every edge of G that has both its end-vertices in S. The toughness
of a graph G is the largest real number t > 0 such that, for any set S such that
G− S consists of k ≥ 2 connected components, we have |S| ≥ t · k.

A drawing of a graph maps each vertex to a point in the plane and each edge
to a Jordan arc between its end-vertices. A drawing is straight-line if it maps
each edge to a straight-line segment. Let Γ be a straight-line drawing of a graph
G. The length of a path in Γ is the sum of the lengths of its edges. We denote by
‖uv‖Γ (by πΓ (u, v)) the Euclidean distance (resp. the length of a shortest path)
between two vertices u and v in Γ ; we sometimes drop the subscript Γ when the
drawing we refer to is clear from the context. The spanning ratio of Γ is the real

value max
u,v

πΓ (u,v)
‖uv‖Γ , where the maximum is over all pairs of vertices u and v of G.

A drawing is planar if no two edges intersect, except at common end-vertices.
A planar drawing partitions the plane into connected regions, called faces; the
bounded faces are internal, while the unbounded face is the outer face. A graph
is planar if it admits a planar drawing. A planar graph is maximal if adding
any edge to it violates its planarity. In any planar drawing of a maximal planar
graph every face is delimited by a 3-cycle. The bounding box B(Γ ) of a drawing
Γ is the smallest axis-parallel rectangle containing Γ in the closure of its interior.
The width and height of Γ are the width and height of B(Γ ).

3 Drawings with Spanning Ratio 1

In this section we study drawings with spanning ratio equal to 1.

Theorem 1. Recognizing whether a graph admits a straight-line drawing with
spanning ratio equal to 1 is an NP-complete problem.

Proof sketch: The core of the proof consists of showing that a graph has
a straight-line drawing with spanning ratio 1 if and only if it contains a Hamil-
tonian path (then the theorem follows from the NP-completeness of the prob-
lem of deciding whether a graph contains a Hamiltonian path [26,27]). In par-
ticular, let Γ be a straight-line drawing with spanning ratio 1 of a graph G
and assume w.l.o.g. that no two vertices have the same x-coordinate in Γ . Let
v1, v2, . . . , vn be the vertices of G, ordered by increasing x-coordinates. Then,
for i = 1, 2, . . . , n − 1, we have that G contains the edge vivi+1, as any other
path between vi and vi+1 would be longer than ‖vivi+1‖. Hence, G contains the
Hamiltonian path (v1, v2, . . . , vn). �

The existential theory of the reals problem asks whether real values exist for n
variables such that a quantifier-free formula, consisting of polynomial equalities
and inequalities on such variables, is satisfied. The class of problems that are
complete for the existential theory of the reals is denoted by ∃R [44]. It is known
that NP ⊆ ∃R ⊆ PSPACE [15], however it is not known whether ∃R ⊆ NP.
Many geometric problems are ∃R-complete, see, e.g., [1,37].

Theorem 2. Recognizing whether a graph admits a proper straight-line drawing
with spanning ratio equal to 1 is an ∃R-complete problem.



(a)

(b)

(c)

(d)

(e)

Fig. 1: The five graph classes defined in [21].

Proof sketch: Let Γ be a proper straight-line drawing with spanning ratio
1 of a graph G. Let S be the set of points at which the vertices of G are drawn.
It is easy to prove that the point visibility graph GS of S is isomorphic to G,
where the point visibility graph GP of a point set P ⊂ R2 has a vertex for each
point p ∈ P and has an edge between two vertices if and only if the straight-line
segment between the corresponding points does not contain any point of P in
its interior. The theorem follows from the fact that recognizing point visibility
graphs is a problem that is ∃R-complete [16]. �

Theorem 3. Recognizing whether a graph admits a planar straight-line drawing
with spanning ratio equal to 1 is a linear-time solvable problem.

Proof: Dujmović et al. [21] characterized the graphs that admit a planar straight-
line drawing with a straight-line segment between every two vertices as the
graphs in the five graph classes in Figure 1. Since a straight-line drawing has
spanning ratio 1 if and only if every two vertices are connected by a straight-line
segment, the theorem follows from the fact that recognizing whether a graph
belongs to such five graph classes can be easily done in linear time. �

4 Drawings with Spanning Ratio 1 + ε

In this section we study straight-line drawings with spanning ratio arbitrarily
close to 1. Most of the section is devoted to a proof of the following result.

Theorem 4. For every ε > 0, every connected planar graph admits a planar
straight-line drawing with spanning ratio smaller than 1 + ε.

Let G be an n-vertex maximal planar graph with n ≥ 3, let G be a planar
drawing of G, and let (u, v, z) be the cycle delimiting the outer face of G in G.
A canonical ordering [8,25,33] for G is a total ordering [v1, . . . , vn] of its vertex
set such that the following hold for k = 3, . . . , n: (i) v1 = u, v2 = v, and vn = z;
(ii) the subgraph Gk of G induced by v1, . . . , vk is 2-connected and the cycle Ck
delimiting its outer face in G consists of the edge v1v2 and of a path Pk between
v1 and v2; and (iii) vk is incident to the outer face of Gk in G. Theorem 4 is
implied by the following two lemmata.

Lemma 1. Let H be an n-vertex connected planar graph. There exist an n-vertex
maximal planar graph G and a canonical ordering [v1, . . . , vn] for G such that, for
each k ∈ {1, . . . , n}, the subgraph Hk of H induced by {v1, . . . , vk} is connected.
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Fig. 2: Construction for the case in which a(v) = b(v).

Proof sketch: For each k = 2, . . . , n, we let Gk be the subgraph of G induced
by v1, . . . , vk and Lk be the graph composed of Gk and of the vertices and edges
of H that are not in Gk. Further, we define v1, . . . , vk and Gk so that Hk is
connected, Gk is 2-connected, and Lk admits a planar drawing Lk such that:

1. the outer face of the planar drawing Gk of Gk in Lk is delimited by a cycle
Ck composed of the edge v1v2 and of a path Pk between v1 and v2;

2. vk is incident to the outer face of Gk;
3. every internal face of Gk is delimited by a 3-cycle; and
4. the vertices and edges of H that are not in Gk lie in the outer face of Gk.

If k = 2, then construct any planar drawing L2 of H and define v1 and v2 as
the end-vertices of any edge v1v2 incident to the outer face of L2. Properties 1–4
are then trivially satisfied (in this case the path P2 is the single edge v1v2).

If 2 < k < n, assume that v1, . . . , vk−1 and Gk−1 have been defined so that
Hk−1 is connected, Gk−1 is 2-connected, and Lk−1 admits a planar drawing Lk−1
satisfying Properties 1–4. Let Pk−1 = (u = w1, w2, . . . , wx = v), where x ≥ 2.

Consider any vertex v in Lk−1 \ Gk−1. By Properties 1 and 4 of Lk−1, all
the neighbors of v in Gk−1 lie in Pk−1. We say that v is a candidate (to be
designated as vk) vertex if, for some 1 ≤ i ≤ x, there exists an edge wiv such
that wiv immediately follows the edge wiwi−1 in clockwise order around wi or
immediately follows the edge wiwi+1 in counter-clockwise order around wi.

For each candidate vertex v, let wa(v) and wb(v) be the neighbors of v in
Pk−1 such that a(v) is minimum and b(v) is maximum (possibly a(v) = b(v)). If
a(v) < b(v), let the reference cycle C(v) of v be composed of the edges wa(v)v
and wb(v)v and of the subpath of Pk−1 between wa(v) and wb(v). Define the depth
of v as 0 if a(v) = b(v) or as the number of candidate vertices that lie inside C(v)
in Lk−1 otherwise. We select as vk := v any candidate vertex v with depth 0.

If a(v) = b(v), as in Figure 2, assume that wa(v)v immediately follows the
edge wa(v)wa(v)+1 in counter-clockwise order around wa(v); the other case is
symmetric. Define Gk as Gk−1 plus the vertex v and the edges wa(v)v and
wa(v)+1v. Further, construct Lk by drawing the edge wa(v)+1v so that the cycle
(wa(v), wa(v)+1, v) does not contain any vertex or edge in its interior.

If a(v) < b(v), as in Figure 3, redraw each biconnected component of Lk−1
whose vertices different from v lie inside C(v) planarly so that it now lies outside
C(v); after this modification, no vertex of Lk−1 lies inside C(v). Then define Gk
as Gk−1 plus the vertex v and the edges wa(v)v, wa(v)+1v, . . . , wb(v)v. Further,
construct Lk by drawing the edges among wa(v)v, wa(v)+1v, . . . , wb(v)v not in H
so that they all lie inside C(v) and so that the edges wa(v)v, wa(v)+1v, . . . , wb(v)v
appear consecutively and in this counter-clockwise order around v.
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Fig. 3: Construction for the case in which a(v) < b(v).

In both cases, it is easy to see that Hk is connected, Gk is 2-connected, and
Lk satisfies Properties 1–4. See the Appendix for details.

If k = n, the construction is similar to the one described for the case 2 < k <
n, however further edges are added to Gn so to ensure that the outer face of Gn
is delimited by the 3-cycle (v1, v2, vn). Setting G := Gn concludes the proof. �

Lemma 2. For every k = 3, . . . , n and for every ε > 0, there exists a planar
straight-line drawing Γk of Gk such that: (1) the outer face of Γk is delimited
by the cycle Ck; further, the path Pk is x-monotone and lies above the edge uv,
except at u and v; and (2) the restriction Ξk of Γk to the vertices and edges of
Hk is a drawing with spanning ratio smaller than 1 + ε.

Proof sketch: The proof is by induction on k. The base case k = 3 is trivial.

D

wp
wq

Γk−1

vk

Fig. 4: Construction
of Γk from Γk−1.

