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Abstract6

Let X2k be a set of 2k labeled points in convex position in the plane. We consider geometric7

non-intersecting straight-line perfect matchings of X2k. Two such matchings, M and M ′, are8

disjoint compatible if they do not have common edges, and no edge of M crosses an edge of M ′.9

Denote by DCMk the graph whose vertices correspond to such matchings, and two vertices10

are adjacent if and only if the corresponding matchings are disjoint compatible. We show that11

for each k ≥ 9, the connected components of DCMk form exactly three isomorphism classes12

– namely, there is a certain number of isomorphic small components, a certain number of13

isomorphic medium components, and one big component. The number and the structure of14

small and medium components is determined precisely.15

Keywords: Planar straight-line graphs, disjoint compatible matchings, reconfiguration graph,16

non-crossing geometric drawings, non-crossing partitions, combinatorial enumeration.17

1 Introduction18

1.1 Basic definitions and main results19

Let k be a natural number, and let X2k be a set of 2k points in convex position in the plane,20

labeled circularly (say, clockwise) by P1, P2, . . . , P2k (in figures, we label them just by 1, 2, . . . , 2k).21

We consider geometric perfect matchings of X2k realized by non-crossing straight segments.22

Throughout the paper, the expression “non-crossing matching”, or just the word “matching”, will23

only refer to matchings of this kind, and to their combinatorial and topological generalizations24

that will be defined below (unless specified otherwise). The size of such a matching is k, the25

number of edges. It is well-known that the number of matchings of X2k is the kth Catalan number26

Ck = 1
k+1

(2k
k

)
[25, A000108]. Three examples of matchings of size 8 are shown in Figure 1.27

Two matchings M and M ′ of X2k are disjoint compatible if they do not have common edges28

(disjoint), and no edge of M crosses an edge of M ′ (compatible). In Figure 1, the matchings Ma29
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Figure 1: Three examples of matchings of size 8. Mb and Mc are disjoint compatible.

and Mb are not disjoint (P2P9 is a common edge); the matchings Ma and Mc are disjoint but not30

compatible (P3P6 of Ma and P4P9 of Mc cross each other); the matchings Mb and Mc are disjoint31

compatible.32

The disjoint compatibility graph of matchings of size k is the graph whose vertices correspond to33

all such matchings of X2k, and two vertices are adjacent if and only if the corresponding matchings34

are disjoint compatible. This graph will be denoted by DCMk. The graph DCM4 is shown in35

Figure 2. It is clear that, while we consider point sets in convex position, the graph DCMk does36

not depend on a specific set X2k. Occasionally we shall adopt the terminology from graph theory37

for the matchings and say, for example, “matching M has degree d”, “two matchings, M and N38

are connected” to mean “the vertex corresponding to M in DCMk has degree d”, “the vertices39

corresponding to M and N in DCMk are connected”, etc. In particular, “M ′ is adjacent to M”40

and “M ′ is a neighbor of M” are synonyms of “M ′ is disjoint compatible to M”.41

Figure 2: The graph DCM4.

In this paper we study the graphs DCMk, mainly aiming for a description of their connected42

components from the point of view of their structure, order (that is, the number of vertices), and43

isomorphism classes. Our main results are the following theorems.44
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Theorem 1. For each k ≥ 9, the connected components of DCMk form exactly three isomor-45

phism classes. Specifically, there are several isomorphic components of the smallest order, several46

isomorphic components of the medium order, and one component of the biggest order.47

In accordance to the orders, we call the components small, medium and big. The components48

of DCMk follow different regularities for odd and for even values of k, as specified in the next two49

theorems. In fact, some of these regularities also hold for smaller values of k, and thus we extend50

this notation for all values of k. Namely, the components of the smallest order are called small ; the51

components of the next order are called medium; all other components are called big. It was found52

by direct inspection and by a computer program that for 1 ≤ k ≤ 8 the number of isomorphism53

classes of the components of DCMk is as follows:54

k 1 2 3 4 5 6 7 8

Number of isomorphism classes
of the components of DCMk 1 1 2 2 3 3 4 4

55

However, as stated in Theorem 1, for all k ≥ 9, DCMk has components of exactly three kinds:56

several small components, several medium components, and one big component.57

Throughout the paper, we denote ℓ =
⌈
k
2

⌉
.58

Theorem 2. Let k be an odd number, ℓ =
⌈
k
2

⌉
.59

1. The small components of DCMk are isolated vertices.60

The number of such components is 1
ℓ

(4ℓ−2
ℓ−1

)
.61

2. For k ≥ 3, the medium components of DCMk are stars of order ℓ (that is, K1,ℓ−1).62

For k ≥ 5, the number of such components is (2ℓ− 1) · 2ℓ−3.63

Theorem 3. Let k be an even number, ℓ =
⌈
k
2

⌉
.64

1. The small components of DCMk are pairs (that is, components of order 2).65

The number of such components is ℓ · 2ℓ−1.66

2. For k ≥ 4, the medium components of DCMk are of order 6ℓ− 6.167

For k ≥ 6, the number of such components is ℓ · 2ℓ−2.68

The enumerational results from these theorems, and exceptional values observed for small values69

of k, are summarized in Tables 1 and 2. As mentioned above, for k = 7 and for k = 8 two big70

components are of different order.71

As stated in Theorem 1, for k ≥ 9 there is only one big component. Thus, its order is the number72

of vertices that do not belong to small and medium components. In Proposition 39 we will show73

that the order of the big component is indeed larger than that of medium or small components.74

1 The structure of the medium components for even k will be described below, in Corollary 34.
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k 1 3 5 7 9 11 . . . General formula

ℓ = k+1
2 1 2 3 4 5 6 . . .

Small components: order 1 1 1 1 1 1 . . . 1

Small components: number 1 3 15 91 612 4389 . . . 1
ℓ

(4ℓ−2
ℓ−1

)

Medium components: order − 2 3 4 5 6 . . . ℓ (for ℓ ≥ 2)

Medium components: number − 1 5 14 36 88 . . . (2ℓ− 1) · 2ℓ−3 (for ℓ ≥ 3)

Table 1: The summary of enumerational results for odd k (Theorem 2).

k 2 4 6 8 10 12 . . . General formula

ℓ = k
2 1 2 3 4 5 6 . . .

Small components: order 2 2 2 2 2 2 . . . 2

Small components: number 1 4 12 32 80 192 . . . ℓ · 2ℓ−1

Medium components: order − 6 12 18 24 30 . . . 6ℓ− 6 (for ℓ ≥ 2)

Medium components: number − 1 6 16 40 96 . . . ℓ · 2ℓ−2 (for ℓ ≥ 3)

Table 2: The summary of enumerational results for even k (Theorem 3).

1.2 Background and motivation75

The general notion of disjoint compatibility graphs was defined by Aichholzer et al. [1] for sets of76

2k points in general (not necessarily convex) position. While they showed that for odd k there77

exist isolated matchings, they posed the Disjoint Compatible Matching Conjecture for even k: For78

every non-crossing matching of even size, there exists a disjoint compatible non-crossing matching.79

This conjecture was recently answered in the positive by Ishaque et al. [19]. In that paper it was80

stated that for even k “it remains an open problem whether [the disjoint compatibility graph] is81

always connected.” It follows from our results that for sets of 2k points in convex position, DCMk82

is always disconnected, with the exception of k = 1 and 2.83

Both concepts, disjointness and compatibility, can be found in generalized form for various84

geometric structures. For example, two triangulations are compatible if one can be obtained from85

the other by removing an edge in a convex quadrilateral and replacing it by the other diagonal.86

This operation is called a flip and it is well known that in that way any triangulation of the given87

set of n points can be obtained from any other triangulation of the same set with at most O(n2)88

flips, see e. g. [18]. Similar results exist, for example, for spanning trees [2] and between matchings89

and other geometric graphs [4, 17].90

It is convenient to describe such results in terms of reconfiguration graphs, whose vertices cor-91

respond to all configurations under discussion, two vertices being adjacent when the corresponding92

configurations can be obtained from each other by certain operation (“reconfiguration”). In these93

terms, the above mentioned result about flips in triangulations can be stated as follows: the flip94

graph of triangulations is connected with diameter O(n2).95
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Some kinds of reconfiguration graphs of non-crossing matchings were studied as well. Her-96

nando et al. [16] studied graphs of non-crossing perfect matchings of 2k points in convex position97

with respect to reconfiguration of the kind M ′ = M − (a, b)− (c, d) + (b, c) + (d, a). In particular,98

they proved that such a graph is (k − 1)-connected and has diameter k − 1, and it is bipartite for99

every k. Aichholzer et al. [1] considered graphs of non-crossing perfect matchings of 2k points in100

general position, where the matchings are adjacent if and only if they are compatible (but not101

necessarily disjoint). They showed that in such a graph there always exists a path of length at most102

O(log k) between any two matchings. Hence, such graphs are connected with diameter O(log k);103

lower bound examples with diameter Ω(log k/ log log k) were found by Razen [21, Section 4].104

In general, the number of non-crossing matchings of a point set depends on its order type. In105

contrast to the case of point sets in convex position, for general point sets no exact bounds are106

known. Sharir and Welzl [23] proved that any set of n points has O(10.05n) non-crossing matchings.107

Garćıa et al. [15] showed that the number of non-crossing matchings is minimal when the points108

are in convex position (then, as mentioned above, the number of matchings is Cn/2 = Θ∗(2n)),109

and constructed a family of examples with Θ∗(3n) matchings. In these papers, bounds for similar110

problems concerning other geometric non-crossing structures (triangulations, spanning trees, etc.)111

are also found.112

A generalization for matchings are bichromatic matchings. There the point set consists of k red113

and k blue points, and an edge always connects a red point to a blue point. It has recently been114

shown by Aloupis et al. [5] that the graph of compatible (but not necessarily disjoint) bichromatic115

matchings is connected. Moreover, the diameter of this graph is O(k), see [3]. On the other hand,116

certain bichromatic point sets have only one bichromatic matching: such sets were characterized117

in [6].118

From the combinatorial point of view, non-crossing matchings of points in convex position are119

identical to so called pattern links. Pattern links of size k form a basis for Temperley-Lieb algebra120

TLk(δ) that was first defined in [26], and has numerous applications in mathematical physics, knot121

theory, etc. Pattern links also have a close relation with alternating sign matrices (ASMs), fully122

packed loops (FPLs), and other combinatorial structures. For more information see the survey123

article by Propp [20]. Di Francesco et al. [13] constructed a bijection between FPLs with a link124

pattern consisting of three nested sets of sizes a, b and c and the plane partitions in a box of size125

a × b × c. Wieland [27] proved that the distribution of link patterns corresponding to FPLs is126

invariant under dihedral relabeling. A connection between the distribution of link patterns of FPLs127

and ground-state vector of O(1) loop model from statistical mechanics was intensively studied in128

the last years: see, for example, a proof of Razumov-Stroganov conjecture [22] (which can be also129

expressed in terms of reconfiguration) by Cantini and Sportiello [9].130

Thus, our contribution is twofold. First, from the combinatorial point of view, we have structural131

results that provide a new insight into combinatorics of non-crossing partitions. Second, our work132

is a contribution to the study of straight-line graph drawings. While it applies only to matchings133

of points in convex position, certain observations may be carried over or generalized for general134

sets of points, and, thus, they could be possibly useful for the study of disjoint compatibility of135

geometric matchings in general.136
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1.3 Outline of the paper.137

The paper is organized as follows. In Section 2 we introduce notion necessary for the proofs of the138

main theorems, and prove some preliminary results. One important notion there will be that of139

block : two edges that connect four consecutive points of X2k, the first with the fourth, and the140

second with the third. In particular, it will be observed that if a matching M has a block, then141

in any matching disjoint compatible to M the points of the block can be reconnected in a unique142

way. Thus, presence of blocks puts restrictions on potential matchings disjoint compatible to M .143

In Section 3 we describe certain kinds of matchings and show that they belong to components144

of the smallest possible order (1 or 2, depending on the parity of k). In Section 4, we describe145

other kinds of matchings, and prove that, for fixed k, all the connected components that contain146

such matchings are isomorphic. Enumerational results from these sections fit the rows of Tables 1147

and 2 that correspond to medium components. Finally, in Section 5, we prove that for k ≥ 9 all148

the matchings that do not belong to either of the kinds from Sections 3 and 4, form one connected149

component of big order (essentially, we prove that all such matchings are connected by a path to150

so called rings). In particular, this implies that no other orders exist, and that all the small and151

medium components are, indeed, described in Sections 3 and 4. Thus, this accomplishes the proof152

of Theorems 1, 2 and 3. In the concluding Section 6, we showing more enumerational results related153

to DCM, briefly discuss the case of “almost perfect” matchings of sets that have odd number of154

points, and suggest several problems for future research.155

2 Further definitions and basic results156

2.1 Flipping157

If an edge of a matching connects two consecutive points of X2k, it is a boundary edge, otherwise158

it is a diagonal edge. (We regard X2k as a cyclic structure. Thus, the points P2k and P1 are also159

considered consecutive. Moreover, the arithmetic of the labels will be modulo 2k. Yet we write P2k160

rather than P0.) In the matching Ma in Figure 3, the edges P3P8 and P13P16 are diagonal edges,161

and all other edges are boundary edges. A pair of consecutive points not connected by an edge is162

a skip. For each k ≥ 2 there are two matchings with only boundary edges, which we call rings.163

Notice that the two rings are disjoint compatible to each other.164

The definition of disjoint compatible matchings can be rephrased as follows.165

Observation 4. Let M and M ′ be matchings of X2k. M and M ′ are disjoint compatible if and166

only if M ∪M ′ is a union of pairwise disjoint cycles that consist alternatingly of edges of M and167

M ′.168

See Figure 3 for an example.169

Let M be a matching of X2k, and let Y be a subset of X2k of size 2m (2 ≤ m ≤ k) whose170

members are labeled cyclically by Q1, Q2, . . . , Q2m. (In other words, Qa = Pia , and {i1, i2, . . . , i2m}171

is a subset of {1, 2, . . . , 2k} with the induced cyclic order.) If N = {Q1Q2, Q3Q4, Q5Q6, . . . ,172

Q2m−3Q2m−2, Q2m−1Q2m} is a subset of M , and the convex hull of Y does not intersect any other173

edge of M , we say that N is a flippable set. Replacing the set N by the set N ′ = {Q2Q3, Q4Q5,174

Q6Q7, . . . , Q2m−2Q2m−1, Q2mQ1} is a flip of N .175
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Figure 3: The union of disjoint compatible matchings is a union of disjoint alternating cycles.

Proposition 5. Let M and M ′ be non-crossing matchings of X2k. M and M ′ are disjoint compat-176

ible if and only if there is a (uniquely determined) partition of M into flippable sets with pairwise177

disjoint convex hulls so that M ′ is obtained from M by flipping them.178

Proof. [⇐] In such a case, M ∪M ′ is a union of pairwise disjoint cycles as in Observation 4. [⇒]179

Taking the edges of M that belong to a cycle as in Observation 4, we obtain a flippable set. Since180

these cycles are connected components of M ∪M ′, the partition of M into flippable sets is uniquely181

determined by M and M ′. Since the cycles are disjoint, these flippable sets have disjoint convex182

hulls.183

A partition as in Proposition 5 will be called a flippable partition. Notice that a flippable set184

can not always be extended to a flippable partition. For example, the set T = {P1P2, P3P8, P13P16}185

from the matching Ma in Figure 3 is a flippable set, but there is no flippable partition that contains186

this set because there is no flippable set that contains {P14P15} and doesn’t cross T .187

2.2 Merging and splitting of matchings188

In some cases we need to split a matching into two submatchings, or to merge two matchings into189

one matching. Let L and N be non-empty disjoint subsets (submatchings) of a matching M so190

that their union is M , and so that L can be separated from N by a line. In such a case we write191

M = L + N , or N = M − L, and say that L + N is a decomposition of M . If we want to treat192

L and N as matchings of respective sets of points, we need to indicate how the labeling of M is193

split into, or merged from the respective labelings of L and N . We formalize the merging of two194

matchings in the following way. Let L be a matching of 2r points {R1, R2, . . . , R2r}, and let N195

be a matching of 2s points {S1, S2, . . . , S2s}. A matching M obtained by insertion of N into L196

between the points Ra and Ra+1 is the matching of 2k = 2r+2s points P1, P2, . . . , P2k obtained by197

relabeling (and putting in convex position) from R1, R2 . . . , Ra, S1, S2, . . . , S2s, Ra+1, Ra+2, . . . , R2r198

(in this order), such that PiPj is an edge if and only if the corresponding points are connected in199

L or in N . If N is inserted into L between R2r and R1, we have 2s + 1 possibilities to choose the200

point corresponding to P1: R1 or either of the points Si. A similar procedure can be described for201

splitting a matching (we omit the details).202

In some cases specifying the labeling upon merging or splitting will not be essential. For203

example, in some proofs we split a matching M into two submatchings L and N , modify both204

parts, and then merge them again. In such a case we only need to make sure that when the205
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parts are merged, their vertices are labeled in the same way as before the splitting. Assuming this206

convention, we mention the following obvious fact.207

Observation 6. Let M be a matching, and suppose that L + N is its decomposition. If L′ is a208

matching disjoint compatible to L, and N ′ is a matching disjoint compatible to N , then L′ +N ′ is209

disjoint compatible to M .210

If we start with a matching M0, and perform insertion several times (each time the inserted211

matching, the place of insertion, and, if needed, the labeling are specified), obtaining thus a sequence212

of matchings M1,M2, . . . , then for each edge e of M0, each of the members of this sequence has an213

edge corresponding to e in the obvious sense.214

2.3 Combinatorial and topological matchings215

For the sets of points in convex position, the notions of non-crossing matchings and that of disjoint216

compatible matchings are in fact purely combinatorial, since being two edges crossing or non-217

crossing is completely determined by the labels of their endpoints. Indeed, let X2k be just the set218

{1, 2, . . . , 2k}. Two disjoint pairs of members of X2x, {a1, a2} and {b1, b2}, are crossing if, when219

ordered with respect to the usual cyclic order of X2k, they form a sequence of the form abab. A220

combinatorial non-crossing matching of X2k is its partition M into k disjoint non-crossing pairs.221

Two such matchings, M and M ′, are disjoint compatible if no pair belongs to them both, and no222

pair from M crosses a pair from M ′.223

Combinatorial non-crossing matchings can be represented not only by straight-line (“geomet-224

ric”) drawings, but also by more general “topological drawings”, as follows. Let Γ be a closed225

Jordan curve, and let X2k = {P1, . . . , P2k} be a set of points that lie (say, clockwise) on Γ in this226

cyclic order. Denote by O(Γ) the interior, that is, the region bounded by Γ. A topological non-227

crossing matching is a set of k non-intersecting Jordan curves that connect pairs of these points, and228

whose interior lies inO(Γ). SinceO(Γ) is homeomorphic to an open disc (by the Jordan-Schoenflies229

theorem), each topological non-crossing matching can be continuously transformed into a geometric230

non-crossing matching. Notice, however, that (in contrast to geometric matchings) two topological231

matchings (on the same X2k and Γ) that correspond to disjoint compatible combinatorial matchings232

might have crossing arcs.233

In what follows, by a (non-crossing) matching we usually mean either a combinatorial non-234

crossing matching as described above, or any of its topological or straight-line representations.235

When a specific kind of drawing should be considered, we will mention it explicitly.236

2.4 The map and the dual tree237

Consider a topological non-crossing matching M of size k. Then the union of Γ and the members238

of M form a planar map in O(Γ). This map has k + 1 faces. The boundary of each face consists239

of one or several pieces of Γ and one or several edges of M . Each edge belongs to exactly two240

faces. A face that has more than one edge will be called an inner face; a face that has exactly one241

edge (which is then necessarily a boundary edge) will be called a boundary face. Notice that any242

flippable set is a subset of the set of edges that belong to one (inner) face.243