Assume that, for some k = 4, . . . , n, a planar straight-
line drawing Γk−1 of Gk−1 has been constructed satisfying
Properties 1 and 2; see Figure 4. Let δ be the diameter of
a disk D enclosing Γk−1. We construct Γk from Γk−1 as
follows. Let Pk−1 = (u = w1, w2, . . . , wx = v). As proved
in [25], the neighbors of vk in Gk−1 are the vertices in a
sub-path (wp, . . . , wq) of Pk−1, where p < q. By Property 1
of Γk−1, we have x(wp) < x(wq). We then place vk at any
point in the plane satisfying the following conditions: (i)
x(wp) < x(vk) < x(wq); (ii) for every i = p, . . . , q − 1, the
y-coordinate of vk is larger than those of the intersection
points between the line through wiwi+1 and the vertical
lines through wp and wq; and (iii) the distance between
vk and the point of D closest to vk is a real value d > kδ

ε .
Since Pk is obtained from Pk−1 by substituting the

path (wp, wp+1, . . . , wq) with the path (wp, vk, wq), Condition (i) and the x-
monotonicity of Pk−1 imply that Pk is x-monotone. Condition (ii), the x-
monotonicity of Pk−1, and the planarity of Γk−1 imply that Γk is planar. We now
prove that the spanning ratio of Ξk is smaller than 1 + ε. Consider any two ver-

tices vi and vj . If i < k and j < k, then
πΞk (vi,vj)

‖vivj‖Ξk
≤ πΞk−1

(vi,vj)

‖vivj‖Ξk−1
< 1+ε. If i = k,

then ‖vkvj‖Ξk ≥ d, by Condition (iii). Consider the path P (vk, vj) composed
of any edge vkv` in Hk incident to vk (which exists since Hk is connected) and
of any path in Hk−1 between v` and vj (which exists since Hk−1 is connected).
The length of P (vk, vj) is at most d+ δ (by Condition (iii) and by the triangular



inequality, this is an upper bound on ‖vkv`‖Ξk) plus (k− 2) · δ (this is an upper

bound on the length of any path in Hk−1). Hence,
πΞk (vk,vj)

‖vkvj‖Ξk
< d+kδ

d < 1 + ε.

This completes the induction and the proof of the lemma. �

Lemmata 1 and 2 imply Theorem 4. Namely, for a connected planar graph
H, by Lemma 1 we can construct a maximal planar graph G that, by Lemma 2
(with k = n) and for every ε > 0, admits a planar straight-line drawing whose
restriction to H is a drawing with spanning ratio smaller than 1 + ε.

The following can be obtained by means of techniques similar to (and simpler
than) the ones in the proof of Theorem 4; the proof is presented in the Appendix.

Theorem 5. For every ε > 0, every connected graph admits a proper straight-
line drawing with spanning ratio smaller than 1 + ε.

5 Drawings with Small Spanning and Edge-Length Ratios

In this section we study straight-line drawings with small spanning ratio and
edge-length ratio. Our main result is the following.

Theorem 6. For every ε > 0 and every τ > 0, every n-vertex graph with tough-
ness τ admits a proper straight-line drawing whose spanning ratio is at most 1+ε

and whose edge-length ratio is in O
(
n

log2(2+d2/εe)
log2(2+d1/τe)−log2(1+d1/τe) · 1/ε

)
. Further, for

every 0 < τ < 1, there is a graph G with toughness τ whose every straight-line
drawing with spanning ratio at most s has edge-length ratio in 2Ω(1/(τ ·s2)).

In order to prove Theorem 6, we study straight-line drawings of bounded-
degree trees. This is because there is a strong connection between the toughness
of a graph and the existence of a spanning tree with bounded degree. Indeed, if
a graph G has toughness τ , then it has a spanning tree with maximum degree
d1/τe+2 [48]. Further, a tree has toughness equal to the inverse of its maximum
degree. We start by proving the following lower bound.

Theorem 7. For any s ≥ 1, any straight-line drawing with spanning ratio at
most s of a tree with a vertex of degree d has edge-length ratio in 2Ω(d/s2).

Proof: For any s ≥ 1, let Γ be any straight-line drawing of T with spanning
ratio at most s; refer to Figure 5(a). Let uT be a vertex of degree d. Assume
w.l.o.g. up to a scaling (which does not alter the edge-length ratio and the
spanning ratio of Γ ) that the length of the shortest edge incident to uT in Γ
is 1. For any integer i ≥ 0, let Ci be the circle centered at uT whose radius is
ri = 2i. Further, for any integer i > 0, let Ai be the closed annulus delimited
by Ci−1 and Ci. By assumption, no neighbor of uT lies inside the open disk
delimited by C0. We claim that, for any integer i > 0 and for some constant c,
there are at most c · s2 neighbors of uT inside Ai. This implies that at most
k · c · s2 neighbors of uT lie inside the closed disk delimited by Ck. Hence, if
d > k · c · s2, e.g., if k = bd−1c·s2 c, then there is a neighbor vT of uT outside Ck.

Then ‖uT vT ‖ > 2k ∈ 2Ω(d/s2). Hence, the theorem follows from the claim.
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Fig. 5: Illustration for the proof of Theorem 7.

It remains to prove the claim. For each neighbor u of uT inside Ai, let ∆u

be a closed disk such that: (i) u lies inside ∆u; (ii) ∆u lies inside Ai; and (iii)
the diameter of ∆u is δi = 2i−2/s. The existence of ∆u can be proved as follows.
Consider the circle Cu whose antipodal points are the intersection points of
Ci−1 and Ci with the ray from uT through u. Note that Cu lies inside Ai and
has diameter 2i−1 > δi = 2i−2/s. Then ∆u is any disk with diameter δi that
contains u and that lies inside the closed disk delimited by Cu.

Suppose, for a contradiction, that there exist two neighbors u and v of uT
inside Ai such that the disks ∆u and ∆v intersect. Then πΓ (u, v) ≥ 2i, since
both the edges uuT and vuT are longer than ri−1 = 2i−1. By the triangular

inequality, ||uv||Γ ≤ 2 · δi = 2i−1/s. Hence πΓ (u,v)
||uv||Γ ≥ 2s, while the spanning

ratio of Γ is at most s. This contradiction proves that, for any two neighbors u
and v of uT inside Ai, the disks ∆u and ∆v do not intersect. The area of Ai is
π · (r2i − r2i−1) = π · (22i − 22i−2) = 3π · (22i−2). Since each disk ∆u lying inside
Ai has area π · (22i−6/s2) and does not intersect any different disk ∆v, it follows

that Ai contains at most 3π·(22i−2)·s2
π·22i−6 = 48 · s2 distinct disks ∆u and hence at

most 48 · s2 neighbors of uT . This proves the claim and hence the theorem. �

Corollary 1. Let S be an n-vertex star. For any s ≥ 1, any straight-line drawing
of S with spanning ratio at most s has edge-length ratio in 2Ω(n/s2).

The lower bound of Theorem 6 follows from Theorem 7 and from the fact
that a tree with maximum degree d has toughness 1/d. On the other hand, the
upper bound of Theorem 6 is obtained by means of the following.

Theorem 8. For every ε > 0, every n-vertex tree T with maximum degree d
admits a proper straight-line drawing such that no three vertices are collinear, the
spanning ratio is at most 1+ε, the distance between any two vertices is at least 1,

and the width, the height, and the edge-length ratio are in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
.

Theorem 8 proves the upper bound in Theorem 6 and hence concludes its
proof. Namely, let G be an n-vertex graph with toughness τ and let ε > 0;
then G has a spanning tree T with maximum degree d = d1/τe+ 2 [48]. Apply
Theorem 8 to construct a straight-line drawing ΓT of T . Construct a straight-line
drawing ΓG of G from ΓT by drawing the edges of G not in T as straight-line
segments. Then ΓG is proper, as no three vertices are collinear in ΓT . Further,



the spanning ratio of ΓG is at most the one of ΓT , hence it is at most 1 + ε.

Finally, the edge-length ratio of ΓG is in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
, given that the

distance between any two vertices in ΓT (and hence in ΓG) is at least 1 and given

that the width and height of ΓT (and hence of ΓG) are in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
.

We defer the proof of Theorem 8 to the Appendix and present a proof of
Theorem 9, in which it is shown that trees with bounded maximum degree even
admit planar straight-line drawings with constant spanning ratio and polyno-
mial edge-length ratio. The cost of planarity is found in the dependence on the
maximum degree, which is worse than in Theorem 8.

Theorem 9. For every ε > 0, every n-vertex tree T with maximum degree d
admits a planar straight-line drawing whose spanning ratio is at most 1 + ε and

whose edge-length ratio is in O
(

(2n)2+(d−2)·log2(1+d 2ε e) · log2 n
)
.

Proof sketch: Let γ = d 2ε e. If d ≤ 2, then T is a path and the desired
drawing is trivially constructed. We can hence assume that d ≥ 3. Root T at
any leaf r; this ensures that every vertex of T has at most d − 1 children. In
order to avoid some technicalities in the upcoming algorithm, we also assume
that every non-leaf vertex of T has at least two children. This is obtained by
inserting a new child for each vertex of T with just one child; note that the size
of the tree, i.e., its number of vertices, is less than doubled by this modification.
We again call T the tree after this modification and by n its size.

Our construction is a “well-spaced” version of an algorithm by Shiloach [46].
We construct a planar straight-line drawing Γ of T in which (i) r is at the top-
left corner of B(Γ ), and (ii) for every vertex u of T , the path from u to r in T
is (non-strictly) xy-monotone.

If n = 1, then Γ is obtained by placing r at any point in the plane. If
n > 1, then let r1, . . . , rk be the children of r, where k ≤ d − 1, let T1, . . . , Tk
be the subtrees of T rooted at r1, . . . , rk, whose sizes are n1, . . . , nk, respec-
tively. Assume, w.l.o.g. up to a relabeling, that n1 ≤ · · · ≤ nk; hence, ni ≤ n/2
for i = 1, 2, . . . , k − 1. Refer to Figure 6. Place r at any point in the plane.
Inductively construct planar straight-line drawings Γ1, . . . , Γk of T1, . . . , Tk, re-
spectively. Position Γ1 so that r1 is on the same vertical line as r, one unit below
it; let d1 be the width of Γ1. Then, for i = 2, . . . , k, position Γi so that ri is one
unit below r and γ · (di−1 +log2 n) units to the right of the right side of B(Γi−1);
denote by di the width of the bounding box of the drawings Γ1, . . . , Γi. Finally,
move Γk one unit above, so that rk is on the same horizontal line as r.

We now analyze the properties of Γ . By construction Γ is a straight-line
drawing. The planarity of Γ is easily proved by exploiting the fact that ri is at
the top-left corner of B(Γi) and that r1, r2, . . . , rk−1 all lie one unit below r.

Height. Let h(n) be the maximum height of a drawing of an n-vertex tree
constructed by the algorithm. The same analysis as in [46] shows that h(n) ≤
log2 n, given that h(1) = 0 and h(n) ≤ max{h(n2 ) + 1, h(n− 1)} for n ≥ 2.

Spanning ratio. We prove that, for any two vertices u and v that do not

belong to the same subtree Ti, it holds true that πΓ (u,v)
‖uv‖Γ ≤

γ+2
γ . This suffices
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Fig. 6: Inductive construction of Γ . In this example k = 3.

to prove that the spanning ratio of Γ is at most γ+2
γ . Suppose w.l.o.g. that u

belongs to a subtree Ti and v belongs to a subtree Tj , with i < j.
First, we have ‖uv‖ ≥ xv + γ · (dj−1 + log2 n), where xv denotes the distance

between v and the left side of B(Γj), while the second term is the distance
between the left side of B(Γj) and the right side of B(Γj−1).

Clearly, we have πΓ (u, v) = πΓ (u, r) + πΓ (r, v). The path between u and
r (between v and r) is xy-monotone, hence πΓ (u, r) (resp. πΓ (v, r)) is upper
bounded by the horizontal distance plus the vertical distance between u and r
(resp. between v and r). The vertical distance between u and r (between v and
r) is at most log2(n), since the height of Γ is at most log2(n). The horizontal
distance between u and r is at most di ≤ dj−1, while the one between v and r
is xv + γ · (dj−1 + log2 n) + dj−1. Hence, πΓ (u, v) ≤ (dj−1 + log2 n) + (xv + γ ·
(dj−1 + log2 n) + dj−1 + log2 n) = xv + (γ + 2) · (dj−1 + log2 n). Thus:

πΓ (u, v)

‖uv‖Γ
≤

(γ + 2) · (xvγ + dj−1 + log2 n)

γ · (xvγ + dj−1 + log2 n)
≤ γ + 2

γ
≤ 1 + ε.

Width. Let w1, . . . , wk be the widths of Γ1, . . . , Γk. By construction, d1 = w1

and, for each j = 2, . . . , k, we have dj = dj−1 + γ · (dj−1 + log2 n) + wj =
(γ + 1) · dj−1 + γ · log2 n + wj . Hence, by induction on j, we have dj = (γ +
1)j−1 ·w1 + (γ + 1)j−2 ·w2 + . . .+ (γ + 1) ·wj−1 +wj + ((γ + 1)j−1 − 1) · log2 n.
In particular, the width of Γ is equal to dk and hence to:

k∑
i=1

((γ + 1)k−i · wi) + ((γ + 1)k−1 − 1) · log2 n. (1)

Let w(n) be the maximum width of a drawing of an n-vertex tree constructed
by the algorithm. By construction w(1) = 0. For n ≥ 2, by Equality 1, we get:

w(n) ≤ (γ + 1)d−2 ·
k−1∑
i=1

w(n1) + w(nk) + (γ + 1)d−2 · log2 n. (2)

Recall that n1, . . . , nk−1 ≤ n/2. On the other hand, nk might be larger than
n/2; if that is so, Inequality 2 is used to replace the term w(nk) into Inequality 2
itself. The repetition of this substitution eventually results in the following (see
the Appendix for details):

w(n) ≤ (γ + 1)d−2 ·
∑
i,j

w(ni,j) + (γ + 1)d−2 · (n− 1) · log2 n, (3)



where the terms ni,j denote the sizes of distinct subtrees of T (hence
∑
ni,j ≤

n− 1), each of which has at most n/2 nodes (hence ni,j ≤ n/2).

We prove, by induction on n, that w(n) ≤ f(n) :=
(
(γ + 1)d−2

)log2 n ·
n2 · log2 n. This is trivial when n = 1, given that w(1) = 0. Assume now
that n > 1. By Inequality 3 and by induction, we get w(n) ≤ (γ + 1)d−2 ·∑
i,j

((
(γ + 1)d−2

)log2 ni,j · n2i,j · log2 ni,j

)
+(γ+1)d−2 ·(n−1) · log2 n. Since ni,j ≤

n/2 < n, we get w(n) ≤ (γ + 1)d−2 ·
(
(γ + 1)d−2

)log2(n/2) ·
∑
i,j

n2i,j · log2 n+ (γ +

1)d−2 ·(n−1)·log2 n =
(
(γ + 1)d−2

)log2 n ·
∑
i,j

n2i,j ·log2 n+(γ+1)d−2 ·(n−1)·log2 n.

Since
∑
ni,j ≤ n−1, we have

∑
i,j

n2i,j ≤ (n−1)2. Thus, w(n) ≤
(
(γ + 1)d−2

)log2 n ·

((n− 1)2 + (n− 1)) · log2 n ≤
(
(γ + 1)d−2

)log2 n · n2 · log2 n. This completes the
induction and the analysis of the width of Γ .

Edge-length ratio. By construction, the length of each edge connecting r
to a child is larger than or equal to 1, hence the same is true for every edge of
T . Thus, the edge-length ratio of Γ is upper bounded by the maximum length
of an edge of T . In turn, this is at most the sum of the height plus the width

of Γ , which is in O
((

(γ + 1)d−2
)log2 n · n2 · log2 n

)
, as proved above. The factor(

(γ + 1)d−2
)log2 n can be rewritten as n(d−2)·log2(γ+1). The bound claimed in the

statement is then obtained by substituting γ = d 2ε e and by observing that the
value of n used in the calculations is at most twice the size of the initial tree. �

6 Open Problems

Our research raises a number of open problems which might be worth studying.
First, it would be interesting to tighten the bounds in Theorem 6 relating the

toughness to the edge-length ratio of a drawing with constant spanning ratio.
Second, there is still much to be understood about the edge-length ratio of

planar straight-line drawings with constant spanning ratio. Theorem 9 shows
that planar straight-line drawings with constant spanning ratio and polynomial
edge-length ratio exist for bounded-degree trees. We also observe that every n-
vertex 2-connected outerplanar graph G admits a planar straight-line drawing
with spanning ratio at most

√
2 and edge-length ratio in O(n1.5); this can be

achieved by placing the vertices of G, in the order given by the Hamiltonian
cycle of G, at the vertices of a lattice xy-monotone polygonal curve; see, e.g., [2].
Further, Schnyder drawings are known to be 2-spanners [12]. Hence, n-vertex
3-connected planar graphs admit planar straight-line drawings with spanning
ratio at most 2 and edge-length ratio in O(n) [10,45]; do they admit planar
straight-line drawings with spanning ratio smaller than 2 (and possibly arbitrar-
ily close to 1) and polynomial edge-length ratio? Can Theorem 6 be extended
to prove that a planar straight-line drawing with constant spanning ratio and
polynomial edge-length ratio exists for planar graphs with bounded toughness?
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Abstract. We study the problem of embedding graphs in the plane as good geometric spanners. That
is, for a graph G, the goal is to construct a straight-line drawing Γ of G in the plane such that, for
any two vertices u and v of G, the ratio between the minimum length of any path from u to v and the
Euclidean distance between u and v is small. The maximum such ratio, over all pairs of vertices of G,
is the spanning ratio of Γ .
First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio 1, a
proper straight-line drawing with spanning ratio 1, and a planar straight-line drawing with spanning
ratio 1 are NP-complete, ∃R-complete, and linear-time solvable problems, respectively, where a drawing
is proper if no two vertices overlap and no edge overlaps a vertex.
Second, we show that moving from spanning ratio 1 to spanning ratio 1 + ε allows us to draw every
graph. Namely, we prove that, for every ε > 0, every (planar) graph admits a proper (resp. planar)
straight-line drawing with spanning ratio smaller than 1 + ε.
Third, our drawings with spanning ratio smaller than 1 + ε have large edge-length ratio, that is, the
ratio between the length of the longest edge and the length of the shortest edge is exponential. We
show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the
criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and
polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line
drawing with constant spanning ratio.

1 Introduction

Let P be a set of points in the plane and let G be a geometric graph whose vertex set is P . We say that
G is a t-spanner if, for every pair of points p and q in P , there exists a path from p to q in G whose total
edge length is at most t times the Euclidean distance ‖pq‖ between p and q. The spanning ratio of G is the
smallest real number t such that G is a t-spanner. The problem of constructing, for a given set P of points
in the plane, a sparse (and possibly planar) geometric graph whose vertex set is P and whose spanning ratio
is small has received considerable attention; see, e.g., [12,13,14,18,21,23,39]. We cite here the fact that the
Delaunay triangulation of a point set has spanning ratio at least 1.593 [52] and at most 1.998 [51], and refer
to the survey of Bose and Smid [15] for more results.

In this paper we look at the construction of geometric graphs with small spanning ratio from a different
perspective. Namely, the problem we consider is whether it is possible to embed a given abstract graph in

? This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No 734922, the Natural Sciences and Engineering Research
Council of Canada, and by MIUR Projects “MODE” under PRIN 20157EFM5C and “AHeAD” under PRIN
20174LF3T8.



the plane as a geometric graph with small spanning ratio. That is, for a given graph, we want to construct
a straight-line drawing with small spanning ratio, where the spanning ratio of a straight-line drawing is the
maximum ratio, over all pairs of vertices u and v, between the total edge length of a shortest path from u
to v and ‖uv‖.