Consider the dual graph of this map, regarded as a combinatorial embedding (that is, for each244

vertex v the cyclic order φ(v) of edges incident to v is specified) with labeled edge sides. This graph245

T is a tree: it is easy to see that T is connected and acyclic, as removal of any edge of T disconnects246
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it. It will be called the dual tree of M , and denoted by D(M). Since each edge of D(M) crosses247

exactly one edge of M , the points of X2k correspond to the edge sides of D(M) in a natural way;248

therefore, we use the indices of the points as labels of the edge sides. The boundary edges of M249

correspond to the edges of D(M) incident to leaves, and, thus, there is also a clear correspondence250

of the boundary edges of M to the leaves of D(M). The skips of M correspond to the wedges251

– pairs of edges incident to a vertex v, consecutive in φ(v) (geometrically, in case of straight-line252

drawing, the wedges are angles formed by edges incident to the same vertex v, with the center in253

v). In Figure 4(a, b), a matching M (black) and its dual tree D(M) (blue) are shown.
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Figure 4: (a) A matching. (b) Its dual tree. (c) Reconstructing the matching from its dual tree.
254

Combinatorial embeddings of trees with k+1 vertices and one marked edge side are in bijection255

with matchings of size k. Notice that one marked edge side (we use the label 1 as the mark) in such256

an embedding T determines a labeling of edge sides of T by {1, 2, . . . , 2k} that agrees with a cyclic257

ordering of edge sides determined by a clockwise double edge traversal.2 Figure 4(c) shows how,258

given such a combinatorial embedding of a tree T , one can construct the matching M such that259

D(M) = T . First, we take a drawing of T (for example, a straight-line drawing – it is well-known260

that such a drawing always exists) and slightly inflate its edges. The boundary of the obtained261

shape is a closed Jordan curve Γ, it can be seen as a route of the double edge traversal. For262

each edge of T , we put a point on Γ on each of its sides, and connect such pairs by arcs. As263

explained above, the edge sides of T are labeled by {1, 2, . . . , 2k}. The point that lies on the edge264

side i will be labeled by Pi. The set of arcs is now a non-crossing matching whose dual tree is T .265

This topological matching can be converted now into a straight-line matching of points in convex266

position as explained above. Without a marked edge side, a combinatorial embedding determines a267

class of rotationally equivalent matchings, that is, matchings that can be obtained from each other268

by a cyclic relabeling of vertices. We summarize our observations as follows.269

Observation 7.270

1. The correspondence M 7→ D(M) is a bijection between combinatorial embeddings of trees with271

k + 1 vertices and one marked edge side and non-crossing matchings of size k.272

2. Two non-crossing matchings, M1 and M2, have the same non-labeled dual tree if and only if273

they are rotationally equivalent.274

2In a double edge traversal, each edge is visited twice: once for each direction. After visiting an edge e = v1v2
from v1 to v2, we visit the edge v2v3, the successor of e in φ(v2), from v2 to v3.
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2.5 Blocks and antiblocks275

Definition. Let M be a matching of X2k, k ≥ 2.276

1. A block is a pair of edges of M of the form {PiPi+3, Pi+1Pi+2}.277

2. An antiblock is a pair of edges of M of the form {PiPi+1, Pi+2Pi+3}.278

3. A separated pair is a block or an antiblock.279

For example, in the matching Ma from Figure 3, {P13P16, P14P15} is a block, and {P4P5, P6P7}280

is an antiblock. If we have a separated pair on points Pi, Pi+1, Pi+2, Pi+3, then they will be called,281

respectively, the first, the second, the third, and the fourth points of the separated pair. For a block282

K = {PiPi+3, Pi+1Pi+2}, the edge PiPi+3 is the outer, and the edge Pi+1Pi+2 is the inner edge of283

K.3 For k > 3 two blocks in a matching are necessarily disjoint, while two antiblocks can share an284

edge. The block {PiPi+3, Pi+1Pi+2} and the antiblock {PiPi+1, Pi+2Pi+3} are flips of each other.285

The special role of blocks is due to the following observation.286

Observation 8. Let M and M ′ be two disjoint compatible matchings. If M has a block287

{PiPi+3, Pi+1Pi+2}, then M ′ has an antiblock {PiPi+1, Pi+2Pi+3}.288

Proof. Consider a flippable partition of M . The only flippable set of M that contains the edge289

Pi+1Pi+2 is the block {PiPi+3, Pi+1Pi+2}. Upon flipping, an antiblock on these points is obtained.290

291

Given a matching M of size k, we can obtain a matching of size k + 2 by inserting a matching292

K of size 2. When essential, we can use the rule of relabeling vertices as explained in Section 2.2.293

However, instead of specifying a labeling of K, we say that we insert a block or an antiblock into294

M in accordance to the shape formed by the edges corresponding to K in M +K.295

The definition of the dual tree and the correspondence between elements of M and D(M)296

(explained before Observation 7) allow to identify elements of D(M) that correspond to separated297

pairs.298

Definition. Let T be a combinatorial embedding of a tree.299

1. A k-branch in T is a path v1v2 . . . vk+1 of length k whose one end (vk+1) is a leaf in T , and300

all the inner vertices (v2, v3, . . . , vk) have degree 2. A k-branch will be given by the list of its301

vertices, starting from v1.302

2. A V-shape in T is a path v1v2v3 such that v1 and v3 are leaves in T , and the edge v2v3 follows303

the edge v2v1 in φ(v2) (in other words, v1v2v3 is a wedge). A V-shape will be given by the304

list of its vertices in this order, corresponding to the clockwise double edge traversal: v1v2v3.305

Observation 9. Blocks in M correspond to 2-branches in D(M). Antiblocks in M correspond to306

V-shapes in D(M).307

3 A special case is k = 2. Consider M = {P1P2, P3P4}. The whole matching is both a block and an antiblock.
For M as a block, P2 or P4 can be taken as the first point. For M as an antiblock, P1 or P3 can be taken as the first
point. The case of M = {P1P4, P2P3} is similar.
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Suppose now that T is a combinatorial embedding of a tree, and we want to add a k-branch308

or a V-shape to T . The following convention will be adopted. We say that an embedding T ′ is309

obtained from T by attaching a k-branch v1v2 . . . vk+1 to vertex w of T in the wedge w1ww2, if310

(1) v1 = w, (2) the vertices v2, . . . , vk+1 are vertices of T ′ but not of T , and (3) for w in T ′ we311

have ww1 ≺ wv2 ≺ ww2 in φ(w). We say that an embedding T ′ is obtained from T by attaching312

a V-shape v1v2v3 to vertex w of T in the wedge w1ww2, if (1) v2 = w, (2) the vertices v1, v3 are313

vertices of T ′ but not of T , and (3) for w in T ′ we have ww1 ≺ wv1 ≺ wv3 ≺ ww2 in φ(w).314

Observation 10. Let M be a matching.315

Inserting a block (respectively, an antiblock) in M between the points Pi, Pi+1 connected by an316

edge in M corresponds to attaching a 2-branch (respectively, a V-shape) to the leaf corresponding317

to this edge in D(M).318

Inserting a block (respectively, an antiblock) in M between the points Pi, Pi+1 not connected319

in M corresponds to attaching a 2-branch (respectively, a V-shape) to the vertex in the wedge320

corresponding to the skip between Pi and Pi+1 in D(M).321

See Figure 5: M is a matching of size 4; Ma and Mb are obtained from M by inserting a block322

and, respectively, an antiblock between P2 and P3 (not connected in M); Mc and Md are obtained323

from M by inserting a block and, respectively, an antiblock between P3 and P4 (connected in M).
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Figure 5: Illustration to Observation 10.

324

Proposition 11. Let M be a matching of size k ≥ 4. Then M has at least two disjoint separated325

pairs.326

Proof. If M is a ring, the statement is clear. Otherwise, D(M) is not a star, and, thus, its diameter327

is at least 3. Let v1 and v2 be the leaves with the maximum distance in D(M), and let u1 and u2328

be the vertices adjacent to them (respectively). If d(u1) = 2, we have a 2-branch in D(M), and,329

therefore, a block in M . If d(u1) > 2, we have a V-shape in D(M), and, therefore, an antiblock330

in M . The same holds for u2. Since u1 6= u2, these separated pairs are disjoint, unless the whole331

D(M) is the path v1u1u2v2. But this situation is impossible since k ≥ 4.332

11



Proposition 12. Let M be a matching of size k, and let N = M +K where K is a block.4 Then333

the degree of N in DCMk+2 is equal to the degree of M in DCMk.334

Proof. The mapping M ′ 7→ M ′ +K ′, where M ′ is a matching disjoint compatible to M , and K ′ is335

the antiblock that uses the same points as K, is a bijection between matchings disjoint compatible336

to M and matchings disjoint compatible to N .337

Proposition 13. Let M be a matching of size k, and let N = M +K where K is a block or an338

antiblock. If M is connected (by a path) in DCMk to p matchings, then N is connected (by a path)339

in DCMk+2 to at least p matchings.340

Proof. Consider the mapping M ′ 7→ M ′ +K ′, where M ′ is a matching connected by a path to M ,341

K ′ = K if d(M,M ′) is even, and K ′ is the flip of K if d(M,M ′) is odd. It follows by induction on342

the distance and by Observation 6 that for each M ′, the matching M ′ +K ′ is connected by a path343

to N . It is also clear that this mapping is an injection.344

3 Small components and vertices of small degree345

3.1 General discussion346

A matching M is isolated if it is not disjoint compatible to any other matching of the same point347

set (in other words, it corresponds to an isolated vertex of DCMk). First we show that no isolated348

matchings of even size exists.5349

Proposition 14. If M is a matching of even size k, then there is at least one matching disjoint350

compatible to M .351

Proof. For k = 2, the statement is obvious. For k ≥ 4: by Proposition 11, M has a separated pair352

K. Let L = M − K. By induction, there exists a matching L′ disjoint compatible to L. Now,353

L′ +K ′, where K ′ is the flip of K, is disjoint compatible to M by Observation 6.354

In Section 3.2 we shall prove that for any odd k there are isolated matchings of size k, and in355

Section 3.6 we shall prove that for any even k, DCMk has connected components of size 2.356

First we derive certain situations in which a matching necessarily has at least one, or two,357

disjoint compatible matchings.358

Proposition 15. Let M be a matching of size k ≥ 2.359

1. If M has no blocks, then there are at least two matchings disjoint compatible with M .360

2. If M has exactly one block, then there is at least one matching disjoint compatible with M .361

Proof. For k = 2, 3, we verify this directly (for k = 2 the statement holds in a trivial way). For362

k ≥ 4, we prove the statement by induction (notice that the induction applies not to 1. and 2.363

separately, but rather to the whole statement).364

4 Since the place where K was inserted is not specified, this means: N is some matching that can be obtained
from M by adding a block.

5 As mentioned in the introduction, this claim also holds for matchings of points in general (not necessarily
convex) position [19, Theorem 1]. However, since for the convex case the proof is very simple, we present it here for
completeness.
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1. Suppose that M has no blocks. If M is a ring, then the claim is clear. So, we assume that365

there is a diagonal edge e = PiPj . Let M1 and M2 be the submatchings of M on point sets366

Y1 = {Pi+1, Pi+2, . . . , Pj−1} and Y2 = {Pj+1, Pj+2, . . . , Pi−1} (respectively). Since M has no367

blocks, both these submatchings are of size at least 2.368

Consider the submatching M1. If it has a block K, then its first point can be only one of the369

points Pj−3, Pj−2, and Pj−1, because otherwise K would be also a block of M . It follows that370

M1 has at most one block. Therefore, it is not isolated by induction. Similarly, {e}∪M2 has at371

most one block (its first point can be only Pi−1), and therefore, it is also not isolated. Denote372

by M ′
1 a matching disjoint compatible to M1, and by M ′′

2 a matching disjoint compatible to373

{e} ∪M2. Then M ′
1 +M ′′

2 is disjoint compatible to M .374

Similarly, the submatchings M1 ∪ {e} and M2 are non-isolated, and M ′′
1 +M ′

2, the merge of375

their respective disjoint compatible matchings, is disjoint compatible to M .376

Thus we obtained two matchings, disjoint compatible to M . They are indeed distinct because377

in M ′
1 +M ′′

2 the endpoints of e are connected to points from Y2, and in M ′′
1 +M ′

2 to points378

of Y1.379

2. Suppose that M has exactly one block K. Let L = M −K. Similarly to the reasoning from380

the previous paragraph, L has at most one block, and, thus, it is not isolated by induction.381

Therefore, M is also not isolated by Observation 6.382

383

Remark. The statements of Proposition 15 cannot be strengthened as the examples in Figure 6384

(for both even and odd k) show. The matching Ma has no blocks, and it has exactly two disjoint385

compatible matchings. The matching Mb has exactly one block, and it has exactly one disjoint386

compatible matching. In order to see that, notice that a disjoint compatible matching for Ma or387

for Mb is completely determined by deciding whether its antiblock(s) form a flippable set alone, or388

together with an adjacent (vertical) edge.

Ma Mb

Figure 6: Ma has no block and exactly two disjoint compatible matchings. Mb has one block and
exactly one disjoint compatible matching.

389

In the drawings in Figure 6, Γ is a rectangle, and all the edges of the matchings are either390

horizontal segments that lie on the lower or on the upper side, or vertical segments that connect391

these sides. Such a representation will be called a strip drawing. Strip drawings are very convenient392

for representation of certain kinds of matchings, and they will be used intensively in subsequent393

sections. Notice that the fact that horizontal segments lie on Γ is inconsistent with our definitions394

(in particular, that of the dual graph), but they can be easily adjusted. For example, we can treat395

this drawing as schematic and imagine that the horizontal segments are in fact slightly curved396

towards O(Γ).397
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3.2 Small components for odd k (Isolated Matchings)398

In contrast to the even case, for each odd k there exist isolated matchings of size k. It is mentioned399

in [1] that the matchings rotationally equivalent to M = {P1P2k, P2P2k−1, . . . , PkPk+1} are isolated400

for odd k. In this section we describe all isolated matchings (for the convex case). Figure 7 shows401

a few examples of isolated matchings – in fact, up to rotation, these are all isolated matchings of402

sizes 1 (a), 3 (b), 5 (c, d).403

(a) (b) (c) (d)

Figure 7: Examples of isolated matchings.

Definition. An I-matching is either a (unique) matching of size 1, or a matching of odd size k ≥ 3404

obtained from an I-matching of size k − 2 by inserting a block in any place.405

Theorem 16. A matching of odd size k is isolated in DCMk if and only if it is an I-matching.406

Proof. Let M be a matching of odd size k. For k = 1 the statement is clear. Assume k ≥ 3.407

If M has no blocks, then it is not isolated by Proposition 15 (1), and it is not an I-matching by408

definition.409

If M has at least one block, the theorem follows from Proposition 12 which says that inserting410

a block does not change the degree.411

We prove several facts about I-matchings to be used later.412

Observation 17. An I-matching of size k ≥ 3 has at least two blocks (which are disjoint for413

k ≥ 5).414

Proof. By Proposition 15, for k > 1, any matching with at most one block is not isolated. For415

k ≥ 4, two blocks are always disjoint.416

Proposition 18. If M is an I-matching, then it has no antiblocks.417

Proof. The matching of size 1 clearly has no blocks. An insertion of a block into a matching without418

antiblocks never produces a matching with an antiblock.419

We color the edges of I-matchings in the following way. Let M be an I-matching of size k, and420

let e ∈ M . Then e separates M into two (possibly empty) submatchings whose total size is k − 1.421

If both these submatchings are of even size, e will be colored red; if they are of odd size, e will be422

colored black. The edges of D(M) will be colored correspondingly. See Figure 8. The following423

facts are obvious, or easily seen by induction.424

Observation 19. Let M be an I-matching of size k.425

1. The only edge of the matching of size 1 is red.426
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2. When a block K is inserted in M so that an I-matching M +K is obtained, then the edges427

of M +K corresponding to those of M , preserve their color; and the edges corresponding to428

those of K are colored as follows: the outer edge is black, and the inner edge is red.429

3. The number of red edges is ℓ
(
=

⌈
k
2

⌉)
, and the number of black edges is ℓ− 1.430

4. Each face of the dual map of M has exactly one red edge. Correspondingly, each vertex of431

D(M) is incident to exactly one red edge.432

(a) (b)
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Figure 8: An I-matching and its dual graph. (a) The root is P5P10. (b) The root is P16P17.

According to the definition, in order to construct an I-matching M we start with a matching433

of size 1, and insert blocks recursively. The edge of M corresponding to the initial edge will be434

called the root. Pairs of edges corresponding to the members of a block inserted in some stage of435

the recursive construction, will be called twins. However, the same I-matching can be constructed436

in several ways, and therefore the root and the twins are not uniquely defined for M but rather437

depend on the specific construction (a sequence of insertions of blocks). Referring to a specific438

construction, we connect twins by green dotted lines (thus, the root is the only edge not connected439

in this way to any other edge). In the dual graph, we draw an arrow on the black edge which points440

to the point to which it is attached. See Figure 8(b) for an example: in the first drawing the root441

is P5P10, in the second drawing it is P16P17. See Figure 8(b) for an example: in the first drawing442

the root is P5P10, in the second drawing it is P16P17 (notice that the order of inserting the blocks443

can be also chosen in several ways).444

Proposition 20. Let M be an I-matching.445

1. For any red edge e of M , there exists a recursive construction of M such that e is the root.446

2. For each choice of the root, the pairs of twins are determined uniquely.447
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Proof. For k = 1 the statements hold trivially. Assume k ≥ 3. Let K be a block that does not448

contain e (existence of such a block is clear for k = 3, and follows from Observation 17 for k ≥ 5).449

1. By induction, there exists a recursive construction of M−K such that the edge corresponding450

to e is the root. Upon inserting K, e is a root of M .451

2. The inner edge of K can be a twin only of the outer edge of K. Then we continue inductively452

for M −K.453

454

Theorem 21. The number of I-matchings of size k is 1
ℓ

(4ℓ−2
ℓ−1

)
(where ℓ =

⌈
k
2

⌉
).455

The proof of Theorem 21 is closely related to that of enumeration of L-matchings that well be456

introduced in Section 3.3. Therefore, these proofs will be given together (in Section 3.4).457

3.3 Leaves458

In this section we study the matchings that correspond to leaves – that is, vertices of degree 1 – in459

DCMk (for both odd and even values of k).460

Definition. An L-matching is either a ring of size 2, a ring of size 3, or a matching of size k ≥ 4461

that can be obtained from an L-matching of size k − 2 by inserting a block in any place.462

Theorem 22. Let k be any natural number. A matching of size k is a leaf in DCMk if and only463

if it is an L-matching.464

Proof. For k ≤ 3 the statement holds trivially or can be verified directly. Assume k ≥ 4.465

If M has no blocks, then by Proposition 15 (1) it has at least two neighbors and thus is not a466

leaf, and it is not an L-matching by definition.467

If M has at least one block, the theorem follows from Proposition 12 which says that inserting468

a block doesn’t change the degree.469

Thus, the recursive construction of L-matchings is very similar to that of I-matchings – only the470

basis is different. We define roots and twins for L-matchings similarly to the case of I-matchings,471

with the following difference. For even k, we do not define root, and the edges corresponding to472

the initial pair of edges will be also called twins. For odd k, the edges corresponding to the initial473

triple of edges will be called the root triple.474

Proposition 23. Let M be an L-matching.475

1. For even k, the pairs of twins are determined uniquely.476

2. For odd k, the root triple and the pairs of twins are determined uniquely.477

Proof. The pairs of twins and (in the odd case) the root triple form a flippable partition. Thus,478

the uniqueness follows in both cases from the fact that any L-matching is disjoint compatible to479

exactly one matching and, therefore, it has exactly one flippable partition.480

16



3.4 Enumeration of I- and L-matchings481

Enumeration of I-matchings and L-matchings will be based on the following well-known result482

about non-crossing partitions. A non-crossing partition of a set of points in convex position is a483

partition of this set into non-empty subsets whose convex hulls do not intersect (thus, a non-crossing484

matching is essentially a non-crossing partition in which all the subsets are of size 2).485