Graph embeddings in which every pair of vertices is connected by a path satisfying certain geometric
properties have been the subject of intensive research. As the most notorious example, a greedy drawing of
a graph [5,7,19,24,31,36,40,42,43,49] is such that, for every pair of vertices u and v, there is a path from u
to v that monotonically decreases the distance to v at every vertex. More restricted than greedy drawings
are self-approaching and increasing-chord drawings [3,20,41]. In a self-approaching drawing, for every pair
of vertices u and v, there is a self-approaching path from u to v, i.e., a path P such that ‖ac‖ > ‖bc‖,
for any three points a, b, and c in this order along P ; in an increasing-chord drawing, for every pair of
vertices u and v, there is a path from u to v which is self-approaching both from u to v and from v to
u. Even more restricted are angle-monotone drawings [10,20,37] in which, for every pair of vertices u and
v, there is a path from u to v such that the angles of any two edges of the path differ by at most 90◦.
Finally, monotone drawings [4,6,29,30,32,35] and strongly-monotone drawings [4,25,35] require, for every
pair of vertices u and v, that a path from u to v exists that is monotone with respect to some direction
or with respect to the direction of the straight line through u and v, respectively. While greedy, monotone,
and strongly-monotone drawings might have unbounded spanning ratio, self-approaching, increasing-chord,
and angle-monotone drawings are known to have spanning ratio at most 5.34 [33], at most 2.1 [44], and at
most 1.42 [10], respectively. However, not all graphs, and not even all trees [36,40], admit self-approaching,
increasing-chord, or angle-monotone drawings.

Our results are the following.

– First, we look at straight-line drawings with spanning ratio equal to 1, which is clearly the smallest
attainable value by any graph. We prove that deciding whether a graph admits a straight-line drawing,
a proper straight-line drawing (in which no vertex-vertex or vertex-edge overlaps are allowed), and
a planar straight-line drawing with spanning ratio 1 are NP-complete, ∃R-complete, and linear-time
solvable problems, respectively.

– Second, we show that allowing each shortest path to have a total edge length slightly larger than the
Euclidean distance between its end-vertices makes it possible to draw all graphs. Namely, we prove that,
for every ε > 0, every graph admits a proper straight-line drawing with spanning ratio smaller than 1 + ε
and every planar graph admits a planar straight-line drawing with spanning ratio smaller than 1 + ε.

– Third, we address the issue that our drawings with spanning ratio smaller than 1+ε have poor resolution.
That is, the edge-length ratio of these drawings, i.e., the ratio between the lengths of the longest and of
the shortest edge, might be super-polynomial in the number of vertices of the graph. We show that this
is sometimes unavoidable, as stars have exponential edge-length ratio in any straight-line drawing with
constant spanning ratio. More in general, we show that there exist graph families such that any straight-
line drawing with constant spanning ratio has edge-length ratio which is exponential in the inverse of
the toughness. On the other hand, we prove that graph families with constant toughness admit proper
straight-line drawings with polynomial edge-length ratio and constant spanning ratio. Finally, we prove
that trees with bounded degree admit planar straight-line drawings with polynomial edge-length ratio
and constant spanning ratio.

2 Preliminaries

For a graph G and a set S of vertices of G, we denote by G − S the graph obtained from G by removing
the vertices in S and their incident edges. The subgraph of G induced by S is the graph whose vertex set
is S and whose edge set consists of every edge of G that has both its end-vertices in S. For a vertex v, a
{v}-bridge of G is the subgraph of G induced by v and by the vertices of a connected component of G−{v}.
The toughness of a graph G is the largest real number t > 0 such that, for every integer k ≥ 2, G cannot be
split into k connected components by the removal of fewer than t · k vertices; that is, for any set S such that
G− S consists of k ≥ 2 connected components, we have |S| ≥ t · k.
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A drawing of a graph maps each vertex to a distinct point in the plane and each edge to a Jordan arc
between its end-vertices. A drawing is straight-line if it maps each edge to a straight-line segment. Let Γ be a
straight-line drawing of a graph G. The length of a path in Γ is the sum of the lengths of its edges. We denote
by ‖uv‖Γ (by πΓ (u, v)) the Euclidean distance (resp. the length of a shortest path) between two vertices u
and v in Γ ; we sometimes drop the subscript Γ when the drawing we refer to is clear from the context. The

spanning ratio of Γ is the real value max
u,v

πΓ (u,v)
‖uv‖Γ , where the maximum is over all pairs of vertices u and v

of G.
A drawing is planar if no two edges intersect, except at common end-vertices. A planar drawing partitions

the plane into connected regions, called faces; the bounded faces are internal, while the unbounded face is
the outer face. A graph is planar if it admits a planar drawing. A planar graph is maximal if adding any
edge to it violates its planarity. In any planar drawing of a maximal planar graph every face is delimited by
a 3-cycle.

The bounding box B(Γ ) of a drawing Γ is the smallest axis-parallel rectangle containing Γ in the closure
of its interior. We denote by Bl(Γ ) and Br(Γ ) the left and right side of B(Γ ), respectively. The width and
height of Γ are the width and height of B(Γ ).

3 Drawings with Spanning Ratio 1

In this section we study straight-line drawings with spanning ratio equal to 1. We characterize the graphs that
admit straight-line drawings, proper straight-line drawings, and planar straight-line drawings with spanning
ratio equal to 1 and, consequently, derive results on the complexity of recognizing such graphs. We start
with the following.

Lemma 1. A graph admits a straight-line drawing with spanning ratio equal to 1 if and only if it contains
a Hamiltonian path.

Proof: (=⇒) Suppose that a graph G admits a straight-line drawing Γ with spanning ratio 1. Assume,
w.l.o.g. up to a rotation of the Cartesian axes, that no two vertices of G have the same x-coordinate in Γ .
Let v1, v2, . . . , vn be the vertices of G, ordered by increasing x-coordinates. Then, for i = 1, 2, . . . , n − 1,
we have that G contains the edge vivi+1, as otherwise any path between vi and vi+1 would be longer than
‖vivi+1‖. Hence, G contains the Hamiltonian path (v1, v2, . . . , vn).

(⇐=) A straight-line drawing with spanning ratio 1 of a graph containing a Hamiltonian path (v1, v2, . . . , vn)
can be constructed by placing vi at (i, 0), for i = 1, . . . , n. �

Theorem 1. Recognizing whether a graph admits a straight-line drawing with spanning ratio equal to 1 is
an NP-complete problem.

Proof: The theorem follows by Lemma 1 and from the fact that deciding whether a graph contains a
Hamiltonian path is an NP-complete problem [27,28]. �

A graph G is a point visibility graph if there exists a finite point set P ⊂ R2 such that: (i) G has a vertex
for each point in P ; and (ii) G has an edge between two vertices if and only if the straight-line segment
between the corresponding points does not contain any point of P in its interior; see [9, Chapter 15]. We
have the following.

Lemma 2. A graph admits a proper straight-line drawing with spanning ratio equal to 1 if and only if it is
a point visibility graph.

Proof: (=⇒) Suppose that a graph G admits a proper straight-line drawing Γ with spanning ratio 1.
Let vΓ be the point at which a vertex v of G is drawn in Γ . Let P := {vΓ ∈ R2|v ∈ V (G)} and let GP be
the point visibility graph of P . We claim that an edge uv belongs to G if and only if the edge uΓ vΓ belongs
to GP ; the claim implies that GP is isomorphic to G and hence that G is a point visibility graph. First, if uv
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belongs to G, then Γ contains the straight-line segment uΓ vΓ . Since Γ is proper, no vertex of G lies in the
interior of uΓ vΓ , hence GP contains the edge uΓ vΓ . Conversely, if GP contains the edge uΓ vΓ , then no point
in P lies in the interior of the straight-line segment uΓ vΓ . Hence, the edge uv belongs to G, as otherwise the
length of any path between u and v would be larger than ‖uv‖Γ .

(⇐=) Suppose that a graph G is the visibility graph of a point set P . For any point p ∈ P , let vp be the
corresponding vertex of G. Let Γ be the straight-line drawing of G that maps each vertex vp to the point
p. Consider any edge vpvq of G. No vertex vr lies in the interior of the straight-line segment pq in Γ , as
otherwise vpvq would not belong to G; it follows that Γ is proper. Further, consider any two vertices vp and
vq of G and let vp = vr1 , vr2 , . . . , vrk = vq be the sequence of vertices of G lying on the straight-line segment
pq in Γ , ordered as they occur from p to q. Then G contains the path (vp = vr1 , vr2 , . . . , vrk = vq), whose
length in Γ is ‖vpvq‖Γ . It follows that the spanning ratio of Γ is 1. �

The existential theory of the reals problem asks whether real values exist for n variables such that a
quantifier-free formula, consisting of polynomial equalities and inequalities on such variables, is satisfied.
The class of problems that are complete for the existential theory of the reals is denoted by ∃R [45]. It is
known that NP ⊆ ∃R ⊆ PSPACE [16], however it is not known whether ∃R ⊆ NP. Many geometric problems
are ∃R-complete, see, e.g., [1,38].

Theorem 2. Recognizing whether a graph admits a proper straight-line drawing with spanning ratio equal
to 1 is an ∃R-complete problem.

Proof: The theorem follows by Lemma 2 and from the fact that recognizing point visibility graphs is a
problem that is ∃R-complete [17]. �

We conclude the section by presenting the following.

Theorem 3. Recognizing whether a graph admits a planar straight-line drawing with spanning ratio equal
to 1 is a linear-time solvable problem.

(a)

(b)

(c)

(d)

(e)

Fig. 1: The five graph classes defined in [22].

Proof: Dujmović et al. [22] characterized the graphs that admit a planar straight-line drawing with a
straight-line segment between every two vertices as the graphs in the five graph classes in Figure 1. Since a
straight-line drawing has spanning ratio 1 if and only if every two vertices are connected by a straight-line
segment, the theorem follows from the fact that recognizing whether a graph belongs to such five graph
classes can be easily done in linear time. �

4 Drawings with Spanning Ratio 1 + ε

In this section we study straight-line drawings with spanning ratio arbitrarily close to 1. Most of the section
is devoted to a proof of the following result.

Theorem 4. For every ε > 0, every connected planar graph admits a planar straight-line drawing with
spanning ratio smaller than 1 + ε.
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Let G be an n-vertex maximal planar graph with n ≥ 3, let G be a planar drawing of G, and let (u, v, z)
be the cycle delimiting the outer face of G in G. A canonical ordering [8,26,34] for G is a total ordering
σG = [v1, v2, . . . , vn] of its vertex set such that the following hold for k = 3, . . . , n: (i) v1 = u, v2 = v, and
vn = z; (ii) the subgraph Gk of G induced by v1, v2, . . . , vk is 2-connected and the cycle Ck delimiting its
outer face in G consists of the edge v1v2 and of a path Pk between v1 and v2; and (iii) vk is incident to the
outer face of Gk in G. Theorem 4 is implied by the following two lemmata.

Lemma 3. Let H be any n-vertex connected planar graph. There exist an n-vertex maximal planar graph G
and a canonical ordering σG = [v1, v2, . . . , vn] for G such that, for each k ∈ {1, 2, . . . , n}, the subgraph Hk

of H induced by [v1, v2, . . . , vk] is connected.

Proof: For k = 2, 3, . . . , n, let Gk be the subgraph of G induced by v1, v2, . . . , vk and let Lk be the graph
composed of Gk and of the vertices and edges of H that are not in Gk.

For each k = 2, 3, . . . , n, we define v1, v2, . . . , vk and Gk so that Hk is connected, Gk is 2-connected, and
Lk admits a planar drawing Lk such that:

1. the outer face of the planar drawing Gk of Gk in Lk is delimited by a cycle Ck composed of the edge v1v2
and of a path Pk between v1 and v2;

2. vk is incident to the outer face of Gk;
3. every internal face of Gk is delimited by a 3-cycle; and
4. the vertices and edges of H that are not in Gk lie in the outer face of Gk.

If k = 2, then construct any planar drawing L2 of H and define v1 and v2 as the end-vertices of any edge
v1v2 incident to the outer face of L2. Properties 1–4 are then trivially satisfied (in this case the path P2 is
the single edge v1v2).

If 2 < k < n, assume that v1, v2, . . . , vk−1 and Gk−1 have been defined so that Hk−1 is connected, Gk−1
is 2-connected, and Lk−1 admits a planar drawing Lk−1 such that Properties 1–4 above are satisfied. Let
Pk−1 = (u = w1, w2, . . . , wx = v), where x ≥ 2.

Consider any vertex v that is in Lk−1 and that is not in Gk−1. By Properties 1 and 4 of Lk−1, all the
neighbors of v in Gk−1 lie in Pk−1. We say that v is a candidate (to be designated as vk) vertex if, for some
1 ≤ i ≤ x, there exists an edge wiv such that wiv immediately follows the edge wiwi−1 in clockwise order
around wi or immediately follows the edge wiwi+1 in counter-clockwise order around wi; see Figure 2.

v1 v2

Gk−1

0
0

0
0

2

3

1

Fig. 2: The drawing Lk−1 of Lk−1, where the interior of Gk−1 is colored gray. Each candidate vertex is
represented by a square and labeled with its depth.

For each candidate vertex v, let wa(v) and wb(v) be the neighbors of v in Pk−1 such that a(v) is minimum
and b(v) is maximum (possibly a(v) = b(v)). If a(v) < b(v), define the reference cycle C(v) of v as the
cycle composed of the edges wa(v)v and wb(v)v and of the subpath of Pk−1 between wa(v) and wb(v). Define
the depth d(v) of v as 0 if a(v) = b(v) or as the number of candidate vertices that lie inside C(v) in Lk−1
otherwise.

We claim that there exists a candidate vertex with depth 0. Consider a candidate vertex v with minimum
depth and assume, for a contradiction, that d(v) > 0; then there exists a candidate vertex u that lies inside
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C(v) in Lk−1. By the planarity of Lk−1, the candidate vertices that lie inside C(u) form a subset of those that
lie inside C(v); moreover, there is at least one candidate vertex, namely u, that lies inside C(v) and not inside
C(u), hence d(u) < d(v). This contradicts the assumption that v has minimum depth and proves the claim.

Consider a candidate vertex v with d(v) = 0. We let vk := v and distinguish two cases.

wa(v)

wa(v)+1wa(v)−1

v

wa(v)

wa(v)+1wa(v)−1

v

Fig. 3: (a) A candidate vertex v with d(v) = 0 and a(v) = b(v). (b) The drawing Lk of Lk obtained by
drawing the edge wa(v)+1v in Lk−1.

If a(v) = b(v), assume that wa(v)v immediately follows the edge wa(v)wa(v)+1 in counter-clockwise order
around wa(v), the other case is symmetric; refer to Figure 3. Define Gk as Gk−1 plus the vertex v and the
edges wa(v)v and wa(v)+1v. Then Hk is connected because Hk−1 is connected and the edge wa(v)v belongs to
H. Further, Gk is 2-connected because Gk−1 is 2-connected and v is adjacent to two distinct vertices of Gk−1.
Define Lk by drawing the edge wa(v)+1v so that the cycle (wa(v), wa(v)+1, v) does not contain any vertex or
edge in its interior. Property 1 is satisfied by Lk with Pk = (u = w1, w2, . . . , wa(v), v, wa(v)+1, . . . , wx = v);
note that v has no neighbor in Gk other than wa(v) and wa(v)+1, since a(v) = b(v). Property 2 is satisfied by
Lk since Lk−1 satisfies Property 4 and by construction. Since the cycle (wa(v), wa(v)+1, v) does not contain any
vertex in its interior and since Lk−1 satisfies Properties 3 and 4, it follows that Lk also satisfies Properties 3
and 4.

wb(v)wa(v)

v

wb(v)wa(v)

v

Fig. 4: (a) A candidate vertex v with d(v) = 0 and a(v) < b(v). (b) The drawing Lk of Lk obtained by
moving out of C(v) each {v}-bridge of Lk−1 whose vertices different from v lie inside C(v) and by drawing
the edges among wa(v)v, wa(v)+1v, . . . , wb(v)+1v not in H planarly inside C(v).

Next, we consider the case in which a(v) < b(v); refer to Figure 4. We claim that the only edges incident
to vertices in the path (wa(v), wa(v)+1, . . . , wb(v)) and lying inside C(v) in Lk−1 are those connecting such
vertices to v. Suppose, for a contradiction, that an edge wiu with u 6= v lies inside C(v). If a(v) < i < b(v),
then there exists an edge wiz with z 6= v that immediately follows wiwi−1 in clockwise order around wi
or that immediately follows wiwi+1 in counter-clockwise order around wi; hence, z is a candidate vertex.
Further, by the planarity of Lk−1, we have that wiz lies inside C(v), except at wi, however this contradicts
d(v) = 0. The proof for the cases in which i = a(v) or i = b(v) is analogous.

It follows from the previous claim that v is the only vertex of C(v) which might have incident edges that
lie inside C(v) in Lk−1 and that have one end-vertex not in C(v). We redraw each {v}-bridge of Lk−1 whose
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vertices different from v lie inside C(v) planarly so that it now lies outside C(v); after this modification, no
vertex of Lk−1 lies inside C(v).

Define Gk as Gk−1 plus the vertex vk := v and the edges wa(v)v, wa(v)+1v, . . . , wb(v)v. Then Hk is
connected, because Hk−1 is connected and the edge wa(v)v belongs to H. Further, Gk is 2-connected, because
Gk−1 is 2-connected and v is adjacent to at least two distinct vertices of Gk−1. Define Lk by drawing the edges
among wa(v)v, wa(v)+1v, . . . , wb(v)v that do not belong toH so that they all lie inside C(v), except at their end-
vertices, and so that the edges wa(v)v, wa(v)+1v, . . . , wb(v)v appear consecutively and in this counter-clockwise
order around v. Property 1 is satisfied by Lk with Pk = (u = w1, w2, . . . , wa(v), v, wb(v), wb(v)+1, . . . , wx = v).
Property 2 is satisfied by Lk by construction and since Lk−1 satisfies Property 4. Every internal face of Lk
that is not an internal face of Lk−1 is delimited by a 3-cycle (wi, wi+1, v), for some a(v) ≤ i < b(v); hence
Lk satisfies Property 3 since Lk−1 does. Finally, Lk satisfies Property 4 since every vertex or edge of H that
is not in Gk lies outside Gk−1 since Lk−1 satisfies Property 4 and lies outside C(v) by construction.

If k = n, the construction slightly differs from the one described for the case 2 < k < n, as we also require
that the outer face of Gn is delimited by the 3-cycle (v1, v2, vn). Hence, if a(v) = b(v) (resp. if a(v) < b(v)),
then Gn also contains the edges w1v, w2v, . . . , wa(v)−1v, wa(v)+2v, wa(v)+3v, . . . , wxv (resp. the edges w1v,
w2v, . . . , wa(v)−1v, wb(v)+1v, wb(v)+2v, . . . , wxv); further, the edges w1v, w2v, . . . , wxv are drawn in Ln in
such a way that they appear in this counter-clockwise order around v, and so that the outer face of Ln is
delimited by the 3-cycle (w1 = v1, wx = v2, v = vn). The proof that Ln satisfies Properties 1–4 is similar,
and in fact simpler, than the one described above.

The above construction implies the statement of the lemma. Namely, Hk is connected for k = 3, 4, . . . , n.
Further, G is a maximal planar graph by Property 3 and by the additional requirement for the case k = n.
We now prove that [v1, v2, . . . , vn] is a canonical ordering for G. By Properties 1 and 2 of Ln, we have that
v1, v2, and vn are incident to the outer face of Ln; further, for k = 3, 4, . . . , n, we have that Gk is 2-connected
and its outer face in Gk is delimited by the edge v1v2 and by a path Pk between v1 and v2, by Property 1 of
Lk; finally, vk is incident to the outer face of Gk for k = 3, 4, . . . , n, by Property 2 of Lk. �

Lemma 4. For every k = 3, . . . , n and for every ε > 0, there exists a planar straight-line drawing Γk of Gk
such that:

1. the outer face of Γk is delimited by the cycle Ck; further, the path Pk is x-monotone and lies above the
edge uv, except at u and v; and

2. the restriction Ξk of Γk to the vertices and edges of Hk is a drawing with spanning ratio smaller than
1 + ε.