Theorem 24 (Essentially, a special case of a result by N. Fuss from 1791 [14]). For ℓ ≥ 0, let486

aℓ be the number of non-crossing partitions of a set of 4ℓ labeled points in convex position into ℓ487

quadruples (a0 = 1 by convention). Let g(x) = a0+a1x+a2x
2+ . . . be the corresponding generating488

function. Then:489

1. The generating function g(x) satisfies the equation490

g(x) = 1 + xg4(x). (1)

2. The numbers aℓ are given by491

aℓ =
1

3ℓ+ 1

(
4ℓ

ℓ

)

. (2)

Remarks.492

1. N. Fuss proved that for fixed d ≥ 2, the number of dissections of a convex ((d− 1)ℓ+ 2)-gon493

by its diagonals into ℓ (d+ 1)-gons is 1
(d−1)ℓ+1

(
dℓ
ℓ

)
, and (essentially) that the corresponding494

generating function satisfies the equation g(x) = 1 + xgd(x). These numbers are known as495

Pfaff-Fuss (or Fuss-Catalan) numbers. For d = 2, Catalan numbers are obtained. See [25,496

A062993] for this two-parameter array and [8] for a historical note on the topic. It is easy497

to see that the two structures – diagonal dissections of a convex ((d − 1)ℓ + 2)-gon into ℓ498

(d + 1)-gons and non-crossing partitions of dℓ points in convex position into ℓ sets of size d,499

– have the same recursive structure (see [24, Exercise 6.19 (a) and (n)] for the case of d = 2).500

Thus, aℓ are Pfaff-Fuss numbers with d = 4.501

2. Eq. (2) – rather in the form 1
ℓ

( 4ℓ
ℓ−1

)
for ℓ ≥ 1 – follows from Eq. (1) by the Lagrange inversion502

formula [24, Theorem 5.4.2]. Indeed, Eq. (1) is equivalent to x = g̃(x)
(g̃(x)+1)4

where g̃(x) =503

g(x)−1. Therefore, if, following the notation as in the reference above, we take F (x) = x
(x+1)4 ,504

or, equivalently, G(x) = (x + 1)4, and k = 1,6 we obtain aℓ = [xℓ]g̃(x) = 1
ℓ [x

ℓ−1]Gℓ(x) =505

1
ℓ [x

ℓ−1](x+ 1)4ℓ = 1
ℓ

( 4ℓ
ℓ−1

)
.506

Theorem 21. The number of I-matchings of size k is 1
ℓ

(4ℓ−2
ℓ−1

)
(where ℓ =

⌈
k
2

⌉
).507

Theorem 25.508

1. For odd k, the number of L-matchings of size k is 2
3
ℓ−1
ℓ

(4ℓ−2
ℓ−1

)
(where ℓ =

⌈
k
2

⌉
).509

2. For even k, the number of L-matchings of size k is ℓ+1
3ℓ+1

(4ℓ
ℓ

)
(where ℓ =

⌈
k
2

⌉
).510

6 This k from the statement of the Lagrange inversion formula in [24] is of course different from k as we use it in
this paper.
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Proof. It will be convenient to prove first Theorem 25 (2), then Theorem 21, and finally Theo-511

rem 25 (1).512

A matching M and a non-crossing partition T of X2k fit each other if every edge of M connects513

two points that belong to the same set of the partition T .514

Proof of Theorem 25 (2). Let M be an L-matching of even size k. We saw in Proposition 23 that515

the edges of M can be partitioned into pairs of twins in a unique way. Replace each pair of twins516

by a quadruple of points. In this way we obtain a (unique) non-crossing partition of X2k into ℓ517

quadruples that fits M .518

Let T be any non-crossing partition of X2k into ℓ quadruples. We show that there are exactly519

ℓ+ 1 L-matchings that fit T . For k = 2 (ℓ = 1) there are 2 L-matchings, both fitting the (unique)520

non-crossing partition into quadruples. For k ≥ 4 (ℓ ≥ 2) we proceed by induction as follows.521

Let s be any quadruple of T that consists of four consecutive points Pi, Pi+1, Pi+2, Pi+3. (Such522

a quadruple will be called an ear. Each non-crossing partition with at least two parts has at least523

two ears.) For each L-matching of size k−2 that fits T \{s}, we can connect Pi with Pi+3 and Pi+1524

with Pi+2. This is inserting a block, and, thus, an L-matching of size k is obtained. By induction,525

the number of matchings that we obtain in this way is ℓ.526

In order to obtain one more matching, we connect first Pi with Pi+1 and Pi+2 with Pi+3. We527

show now that this can be completed to an L-matching in exactly one way. Namely, let s′ be any528

quadruple of T (s′ 6= s). Suppose that the points of s′ are Pα, Pβ , Pγ , Pδ so that the cyclic order529

of the labels of the points of S ∪ S′ satisfies i + 4 ≺ α ≺ β ≺ γ ≺ δ ≺ i. Then we must connect530

Pα with Pδ and Pβ with Pγ . Indeed, if we do that for each quadruple, an L-matching is obtained.531

In order to see that, erase an ear different from s. In this way a block is deleted from a matching,532

and then the induction applies. On the other hand, if in some s′ we connect Pα with Pβ and Pγ533

with Pδ , then we have two quadruples of T that contain a flippable pair and in both (with respect534

to the order of their union) the first point is connected to the second, and the third to the fourth.535

It is easy to see from the definition that this never happens in L-matchings.536

To summarize: by Theorem 24, there are 1
3ℓ+1

(
4ℓ
ℓ

)
non-crossing partitions of X2k into ℓ quadru-537

ples, each such partition fits ℓ+1 L-matchings, and each L-matching is obtained in this way exactly538

once. Therefore, the number of L-matchings of size k is ℓ+1
3ℓ+1

(4ℓ
ℓ

)
.539

Proof of Theorem 21. First, each I-matching M has exactly one red edge e = PiPj (i < j) such540

that all other edges of M either connect two points from the set {1, 2, . . . , i− 1} (appear before e),541

or two points from the set {i + 1, i + 2, . . . , j − 1} (appear inside e), or two points from the set542

{j + 1, j + 2, . . . , 2k} (appear after e); such an edge will be called the special red edge. Indeed, this543

holds trivially for the matching of size 1, and this remains true when a block is inserted: if a block544

is inserted between Pα and Pα+1 where 1 ≤ α ≤ 2k − 1, then (only) the edge corresponding to the545

old special red edge is special; and if a block is inserted between P2k and P1, then the red edge of546

this block becomes the special one.547

Let M be an I-matching and let e = PiPj be its special red edge. By Proposition 20, there548

exists a recursive construction of M such that e is the root. Replace all the pairs of edges that were549

inserted as blocks at some step of this construction by quadruples. Then we have three non-crossing550

partitions of the corresponding sets of points into quadruples: one before e, one inside e, one after551

e. On the other hand, for each such partition, there is only one way to connect points of each552

quadruples by two edges in order to obtain an I-matching. Namely, for a quadruple Pα, Pβ , Pγ , Pδ553

with α < β < γ < δ we must connect Pα with Pδ and Pβ with Pγ . The proof is similar to that above:554

the points of an ear must be connected in this way (otherwise the conclusion of Proposition 19 (3)555
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is not satisfied), and then induction applies.556

Thus, three non-crossing partitions of points before, inside, and after e into quadruples de-557

termine uniquely an I-matching. It follows that the generating function for the number of such558

matchings is xg3(x), where g(x) is the function from Theorem 24. In order to calculate its co-559

efficients, we use the general form of the Lagrange inversion formula [24, Corollary 5.4.3] with560

G(x) = (x+ 1)4, H(x) = (x+ 1)3 (so that g3(x) = H(g̃(x))), and k = 3.7 We obtain561

[xℓ]xg3(x) = [xℓ−1]g3(x) = [xℓ−2]
1

ℓ− 1
H ′(x)Gℓ−1(x) =

3

ℓ− 1
[xℓ−2](x+ 1)4ℓ−2 =

3

ℓ− 1

(
4ℓ− 2

ℓ− 2

)

,

which is equal to 1
ℓ

(4ℓ−2
ℓ−1

)
for ℓ > 1.562

Remark. This sequence of numbers is [25, A006632], where it appears with a reference to a paper563

by H. N. Finucan [11]. In that paper, it counts the number of nested systems (“stackings”) of564

ℓ folders with 3 compartments such that exactly one folder is outer (“visible”). There is a very565

simple bijection between two structures, see Figure 9 for an example: pairs of twins are converted566

into 3-compartment folders; the special red edge forms a pair with the outer part of Γ, and it is567

converted to the outer folder.

Figure 9: An example illustrating the bijection between I-matchings of size k = 2ℓ−1 and stackings
of ℓ 3-folders with only one outer folder.

568

Proof of Theorem 25 (1). The proof will be based on the previous one (notice the similarity of569

the expressions in these two theorems). Essentially, we describe a way to convert I-matchings into570

L-matchings of odd size, and take care of multiplicities.571

Let M be an I-matching of size k ≥ 3. Each black edge belongs to two faces, and, by Observa-572

tion 19 (4), each of these faces has exactly one red edge. Such a triple of edges – a black edge e and573

the red edges incident to the faces incident to e – will be called a RBR-triple.8 By Observation 19574

(3), there are ℓ− 1 black edges in M ; therefore, there are also ℓ− 1 RBR-triples. Therefore, there575

are ℓ−1
ℓ

(4ℓ−2
ℓ−1

)
I-matchings of size k with a marked RBR-triple.576

Suppose that the endpoints of the edges that belong to an RBR-triple are (according to the cyclic577

order)Q1, Q2, Q3, Q4, Q5, Q6. Then the RBR-triple can be one of the following: {Q1Q2, Q3Q6, Q4Q5},578

7The same remark as in footnote 6 applies.
8RBR stands for red-black-red.