Proof: The proof is by induction on k. If k = 3, then a planar straight-line drawing Γ3 of G3 is constructed
by drawing the 3-cycle v1v2v3 as an isosceles triangle in which v1v2 is horizontal and has length ε/2, while
v1v3 and v2v3 have length 1, with v3 above the edge v1v2. By Lemma 3, the graphs H2 and H3 are connected,
hence the edge v1v2 belongs to them and at least one of the edges v1v3 and v2v3 belongs to H3. Hence, we

have π(v1,v2)
‖v1v2‖ = ‖v1v2‖

‖v1v2‖ = 1 < 1 + ε. Further, π(v1,v3)
‖v1v3‖ ≤ max{‖v1v3‖, ‖v1v2‖ + ‖v2v3‖} = 1 + ε/2 < 1 + ε.

Analogously, π(v2,v3)‖v2v3‖ < 1 + ε.

Now assume that, for some k = 4, . . . , n, a planar straight-line drawing Γk−1 of Gk−1 has been constructed
satisfying Properties 1 and 2; refer to Figure 5. Let δ be the diameter of a disk D containing Γk−1 in its
interior. We construct Γk from Γk−1 by placing vk in the plane as follows. Let Pk−1 = (u = w1, w2, . . . , wx =
v). As proved in [26], the neighbors of vk in Gk−1 are the vertices in a sub-path (wp, wp+1, . . . , wq) of Pk−1,
where 1 ≤ p < q ≤ x. By Property 1 of Γk−1, we have x(wp) < x(wp+1) < · · · < x(wq). We then place vk
at any point in the plane such that the following conditions are satisfied: (i) x(wp) < x(vk) < x(wq); (ii)
for every i = p, . . . , q − 1, the y-coordinate of vk is larger than the y-coordinates of the intersection points
between the line through wiwi+1 and the vertical lines through wp and wq; and (iii) the distance between vk
and the point of D closest to vk is a real value d > kδ

ε .
Since Pk is obtained from Pk−1 by substituting the path (wp, wp+1, . . . , wq) with the path (wp, vk, wq),

Condition (i) and the x-monotonicity of Pk−1 imply that Pk is x-monotone. Since Γk−1 is planar, in order
to prove the planarity of Γk it suffices to prove that no edge incident to vk intersects any distinct edge of
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D

wp
wq

Γk−1

vk

Fig. 5: Construction of Γk from Γk−1.

Gk, except at common end-vertices. Condition (ii) implies that the edges incident to vk lie in the outer face
of Γk−1, hence they do not intersect any edge of Gk−1, except at common end-vertices. Again Condition (ii)
and the x-monotonicity of Pk−1 imply that no two edges incident to vk intersect each other, except at vk. We
now prove that the spanning ratio of Ξk is smaller than 1 + ε. Consider any two vertices vi and vj . If i < k

and j < k, then
πΞk (vi,vj)

‖vivj‖Ξk
≤ πΞk−1

(vi,vj)

‖vivj‖Ξk−1
< 1 + ε. If i = k, then ‖vkvj‖Ξk ≥ d, by Condition (iii). Consider

the path P (vk, vj) composed of any edge vkv` in Hk incident to vk (which exists since Hk is connected) and
of any path in Hk−1 between v` and vj (which exists since Hk−1 is connected). The length of P (vk, vj) is
at most d+ δ (by Condition (iii) and by the triangular inequality, this is an upper bound on ‖vkv`‖Ξk) plus

(k − 2) · δ (this is an upper bound on the length of any path in Hk−1). Hence,
πΞk (vk,vj)

‖vkvj‖Ξk
< d+kδ

d < 1 + ε.

This completes the induction and the proof of the lemma. �

Lemmata 3 and 4 imply Theorem 4. Namely, for any connected planar graph H, by Lemma 3 we can
construct a maximal planar graph G that, by Lemma 4 (with k = n) and for every ε > 0, admits a planar
straight-line drawing whose restriction to the vertices and edges of H is a drawing with spanning ratio smaller
than 1 + ε.

The following can be obtained by means of techniques similar to (and simpler than) the ones employed
in the proof of Theorem 4.

Theorem 5. For every ε > 0, every connected graph admits a proper straight-line drawing with spanning
ratio smaller than 1 + ε.

Proof: Consider any n-vertex graph G and let T be any spanning tree of G. Let v1, v2, . . . , vn be any
total ordering for the vertex set of T such that the subtree Tk of T induced by v1, v2, . . . , vk is connected,
for each k = 1, 2, . . . , n.

For k = 1, 2, . . . , n, we construct a straight-line drawing Γk of Tk with spanning ratio smaller than 1 + ε
and such that no three vertices lie on a straight line. If k = 1, then Γ1 is constructed by placing v1 at
any point in the plane. Now assume that a straight-line drawing Γk−1 of Tk−1 has been constructed with
spanning ratio smaller than 1 + ε and such that no three vertices lie on a straight line. Let δ be the diameter
of a disk D containing Γk−1 in its interior. We construct Γk from Γk−1 by placing vk at any point in the
plane such that: (1) vk does not lie on any straight line through two vertices of Tk−1; and (2) the distance
between vk and the point of D that is closest to vk is a real value d > kδ

ε .
By Property (1), no three vertices lie on a straight line in Γk. We prove that the spanning ratio of Γk is

smaller than 1+ε. Consider any two vertices vi and vj . If i < k and j < k, then
πΓk (vi,vj)

‖vivj‖Γk
≤ πΓk−1

(vi,vj)

‖vivj‖Γk−1
< 1+ε.

If i = k, then ‖vkvj‖Γk ≥ d, by Property (2). Further, πΓk(vk, vj) is at most d+ δ (by Property (2) and by

8



the triangular inequality, this is an upper bound on the length of the edge of Tk incident to vk) plus (k−2) ·δ
(this is an upper bound on the length of any path in Tk−1). Hence,

πΓk (vk,vj)

‖vkvj‖Γk
< d+kδ

d < 1 + ε.

A drawing Γ of G is obtained from the drawing Γn of T = Tn by drawing the edges that are not in T
as straight-line segments. Then Γ is proper, as no three vertices of T lie on a straight line in Γn, and has
spanning ratio smaller than 1 + ε, as the same is true for Γn. �

5 Drawings with Small Spanning Ratio and Edge-Length Ratio

In this section we study straight-line drawings with small spanning ratio and edge-length ratio. Our main
result is the following.

Theorem 6. For every ε > 0 and τ > 0, every n-vertex graph with toughness τ admits a proper straight-line

drawing whose spanning ratio is at most 1+ε and whose edge-length ratio is in O
(
n

log2(2+d2/εe)
log2(2+d1/τe)−log2(1+d1/τe) · 1/ε

)
.

Further, for every 0 < τ < 1, there is a graph G with toughness τ such that every straight-line drawing
of G with spanning ratio at most s has edge-length ratio in 2Ω(1/(τ ·s2)).

In order to prove Theorem 6, we study straight-line drawings of bounded-degree trees. This is because
there is a strong connection between the toughness of a graph and the existence of a spanning tree with
bounded degree. Indeed, if a graph G has toughness τ , then it has a spanning tree with maximum degree
d1/τe+2 [50]. Further, a tree has toughness equal to the inverse of its maximum degree. We start by proving
the following upper bound.

Theorem 7. For every ε > 0, every n-vertex tree T with maximum degree d admits a proper straight-line
drawing such that no three vertices are collinear, the spanning ratio is at most 1+ε, the distance between any

two vertices is at least 1, and the width, the height, and the edge-length ratio are in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
.

Proof: Let γ = d 2ε e. Root T at any vertex r. For any two vertices p and q of T , let Ppq be the path in
T from p to q. We prove that, for an arbitrary real value η > 0, T admits a proper straight-line drawing
Γ that, in addition to the properties in the statement of the theorem, satisfies the following: (1) r is at the
top-left corner of B(Γ ); (2) for every vertex z of T , the path Pzr monotonically decreases in the x-direction
and monotonically increases in the y-direction from z to r; and (3) the height of Γ is at most η.

If n = 1, then Γ is obtained by placing r at any point in the plane. If n > 1, then there exists an edge uv
whose removal separates T into two trees T1 and T2, each with at most d−1

d n vertices [48]. Assume, w.l.o.g.,
that T1 contains r and u, while T2 contains v. Then T1 is rooted at r and T2 is rooted at v. Inductively
construct proper straight-line drawings Γ1 and Γ2 of T1 and T2, respectively, with parameter η/3 satisfying
Properties 1–4. Let w1 and w2 be the widths of Γ1 and Γ2, respectively. Refer to Figure 6.

r

w2

Γ2

Γ1 u

vw1

γ · (w1 + η + 1)

η/3 + δ

Fig. 6: Illustration for the construction in Theorem 7.

Translate Γ1 so that r lies at (0, 0). Further, translate Γ2 so that v lies at (w1 +γ · (w1 +η+1),−η/3−δ),
where 0 < δ < η/3 is a real value chosen so that no line through two vertices in the same tree Ti, with
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i ∈ {1, 2}, overlaps a vertex in the tree Tj , with j ∈ {1, 2} and j 6= i. Note that, since Γ1 and Γ2 are proper
and since B(Γ1) and B(Γ2) are disjoint, there are finitely many values of δ for which the line through two
vertices in a tree Ti overlaps a vertex in a different tree Tj , hence such a value δ always exists.

We now analyze the properties of Γ . By construction, Γ is a straight-line drawing of T .
By induction, no three vertices are collinear in each of Γ1 and Γ2; further, by construction, Γ1 and Γ2 are

arranged so that no line through two vertices in the same tree Ti, with i ∈ {1, 2}, overlaps a vertex in the
tree Tj , with j ∈ {1, 2} and j 6= i. Hence, no three vertices are collinear in Γ , and in particular. Γ is proper.