19



{Q1Q4, Q2Q3, Q5Q6}, or {Q1Q6, Q2Q5, Q3Q4}. It is easy to see that if we replace these edges by579

either {Q1Q2, Q3Q4, Q5Q6} or {Q2Q3, Q4Q5, Q6Q1}, an L-matching is obtained. Thus, we have580

obtained 2 ℓ−1
ℓ

(4ℓ−2
ℓ−1

)
L-matchings.581

However, each L-matching is obtained in this way exactly three times. Indeed, by Proposition 23582

(2), the root triple of an L-matching is determined uniquely. It can be replaced by a RBR-triple in583

three ways, each of them producing an I-matching. Therefore, the number of L-matchings of size584

k (for odd k) is 2
3
ℓ−1
ℓ

(4ℓ−2
ℓ−1

)
.585

3.5 Strip Drawings and DB-components586

In the following sections, we shall frequently use a special way to draw matchings – strip drawings,587

that were already used in the end of Section 3.1. In such a drawing Γ is an axis-aligned rectangle R,588

and all the points of X2k lie on its horizontal sides (the lower side will be denoted by L, the upper589

by U). The edges that connect a point from L with a point of U will be represented by vertical590

segments; such edges will be called D-edges. In some cases, in order to achieve a drawing in which591

all the D-edges are vertical, we’ll move some points of X2k along L or U. If a D-edge connects the592

leftmost (respectively, the rightmost) points of X2k on L and on U, we will assume that it lies on593

the left (respectively, the right) side of R. The edges that connect neighboring points of L or of U594

will be represented by horizontal segments that lie on Γ; such edges will be called B-edges.9 Edges595

that connect non-neighboring points of L or of U will be represented, as usually, by Jordan curves596

inside O(Γ). The index of the leftmost point of U will be denoted by z, and, as agreed earlier, the597

points are labeled cyclically clockwise.598

Obviously, each matching can be represented by a strip drawing, but we shall use them only599

for certain classes of matchings, when such drawings can be made especially simple and clear. As600

mentioned earlier, the fact that all the boundary edges lie on Γ is inconsistent with our original601

definitions. In particular, as a planar map, such a drawing “looses” all the boundary faces (therefore602

it will be called a reduced map). However, strip drawings are very useful due to the following fact.603

As mentioned above, a flippable set is a subset of the set of edges that belong to the same face.604

On the other hand, a flippable set is always of size at least 2. Thus, reduced maps have no faces605

that cannot contribute to a flippable partition, and, thus, the candidates for flippable sets will be606

clearly seen.607

An element in a strip drawing is a subset of edges that can be separated from other edges by608

straight lines. We distinguish the following kinds of elements; they will be used later for describing609

of certain kinds of matchings. Refer to Figure 10. A DB-element in an element of size 2 that610

consists of a D-edge d and a B-edge b. There are four kinds of DB-elements, distinguished by their611

direction and position as follows. The direction is R if b is to the right of d, L if b is to the left of d.612

The position is − if b lies on L, and + if b lies on U. A DBD-element is an element of size 3 that613

consists of two D-edges d1, d2, and one B-edge b between them. The position of a DBD-element is614

− (respectively, +) if b lies on L (respectively, on U). A B2+1-element is an element of size 3 that615

consists of three B-edges: two on L and one on U (then its position is −), or vice versa (then its616

position is +). An EDB-element is an element of size 4 that consists of three B-edges forming a617

B2+1-element and a D-edge to the left or to the right of them. The direction of an EDB-element618

is R (respectively, L) if the B-edges are to the right (respectively, to the left) of the D-edge; its619

9 D and B stand for “diagonal” and ”boundary”, since a B-edge is always a boundary edge, and a D-edge is
usually a diagonal edge (the exceptional situation is when it connects the leftmost or the rightmost points of L and
U).
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position agrees with that of the B2+1 element. Notice that DB-, EDB-, DBD- and B2+1-elements620

are always flippable sets. The next observation summarizes the effect of flipping these elements.621

Observation 26.622

1. The set obtained from a DB-element by flipping is a DB-element with the same position and623

different direction.624

2. The set obtained from an EDB-element by flipping is an EDB-element with the same position625

and different direction.626

3. The set obtained from a DBD-element by flipping is a B2+1-element with the same position,627

and vice versa.628

See Figure 10 for illustration. Notice that in some cases we modify the point set in order to629

draw a D-edge as a vertical segment. On the first strip, given elements are shown; on the second,630

the elements obtained from them by flipping; on the third, they are shown after modifying the631

point set.

DB EDB DBD B2+1

Figure 10: DB-, EDB-, DBD-, and B2+1-elements, and flipping them.

632

The structure of some simple matchings can be partially described by their pattern – a sequence633

of elements of these types (to be read from left to right). For example, we say that a strip drawing634

has pattern DBDB2+1D if it consists of three D-edges d1, d2, d3, a B-edge between d1 and d2, and a635

B2+1-element between d2 and d3. Notice that the pattern does not determine a drawing uniquely636

since the labeling of points and the position of B-edges is not indicated.637

3.6 Small components for even k (Pairs)638

By Proposition 14, a matching of even size is never isolated. As we shall show now, for any even k639

there are matchings of size k that belong to pairs – connected components of size 2. Thus, we next640

define a family of matchings and prove that they indeed form the small components of DCMk for641

even values of k.642

Definition. Let k be an even number. A DB-matching of size k is a matching that can be643

represented by a strip drawing with pattern DBDB . . .DB – that is, consists of ℓ
(
=

⌈
k
2

⌉)
R-directed644

DB-elements.645
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A drawing as in this definition will be the standard drawing for a DB-matching. If instead646

of R-directed DB-elements we have L-directed DB-elements, this is an upside-down drawing of a647

DB-matching; the standard one can be obtained from it by 180◦ rotation. The edges of the ith648

(from left to right) DB-element in the standard drawing of a DB-matching will be denoted by di, bi.649

The map of M has ℓ inner faces and ℓ + 1 boundary faces. The inner faces will be denoted by650

D1,D2, . . . ,Dℓ: for 1 ≤ i ≤ ℓ − 1, Di is the face whose edges are di, bi, di+1; Dℓ is the face whose651

edges are dℓ, bℓ. The boundary faces will be denoted by B0, B1, . . . , Bℓ: B0 is the face whose only652

edge is d1; for 1 ≤ i ≤ ℓ, Bi is the face whose only edge is bi.653

In a DB-matching of size k ≥ 4, {d1, b1} is an antiblock, and {dℓ, bℓ} is a block, and there are654

no other separated pairs. Therefore, the position (− or +) of these extremal DB-elements can be655

chosen arbitrarily: changing the position of {dℓ, bℓ} does not change the matching, and changing the656

position of {d1, b1} results in a rotationally isomorphic matching. For k ≥ 4, we shall always draw657

the antiblock as a DB-element of type R+, and the block as a DB-element of type R−. Different658

choices of position in all other DB-elements produce rotationally non-equivalent matchings. Their659

positions will be encoded by a {−,+}-sequence χ = (x1, x2, . . . , xℓ−2), where xi is the position660

of the (i + 1)st DB-element. The DB-matching of size k with specified χ and z (the label of the661

leftmost point on U) will be denoted by DB(k, χ, z).10662

The dual trees of DB-matchings have the following structure (we denote the vertices of D(M)663

identically to the corresponding faces of the map of M): There is a path B0D1D2 . . . Dℓ (imagined664

as consisting of horizontal edges so that B0 is on the left and Dℓ is on the right); and for each665

i, 1 ≤ i ≤ ℓ, a leaf Bi is attached to Di. As explained above, by convention B1 is attached to666

D1 above the path, and Bℓ is attached to Dℓ below the path; and for 2 ≤ i ≤ ℓ − 1, Bi can be667

attached to Di in two ways: either below or above the path. See Figure 11: (a) shows the matching668

DB(14,− ++−+, 1) represented by its standard strip drawing; (b) shows its dual tree; (c) shows669

the general structure of the dual tree of DB-matchings (dashed edges DiBi, 2 ≤ i ≤ ℓ− 1, indicate670

that each of them can be either below or above the path B0D1 . . . Dℓ).671

For a {−,+}-sequence χ, we denote by χ′ the sequence obtained from χ by reversing and672

changing all the components, and we denote δ(χ) = #χ(+) − #χ(−). For example, for χ =673

(+ +−++−−+) we have χ′ = (−++−−+−−) and δ(χ) = 2.674

Theorem 27. Let k be an even number. A matching of size k belongs to a pair in DCMk if and675

only if it is a DB-matching.676

Proof. For k = 2 the statement is obvious. Thus, we assume k ≥ 4.677

[⇐] Assume that M is a DB-matching of size k. First we show that it is an L-matching. The678

rightmost DB-element of M , K = {dℓ, bℓ}, is a block. The matching M −K is also a DB-matching,679

and, therefore it is an L-matching by induction. Therefore, M is also an L-matching, that is, it has680

degree 1 in DCMk. Its only flippable partition consists of the DB-elements {di, bi}.681

Denote the only neighbor of M by M ′. By Observation 26, M ′ is obtained from M by replacing682

each of its DB-elements by the L-directed DB-element of the same position. This means that M ′,683

drawn on the same strip drawing, is also a DB-matching, but drawn upside down. In order to684

obtain its standard representation, we rotate the drawing. χ is replaced then by χ′, and z by the685

label of the rightmost point on L in the standard drawing of M , which is z′ = z+k+ δ(χ).11 Thus,686

10Note that k is determined by the length of χ and, therefore, can be omitted. However, we find it convenient to
include it in our notation.