Property (1) is satisfied by Γ given that r is at the top-left corner of B(Γ1), by induction, and given that
every vertex of T2 lies to the right and below r in Γ , by construction.

In order to prove that Γ satisfies Property (2), consider any vertex z of T . If z belongs to T1, then Pzr
monotonically decreases in the x-direction and monotonically increases in the y-direction from z to r, since
Γ1 satisfies Property (2). If z belongs to T2, then Pzr is composed of the path Pzv, of the edge vu, and of
the path Pur. The paths Pzv and Pur monotonically decrease in the x-direction and monotonically increase
in the y-direction from z to v and from u to r, respectively, since Γ2 and Γ1 satisfy Property (2). Further,
the x-coordinate of u is smaller than the one of v and the y-coordinate of u is larger than the one of v; the
latter follows from the fact that every vertex of T1 has y-coordinate in [−η/3, 0], while every vertex of T2
has y-coordinate smaller than −η/3.

The height of Γ is at most 2η/3 + δ, which is smaller than η, hence Γ satisfies Property (3).
We now discuss the spanning ratio of Γ . We prove that, for any vertex w of T1 and any vertex z of

T2, it holds true that πΓ (w,z)
‖wz‖Γ ≤

γ+2
γ . This suffices to prove that the spanning ratio of Γ is at most γ+2

γ ,

since the drawings of T1 and T2 in Γ are the ones inductively constructed by the algorithm. The distance
between w and z is larger than or equal to γ · (w1 + η + 1) + xz, where γ · (w1 + η + 1) is the horizontal
distance between Br(Γ1) and Bl(Γ2), while xz denotes the distance between Bl(Γ2) and z. Clearly, we have
πΓ (w, z) = πΓ (w, r)+πΓ (z, r). The path Pwr is monotone in the x- and y-directions, hence πΓ (w, r) is upper
bounded by the horizontal distance between w and r, which is at most w1, plus the vertical distance between
w and r, which is at most η/3. Analogously, πΓ (z, r) is upper bounded by the horizontal distance between
z and r, which is w1 + γ · (w1 + η + 1) + xz, plus the vertical distance between z and r, which is at most η.
Hence, πΓ (w, z) < (γ + 2) · (w1 + η + 1) + xz. Thus:

πΓ (u, v)

‖uv‖Γ
<

(γ + 2) · (w1 + η + 1 + xz
γ )

γ · (w1 + η + 1 + xz
γ )

≤ γ + 2

γ
≤ 1 + ε.

Finally, we analyze the edge-length ratio of Γ . Note that the distance between any vertex of T1 and any
vertex of T2 is larger than 1, hence the same is true for every pair of vertices of T . In particular, the length of
every edge is larger than 1. Thus, the edge-length ratio of Γ is upper bounded by the maximum length of an
edge of T . In turn, this is at most the height plus the width of Γ . By Property (3), the height of Γ is at most
η. By construction, the width of Γ is equal to w1+γ ·(w1+η+1)+w2. Denote by w(n) the maximum width of
a drawing of an n-vertex tree constructed by the above algorithm. Since each of T1 and T2 has at most d−1

d n

vertices, we get that w(n) ≤ (γ+2) ·(w(d−1d n)+η+1). Repeatedly substituting this inequality into itself and

recalling that w(n) = 0 for n ≤ 1, we get w(n) ≤ (1+η)·(γ+2)+(1+η)·(γ+2)2+· · ·+(1+η)·(γ+2)
dlog d

d−1
(n)e
≤

(1+η) · γ+2
γ+1 ·(γ+2)

log d
d−1

(n)+1
= (1+η) · γ+2

γ+1 ·(γ+2) ·n
log2(γ+2)

log2(d/(d−1)) . We have γ+2
γ+1 ≤ 2, given that γ = d 2ε e ≥ 1;

further, we can set η to be any constant, say η = 1. Thus, we get w(n) ∈ O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
and the

same holds true for the edge-length ratio of Γ . �

We can now prove the upper bound in Theorem 6. Consider an n-vertex graph G with toughness τ and
let ε > 0; then G has a spanning tree T with maximum degree d = d1/τe + 2 [50]. Apply Theorem 7 in
order to construct a straight-line drawing ΓT of T . Construct a straight-line drawing ΓG of G from ΓT by
representing the edges of G not in T as straight-line segments. This results in a proper drawing of G, given
that no three vertices are collinear in ΓT . Further, the spanning ratio of ΓG is at most the one of ΓT , hence

it is at most 1 + ε. Finally, the edge-length ratio of ΓG is in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
, given that the distance
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between any two vertices in ΓT (and hence in ΓG) is at least 1 and given that the width and height of ΓT

(and hence of ΓG) are in O
(
n

log2(2+d2/εe)
log2(d/(d−1)) · 1/ε

)
. Substituting the value d = d1/τe+ 2 provides us with the

upper bound in Theorem 6.
The lower bound in Theorem 6 comes from the following theorem.

Theorem 8. Let T be a tree with a vertex of degree d. For any s ≥ 1, any straight-line drawing of T with
spanning ratio at most s has edge-length ratio in 2Ω(d/s2).

Proof: For any s ≥ 1, let Γ be any straight-line drawing of T with spanning ratio at most s; refer to
Figure 7. Let uT be a vertex of degree d. Assume w.l.o.g. up to a scaling (which does not alter the edge-length
ratio and the spanning ratio of Γ ) that the length of the shortest edge incident to uT in Γ is 1. For any
integer i ≥ 0, let Ci be the circle centered at uT whose radius is ri = 2i. Further, for any integer i > 0,
let Ai be the closed annulus delimited by Ci−1 and Ci. By assumption, no neighbor of uT lies inside the
open disk delimited by C0. We claim that, for any integer i > 0 and for some constant c, there are at most
c · s2 neighbors of uT inside Ai. This implies that at most k · c · s2 neighbors of uT lie inside the closed disk
delimited by Ck. Hence, if d > k · c · s2, e.g., if k = bd−1c·s2 c, then there is a neighbor vT of uT outside Ck. Then

‖uT vT ‖ > 2k ∈ 2Ω(d/s2). Hence, the theorem follows from the claim.

uT
2 i−1

2 i−1

Cu

Ci−1Ci Ai

u
∆u

Fig. 7: Illustration for the proof of Theorem 8.

It remains to prove the claim. For each neighbor u of uT inside Ai, let ∆u be a closed disk such that: (i)
u lies inside ∆u; (ii) ∆u lies inside Ai; and (iii) the diameter of ∆u is δi = 2i−2/s. The existence of ∆u can
be proved as follows. Consider the circle Cu whose antipodal points are the intersection points of Ci−1 and
Ci with the ray from uT through u. Note that Cu lies inside Ai and has diameter 2i−1 > δi = 2i−2/s. Then
∆u is any disk with diameter δi that contains u and that lies inside the closed disk delimited by Cu.

Suppose, for a contradiction, that there exist two neighbors u and v of uT inside Ai such that the disks
∆u and ∆v intersect. Then πΓ (u, v) ≥ 2i, since both the edges uuT and vuT are longer than ri−1 = 2i−1.

By the triangular inequality, ||uv||Γ ≤ 2 · δi = 2i−1/s. Hence πΓ (u,v)
||uv||Γ ≥ 2s, while the spanning ratio of Γ is

at most s. This contradiction proves that, for any two neighbors u and v of uT inside Ai, the disks ∆u and
∆v do not intersect.

The area of Ai is π · (r2i − r2i−1) = π · (22i − 22i−2) = 3π · (22i−2). Since each disk ∆u lying inside Ai
has area π · (22i−6/s2) and does not intersect any different disk ∆v, it follows that Ai contains at most
3π·(22i−2)·s2
π·22i−6 = 48 · s2 distinct disks ∆u and hence at most 48 · s2 neighbors of uT . This proves the claim and

concludes the proof of the theorem. �

Corollary 1. Let S be an n-vertex star. For any s ≥ 1, any straight-line drawing of S with spanning ratio
at most s has edge-length ratio in 2Ω(n/s2).
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The lower bound of Theorem 6 follows from Theorem 8 and from the fact that a tree with maximum
degree d has toughness 1/d. This concludes the proof of Theorem 6.

We now prove that trees with bounded maximum degree admit planar straight-line drawings with constant
spanning ratio and polynomial edge-length ratio. The cost of planarity is found in the dependence on the
maximum degree, which is worse than in Theorem 7.

Theorem 9. For every ε > 0, every n-vertex tree T with maximum degree d admits a planar straight-line

drawing whose spanning ratio is at most 1+ε and whose edge-length ratio is in O
(

(2n)2+(d−2)·log2(1+d 2ε e) · log2 n
)
.

Proof: Let γ = d 2ε e. If d ≤ 2, then T is a path and a planar straight-line drawing with spanning ratio
1 and edge-length ratio 1 is trivially constructed. We can hence assume that d ≥ 3. Root T at any leaf
r; this ensures that every vertex of T has at most d − 1 children. In order to avoid some technicalities in
the upcoming algorithm, we also assume that every non-leaf vertex of T has at least two children. This is
obtained by inserting a new child for each vertex of T with just one child; note that the size of the tree, i.e., its
number of vertices, is less than doubled by this modification. We again call T the tree after this modification
and by n its size. Clearly, no path between two vertices of the initial tree uses the newly inserted vertices,
hence removing the inserted vertices together with their incident edges from a drawing with spanning ratio
smaller than or equal to 1 + ε of the modified tree results in a drawing with spanning ratio smaller than or
equal to 1 + ε of the initial tree.

Our construction is a “well-spaced” version of an algorithm by Shiloach [47]. Namely, we construct a
planar straight-line drawing Γ of T in which (i) r is at the top-left corner of B(Γ ), and (ii) for every vertex
u of T , the path from u to r in T is (non-strictly) xy-monotone.

If n = 1, then Γ is obtained by placing r at any point in the plane. If n > 1, then let r1, r2, . . . , rk
be the children of r, where k ≤ d − 1, let T1, T2, . . . , Tk be the subtrees of T rooted at r1, r2, . . . , rk,
and let n1, n2, . . . , nk be the size of T1, T2, . . . , Tk, respectively. Assume, w.l.o.g. up to a relabeling, that
n1 ≤ n2 ≤ · · · ≤ nk; hence, ni ≤ n/2 for i = 1, 2, . . . , k − 1. Refer to Figure 8. Place r at any point in
the plane. Inductively construct planar straight-line drawings Γ1, Γ2, . . . , Γk of T1, T2, . . . , Tk, respectively.
Position Γ1 so that r1 is on the same vertical line as r, one unit below it; let d1 be the width of Γ1. Then, for
i = 2, . . . , k, position Γi so that ri is one unit below r and γ · (di−1 + log2 n) units to the right of Br(Γi−1);
denote by di the width of the bounding box of the drawings Γ1, Γ2, . . . , Γi. Finally, move Γk one unit above,
so that rk is on the same horizontal line as r.

r1
r

r2
r3

γ · (d1 + log2 n)

d2

d1

Γ1 Γ2 Γ3

γ · (d2 + log2 n)

d3

Fig. 8: Inductive construction of Γ . In this example k = 3.

We now analyze the properties of Γ . By construction, we have that Γ is a straight-line drawing. The
planarity of Γ is easily proved by exploiting the fact that ri is at the top-left corner of B(Γi) and that
r1, r2, . . . , rk−1 all lie one unit below r.

Height. Denote by h(n) the maximum height of a drawing of an n-vertex tree constructed by the
above algorithm. The same analysis as in [47] shows that h(n) ≤ log2 n. This comes from h(1) = 0 and
h(n) ≤ max{h(n2 ) + 1, h(n− 1)} for n ≥ 2.

Spanning ratio. We prove that, for any two vertices u and v that do not belong to the same subtree Ti,

it holds true that πΓ (u,v)
‖uv‖Γ ≤

γ+2
γ . This suffices to prove that the spanning ratio of Γ is at most γ+2

γ . Suppose

that u belongs to a subtree Ti and v belongs to a subtree Tj , with i < j; the case in which one of u and v is
r can be discussed analogously.
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First, we have ‖uv‖ ≥ xv +γ · (dj−1 + log2 n), where xv denotes the distance between v and Bl(Γj), while
the second term is the distance between Bl(Γj) and Br(Γj−1).

Clearly, we have πΓ (u, v) = πΓ (u, r) + πΓ (r, v). The path between u and r (between v and r) is xy-
monotone, hence πΓ (u, r) (resp. πΓ (v, r)) is upper bounded by the horizontal distance plus the vertical
distance between u and r (resp. between v and r). The vertical distance between u and r (between v
and r) is at most log2(n), since the height of Γ is at most log2(n). The horizontal distance between u
and r is at most di ≤ dj−1, while the one between v and r is xv + γ · (dj−1 + log2 n) + dj−1. Hence,
πΓ (u, v) ≤ (dj−1 + log2 n) + (xv + γ · (dj−1 + log2 n) + dj−1 + log2 n) = xv + (γ + 2) · (dj−1 + log2 n). Thus:

πΓ (u, v)

‖uv‖Γ
≤

(γ + 2) · (xvγ + dj−1 + log2 n)

γ · (xvγ + dj−1 + log2 n)
≤ γ + 2

γ
≤ 1 + ε.

Width. Let w1, . . . , wk be the widths of Γ1, . . . , Γk. By construction, d1 = w1 and, for each j = 2, . . . , k,
we have dj = dj−1 + γ · (dj−1 + log2 n) +wj = (γ + 1) · dj−1 + γ · log2 n+wj . Hence, by induction on j, we
have dj = (γ+ 1)j−1 ·w1 + (γ+ 1)j−2 ·w2 + . . .+ (γ+ 1) ·wj−1 +wj + ((γ+ 1)j−1− 1) · log2 n. In particular,
the width of Γ is equal to dk and hence to:

k∑
i=1

((γ + 1)k−i · wi) + ((γ + 1)k−1 − 1) · log2 n. (1)

For the reminder of the proof, we introduce the notation k1 = k and n1,i = ni, for i = 1, 2, . . . , k1. Recall
that k1 ≤ d − 1. Denote by w(n) the maximum width of a drawing of an n-vertex tree constructed by the
above algorithm. By construction, we have w(1) = 0. For n ≥ 2, by Equality 1, we get:

w(n) ≤ (γ + 1)d−2 ·
k1−1∑
i=1

w(n1,i) + w(n1,k1) + (γ + 1)d−2 · log2 n. (2)

Let r2,1, r2,2, . . . , r2,k2 be the children of rk, where k2 ≤ d − 1, and let n2,1, n2,2, . . . , n2,k2 be size of the
subtrees T2,1, T2,2, . . . , T2,k2 of T rooted r2,1, r2,2, . . . , r2,k2 , respectively. Assume, w.l.o.g., that n2,1 ≤ n2,2 ≤
· · · ≤ n2,k2 ; hence, n2,i ≤ n/2 for i = 1, 2, . . . , k2−1. By the same argument used to derive Inequality 2, we get

that the term w(n1,k1) in Inequality 2 can be replaced by (γ+1)d−2 ·
k2−1∑
i=1

w(n2,i)+w(n2,k2)+(γ+1)d−2 ·log2 n,

hence we get

w(n) ≤ (γ + 1)d−2 ·

(
k1−1∑
i=1

w(n1,i) +

k2−1∑
i=1

w(n2,i)

)
+ w(n2,k2) + 2 · (γ + 1)d−2 · log2 n. (3)

Again, the term w(n2,k2) in Inequality 3 can be replaced by (γ + 1)d−2 ·
k3−1∑
i=1

w(n3,i) + w(n3,k3) + (γ +

1)d−2 · log2 n, where n3,1, n3,2, . . . , n3,k3 are the sizes of the subtrees of T rooted at the children of r2,k2 , with
k3 ≤ d − 1 and n3,i ≤ n/2 for i = 1, 2, . . . , k3 − 1. The repetition of this argument eventually leads to the
inequality:

w(n) ≤ (γ + 1)d−2 ·

(
k1−1∑
i=1

w(n1,i) +

k2−1∑
i=1

w(n2,i) + · · ·+
kt−1∑
i=1

w(nt,i)

)
+ t · (γ + 1)d−2 · log2 n,

where t is the index at which rt,kt has no children, hence nt,kt = 1 and w(nt,kt) = 0. Since t ≤ n− 1, we get

w(n) ≤ (γ + 1)d−2 ·
∑
i,j

w(nj,i) + (γ + 1)d−2 · (n− 1) · log2 n, (4)

where the sum is defined over all pair of integers j and i such that 1 ≤ j ≤ t and 1 ≤ i ≤ kj − 1.
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We prove, by induction on n, that w(n) ≤ f(n) :=
(
(γ + 1)d−2

)log2 n · n2 · log2 n. This is trivial when
n = 1, given that w(1) = 0. Assume now that n > 1. By Inequality 4 and by induction, we get w(n) ≤
(γ+ 1)d−2 ·

∑
j,i

((
(γ + 1)d−2

)log2 nj,i · n2j,i · log2 nj,i

)
+ (γ+ 1)d−2 · (n−1) · log2 n. Since nj,i ≤ n/2 < n, we get

w(n) ≤ (γ+1)d−2 ·
(
(γ + 1)d−2

)log2(n/2) ·
∑
j,i

n2j,i ·log2 n+(γ+1)d−2 ·(n−1)·log2 n =
(
(γ + 1)d−2

)log2 n ·
∑
j,i

n2j,i ·

log2 n+(γ+1)d−2 ·(n−1)·log2 n. Since any two subtrees Tj,i are disjoint, we get that
∑
nj,i ≤ n−1, and hence∑

j,i

n2j,i ≤ (n−1)2. Thus, w(n) ≤
(
(γ + 1)d−2

)log2 n ·((n−1)2 +(n−1)) · log2 n ≤
(
(γ + 1)d−2

)log2 n ·n2 · log2 n.

This completes the induction and the analysis of the width of Γ .
Edge-length ratio. By construction, the length of each edge connecting r to a child is larger than or

equal to 1, hence the same is true for every edge of T . Thus, the edge-length ratio of Γ is upper bounded
by the maximum length of an edge of T . In turn, this is at most the sum of the height plus the width

of Γ , which is in O
((

(γ + 1)d−2
)log2 n · n2 · log2 n

)
, as proved above. The factor

(
(γ + 1)d−2

)log2 n can be

rewritten as n(d−2)·log2(γ+1). The bound claimed in the statement is then obtained by substituting γ = d 2ε e
and by observing that the value of n used in the calculations is at most twice the size of the initial tree. �

6 Open Problems

Our research raises a number of open problems which might be worth studying.
First, the bounds in Theorem 6 relating the toughness to the edge-length ratio of a drawing with constant

spanning ratio are not tight; it would hence be interesting to improve them.
Second, we believe that there is still much to be understood about the edge-length ratio of planar straight-

line drawings with constant spanning ratio. Theorem 9 shows that planar straight-line drawings with constant
spanning ratio and polynomial edge-length ratio exist for bounded-degree trees. We also observe that every
n-vertex 2-connected outerplanar graph G admits a planar straight-line drawing with spanning ratio at most√

2 and edge-length ratio in O(n1.5); this can be achieved by placing the vertices of G, in the order given by
the Hamiltonian cycle of G, at the vertices of a lattice xy-monotone polygonal curve; see, e.g., [2]. Further, it
is known that Schnyder drawings are 2-spanners [13], hence every n-vertex 3-connected planar graph admits
a planar straight-line drawing with spanning ratio at most 2 and edge-length ratio in O(n); see [11,46]. Do
3-connected planar graphs (or even just maximal planar graphs) admit planar straight-line drawings with
spanning ratio smaller than 2 (and possibly arbitrarily close to 1) and polynomial edge-length ratio? Is it
possible to extend Theorem 6 by proving that a planar straight-line drawing with constant spanning ratio
and polynomial edge-length ratio exists for every planar graph with bounded toughness?
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