11Indeed, let u = #χ(+), d = #χ(−). Then the number of points on U is 3u+ d = 2(u+ d) + (u− d) = k + δ(χ).
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d7d2d1
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Figure 11: (a) The matching DB(14,− + + − +, 1). (b) The dual tree of DB(14,− + + − +, 1).
(c) The general structure of the dual tree of DB-matchings.

we obtain M ′ = DB(k, χ′, z′). See Figure 12 for an illustration (the flippable sets are marked by687

blue color; the asterisk indicates an upside down drawing).

(b)

(a) DB(14,− + +− +, 1)

DB∗(14,− +−− +, 16)

1

1

16

Figure 12: Two DB-matchings forming a pair: (a) DB(14,−++−+, 1), (b) DB(14,−+−−+, 16)
(drawn upside down).

688

Since M ′ is also a DB-matching, it is adjacent to only one matching, namely, to M . Thus, M689

and M ′ form a pair in DCMk.690

[⇒] Assume that M belongs to a pair. M has at least one block, as otherwise it is adjacent to at691

least two distinct matchings by Proposition 15 (1). Fix a block K in M , and denote N = M−K. If692

N is not a DB-matching, then, by induction and by Proposition 14, it is connected (by a path) to at693

least two matchings. Then M is connected (by a path) to at least two matchings by Proposition 13,694

and this is a contradiction.695

Now assume that N is a DB-matching (of size k − 2). We shall see that either M is a DB-696

matching, or M can be decomposed in a different way, M = L+ P , where P is a separated pair,697

and L is not a DB-matching (which will be shown by indicating an element which never occurs698

in DB-matchings). In the former case this completes the proof, in the latter case we obtain a699

contradiction as above (with L in role of N and P in the role of K).700

Consider the dual tree of N . Then D(K), the part that corresponds to K, is a 2-branch701

attached to D(N) in some point (see Figure 13). Label the points of D(N) in accordance to our702
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usual notation, as in Figure 11 (notice that it consists of ℓ− 1 rather than of ℓ DB-elements). Now703

we have the following subcases.704

(a) D(K) is attached to D(N) at Bi, 0 ≤ i ≤ ℓ− 2. Let P be the block Dℓ−2Dℓ−1Bℓ−1,
12 and705

let L = M − P . Then D(L) has a 3-branch, and, therefore, L is not a DB-matching.706

(b) D(K) is attached to D(N) at Di, 1 ≤ i ≤ ℓ− 3. Let P be the block Dℓ−2Dℓ−1Bℓ−1, and707

let L = M −P . Then D(L) has a vertex of degree 4, and, therefore, L is not a DB-matching.708

(c) D(K) is attached to D(N) at Dℓ−2. Let P be the antiblock B0D1B1, and let L = M −P .709

Then D(L) has a vertex of degree 4, and, therefore, L is not a DB-matching.710

(d) D(K) is attached to D(N) at Dℓ−1. Then M is a DB-matching.711

(e) D(K) is attached to D(N) at Bℓ−1. Let P be the antiblock B0D1B1, and let L = M −P .712

Then D(L) has a 4-chain, and, therefore, L is not a DB-matching.713

These cases are shown in Figure 13. D(K) is shown by green when M is a DB-matching, and714

by blue when a contradiction is obtained. In this latter case, the element corresponding to P is715

marked by red. The point where D(K) is attached to D(N) is marked by a circle.716

Theorem 28. The number of DB-matchings of size k is ℓ · 2ℓ.717

Proof. For a DB-matching of size k, χ can be chosen in 2ℓ−2 ways, and z in 2k = 4ℓ ways. Since718

the structure of a DB-matching has no non-trivial symmetries, each DB-matching is counted in719

this way exactly once. Therefore, there are 2ℓ−2 · 4ℓ = ℓ · 2ℓ DB-matchings.720

The number of small components in DCMk is obtained now immediately.721

Corollary 29. The number of small components in DCMk is ℓ · 2ℓ−1.722

4 Medium components723

4.1 Medium components for odd k724

Definition. Let k ≥ 3 be an odd number. A DBD-matching of size k is a matching that can be725

represented by a strip drawing with pattern DBDB . . .DBD. In other words, its strip drawing can726

be obtained from the standard strip drawing of a DB-matching of size k − 1 by adding one more727

D-element that connects the rightmost points of L and U.728

For DBD-matchings, we adopt the notations and the conventions developed for DB-matchings729

and their standard drawings. One difference is that this time the edges of (the rightmost) face Dℓ−1730

are dℓ−1, bℓ−1, dℓ. Similarly to DB-matchings, it will be assumed without loss of generality that b1731

lies on U, and bℓ−1 lies on L, and the position of other bis will be specified by a {−,+}-sequence732

χ (which is now of length ℓ − 3). A DBD-matching with specified χ and z will be denoted by733

DBD(k, χ, z). Notice, however, that due to a symmetry of the structure each DBD-matching is734

represented twice in this form: DBD(k, χ, z) = DBD(k, χ′, z′) (or, more precisely, the standard735

12For the sake of brevity, we write “the block/the antiblock ABC” instead of “the block/the antiblock corresponding
to the 2-branch/the V-shape ABC”.
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Figure 13: Illustration to the proof of Theorem 27.

drawing of DBD(k, χ, z) is the upside down drawing of DBD(k, χ′, z′)), where χ′ and z′ are defined736

as for DB-matchings. See Figure 14: (a) shows the matching DBD(15,+ + − − +, 1) represented737

by a standard strip drawing (this matching is also DBD(15,− + + − −, 17) drawn upside down),738

(b) shows the dual tree of DBD(15,+ +−−+, 1), (c) shows the general structure of the dual tree739

of DBD-matchings.740

Proposition 30. Let M be a DBD-matching of size k. Then:741

1. M has exactly ℓ− 1 neighbors (where ℓ =
⌈
k
2

⌉
);742

2. All the neighbors of M are leaves.743

Thus, the connected component that contains M is a star of order ℓ.744

Proof.745

1. Let M ′ be a (supposed) neighbor of M . Consider the corresponding flippable partition of746

M . Its members can be of size at most 3 because inner faces of M have at most three edges.747

Since k is odd, there is at least one set of size 3 in the flippable partition, which must be748

a DBD-element {dj , bj , dj+1} (1 ≤ j ≤ ℓ − 1). The parts of M to the left and to the right749

of this DBD-element are DB-matchings (if non-empty), and, therefore, upon the choice of a750

DBD-element that belongs to a flippable partition, the construction of a disjoint compatible751
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Figure 14: DBD-matchings: (a) DBD(15,++−−+, 1); (b) The dual tree of DBD(15,++−−+, 1).
(c) The general structure of the dual tree.

matching can be completed in a unique way. Since M , with this flippable partition (shown752

by square brackets) has the pattern753

[DB] . . . [DB]
︸ ︷︷ ︸

(j−1)×DB

[DBD] [BD] . . . [BD]
︸ ︷︷ ︸

(ℓ−1−j)×BD

,

the matching M ′ determined by flipping the jth DBD-element has by Observation 26 the754

pattern755

[BD] . . . [BD]
︸ ︷︷ ︸

(j−1)×BD

[B2+1] [DB] . . . [DB]
︸ ︷︷ ︸

(ℓ−1−j)×DB

.

The position of B-edges ofM ′ matches that ofM . Denote this matchingM ′ by DBDL(k, j, χ, z).756

The dual tree of M ′ = DBDL(k, j, χ, z) is obtained from that of M = DBD(k, χ, z) by erasing757

the edges B0D1 and Dℓ−1Bℓ, and attaching two additional leaves, one below the path and758

one above it, to Dj . The edge side D1B1 is labeled by z.759

Since we have ℓ− 1 ways to choose the DBD-element that belongs to a flippable partition, M760

has ℓ− 1 neighbors.761

2. We see inductively that the only flippable partition of a DBDL-matching consists of ℓ − 2762

DB-elements and one B2+1-element. Therefore, it has only one neighbor, and, thus, it is an763

L-matching.764

765

Figure 15 shows the matching DBD(11,++−, 1), its neighbors DBD(11, j,++−, 1), 1 ≤ j ≤ 5,766

and their dual trees. For the DBDL-matchings, the flippable sets are marked by a blue box.767
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Figure 15: The matching DBD(11,+ +−, 1), its neighbors, and their dual trees.

Proposition 31. The number of DBD-matchings of size k is (2ℓ− 1) · 2ℓ−3.768

Proof. For a DBD-matching of size k, χ can be chosen in 2ℓ−3 ways, and z in 2k = 2(2ℓ− 1) ways.769

However, as explained above, DBD(k, χ, z) = DBD(k, χ′, z′), and this is the only way to represent770

a DBD-matching by a standard strip drawings in several ways. Therefore, each DBD-matching is771

represented in this way exactly twice. It follows that there are (2ℓ− 1) · 2ℓ−3 DBD-matchings.772

Corollary 32. The number of connected components of DCMk that contain DBD- and DBDL-773

matchings is (2ℓ− 1) · 2ℓ−3.774

To summarize: In this section we described certain connected components of DCMk for odd775

values of k. The enumerational results fit those from Table 1. In Section 5 we will show that these776

are precisely the medium components of DCMk for odd k.777

4.2 Medium components for even k778

Recall the definition of DB-matching from Section 3.6. Refer again to Figure 11 for the standard779

representation of a DB-matching by a strip drawing, and for the labeling of its edges and faces. In780

particular, the standard drawing of a DB-matching of size k− 2 has ℓ− 1 faces D1, . . . ,Dℓ−1 (from781

left to right).782

Definition. An EDB-matching13 of size k is a matching whose (standard) stripe drawing can be783

obtained from that of a DB-matching of size k−2 by adding two boundary edges to one of the faces784

13EDB stands for “extended DB-matching”.
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Dj (1 ≤ j ≤ ℓ− 1), one on U and one on L (or, equivalently, by replacing one of its DB-elements785

by an EDB-element of the same direction and position).786

Thus, a DB-matching of size k − 2 produces ℓ − 1 EDB-matchings of size k. Specifically, let787

DB(k − 2, χ, z) be a DB-matching. For each j, 1 ≤ j ≤ ℓ − 1, we denote by EDB(k, j, χ, z), the788

matching obtained from DB(k− 2, χ, z) by adding two boundary edges, as explained above, to Dj .789

These two boundary edges will be denoted by e and e′: e lies on the same side of R as bj (in order790

to distinguish between bj and e we assume that e is to the left of bj), and e′ on the opposite side.791

Equivalently, the dual tree of an EDB-matching of size k can be obtained from the dual tree of792

a DB-matching of size k − 2 by attaching a pair of leaves, E and E′, one below and one above the793

path B0 . . . Dℓ−1, to one of the vertices Dj , 1 ≤ j ≤ ℓ − 1 (the edges DjE and DjE
′ correspond,794

respectively, to e and e′). See Figure 16 for an example.
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Figure 16: The five EDB-matchings EDB(12, j,− + +, 1), j = 1, 2, 3, 4, 5, produced by M =
DB(10,− ++, 1).

795

Recall from the proof of Theorem 27 that the only neighbor of DB(k−2, χ, z) is DB(k−2, χ′, z′),796

where z′ = z + (k − 2) + δ(χ).797

Proposition 33. The EDB-matching M = EDB(k, j, χ, z) has j + 2 neighbors, namely:798

• j EDB-matchings, namely, EDB(k, i, χ′, z′) for ℓ− j ≤ i ≤ ℓ− 1 (here z′ = z + k + δ(χ));799

• and two L-matchings.800
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Proof. Consider the standard strip drawing of M = EDB(k, j, χ, z). Let M ′ be a (supposed)801

neighbor of M . The set P = {dj , bj , e, e
′} is an R-directed EDB-element of M . The part of M802

to the right of P is (if non-empty) a DB-matching consisting of R-directed DB-elements, and,803

therefore, they are replaced in M ′ by L-directed DB-elements with the same position. The edges804

of P can belong to the sets from a flippable partition in several ways. There are several cases to805

consider.806

• Case 1: The quadruple P = {dj , bj , e, e
′} belongs to the flippable partition. P , the807

R-directed EDB-element of M , is replaced in M ′ by an L-directed EDB-element with the808

same position. If there are edges to the left of P , they form a DB-matching consisting of809

R-directed DB-elements. Thus, in M ′ they are replaced in M ′ by L-directed elements with810

the same position. Since M with its flippable partition has the form811

[DB] . . . [DB]
︸ ︷︷ ︸

j×DB

[DB2+1] [DB] . . . [DB]
︸ ︷︷ ︸

(ℓ−1−j)×DB

,

we obtain that M ′ has the form812

[BD] . . . [BD]
︸ ︷︷ ︸

j×BD

[B2+1D] [BD] . . . [BD]
︸ ︷︷ ︸

(ℓ−1−j)×BD

,

that is, M ′ is also an EDB-matching (drawn upside down), namely, M ′ = EDB(k, ℓ−j, χ′, z′).813

See Figure 17 for an example.

e

e′

21

EDB(18, 5,+ +− +−+, 1)

EDB∗(18, 4,− +− +−−, 21)

dj b1

Figure 17: EDB(18, 5,++−+−+, 1) and its neighbor EDB(18, 4,−+−+−−, 21) determined by
flipping a quadruple (Proposition 33, case 1).

814

• Case 2: The triple {bj , e, e
′} belongs to the flippable partition. This triple is a B2+1-815

element. Upon flipping it, we obtain in M ′ a DBD-element with the same position. The part816

of M to the left of this triple, is (if non-empty) a DBD-matching of size 2j − 1. Therefore, it817

follows from the proof of Proposition 30, that M ′ is determined by flipping another flippable818

DBD-element – {di, bi, di+1} for some 1 ≤ i ≤ j − 1. Since M has the form819

[DB] . . . [DB]
︸ ︷︷ ︸

(i−1)×DB

[DBD] [BD] . . . [BD]
︸ ︷︷ ︸

(j−i)×BD

[B2+1] [DB] . . . [DB]
︸ ︷︷ ︸

(ℓ−1−j)×DB

,

we obtain that M ′ has the form820

[BD] . . . [BD]
︸ ︷︷ ︸

(i−1)×BD

[B2+1] [DB] . . . [DB]
︸ ︷︷ ︸

(j−i)×DB

[DBD] [BD] . . . [BD]
︸ ︷︷ ︸

(ℓ−1−j)×BD

,
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which can be rewritten as821

BD . . .BD
︸ ︷︷ ︸

(i−1)×BD

B2+1DBD . . .BD
︸ ︷︷ ︸

(ℓ−i)×BD

,

which means that M ′ is also an EDB-matching (drawn upside down), namely – since the822

position of the flipped elements didn’t change, – M ′ = EDB(k, ℓ− i, χ′, z′).823

Since the flippable DBD-element can be chosen in j − 1 ways, we obtain in this case j − 1824

neighbors of M . See Figure 18 for an example (the flipped triples are indicated by red boxes825

around the matchings adjacent to M).

e bj

e′

21

EDB(18, 5,+ +− +−+, 1)

EDB∗(18, 8,− +− +−−, 21)

EDB∗(18, 7,− +− +−−, 21)

EDB∗(18, 5,− +− +−−, 21)

EDB∗(18, 6,− +− +−−, 21)

21

21

21

1

Figure 18: EDB(18, 5,+ + − + −+, 1) and its neighbors EDB(18, j,− + − + −−, 21), 5 ≤ j ≤ 8,
determined by flipping two triples (Proposition 33, case 2).

826

• Case 3a: Two pairs, {bj , e} and {dj , e
′}, belong to the flippable partition.827

M \ {bj , e} is the DB-matching obtained from DB(k − 2, χ, z) by changing the position of828

its jth DB-element. Thus, the neighbor of M \ {bj , e} is the DB-matching obtained from829

DB(k − 2, χ′, z′) by changing the position of its (ℓ− j)th DB-element. The antiblock {bj , e}830

of M is replaced in M ′ by the block inserted in the (ℓ − j − 1)st face of DB(k − 2, χ′, z′)831

on the side corresponding to the position of its (ℓ − j)st DB-element (if the B-edge of the832

(ℓ− j − 1)st face is also on this side, then this block is closer to (ℓ− j)th face – to the right833

in the standard drawing of DB(k − 2, χ′, z′), but to the left in our upside down drawing).834

We denote this M ′ by EDBL1(k, j, χ, z). Since is is obtained from a DB-matching by inserting835

a block, it is an L-matching. See Figure 19(a) for an example. It also shows the general form836

of corresponding dual trees. The dotted line surrounding a leaf and a 2-branch indicates that837

these branches are on the different sides of the path.838

• Case 3b: Two pairs, {bj , e
′} and {dj , e}, belong to the flippable partition. M \{bj , e

′}839

is the DB-matching DB(k−2, χ, z). Its neighbor is DB(k−2, χ′, z′). The flippable pair {bj , e
′}840
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is replaced in M ′ by a two D-edges. Thus, M ′ can be obtained from DB(k − 2, χ′, z′) by841

replacing its (ℓ− j)th D-edge by three D-edges.842

We denote this M ′ by EDBL2(k, j, χ, z). It can be obtained by inserting a block (DD) into a843

DB-matching consisting of ℓ− j − 1 DB-elements (its right side), and then inserting j blocks844

(its left side). Therefore it is an L-matching. See Figure 19(b) for an example.

EDBL2(18, 5,+ +− +−+, 1)

EDB(18, 5,+ +− +−+, 1)

EDBL1(18, 5,+ +− +−+, 1)

EDB(18, 5,+ +− +−+, 1)

1

(a)

(b)

1 dj e bj

e′

dj

e′

e bj

Figure 19: EDB(18, 5,+ + − + −+, 1) and its neighbors determined by flipping two pairs in Dj

(Proposition 33, cases 3a and 3b).

845

846

Remark. We showed that EDBL-matchings can be obtained from DB-matchings by inserting certain847

elements. In some cases (listed below), when these elements are inserted close to the either of the848

ends, the obtained EDBL-matchings, and, correspondingly, their dual trees, have some special849

elements that do not present in the “regular” cases. For j = 1, the dual graph of EDBL1 has a850

vertex of degree 4 to which two 2-branches are attached, and the dual graph of EDBL2 a 4-branch.851

For j = ℓ − 1, the dual graph of EDBL1 and that of EDBL2 have 3-branches. For j = ℓ − 2, the852

dual graph of EDBL1 has a vertex of degree 4 to which two leaves and one 4-branch are attached.853

See Figure 20 for an example and the general structure of dual trees in such cases.854
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EDB(12, 1,− + +, 1)

EDBL1(12, 1,− + +, 1)

EDB(12, 1,− + +, 1)

EDBL2(12, 1,− + +, 1)

EDB(12, 5,− + +, 1)

EDBL1(12, 5,− + +, 1)

EDB(12, 5,− + +, 1)

EDBL2(12, 5,− + +, 1)

1

1

b5e

e′

e′

e b5

EDB(12, 4,− + +, 1)

EDBL1(12, 4,− + +, 1)

1

1 b1

e

e′

e′

e

b1

1 b4e

e′

Figure 20: EDBL-matchings with special structure (Illustration to remark to Proposition 33).

Since the neighbors of an EDB-matching M = EDB(k, j, χ, z) are only EDB-matchings with855

parameters χ′ and z′, and two L-matchings, the structure of the connected component of DCMk856

that contains M follows from Proposition 33.857

Corollary 34. The connected component of DCMk that contains EDB(k, j, χ, z) has the following858

structure:859

• There is a path P of length k − 3:860

EDB(k, 1, χ, z) − EDB(k, ℓ− 1, χ′, z′)− EDB(k, 2, χ, z) − EDB(k, ℓ− 2, χ′, z′)− . . .
861

. . . − EDB(k, ℓ− 2, χ, z) − EDB(k, 2, χ′, z′)− EDB(k, ℓ− 1, χ, z) − EDB(k, 1, χ′, z′);

• There are additional edges between the matchings that belong to P , as follows:862

EDB(k, j1, χ, z) − EDB(k, j2, χ
′, z′)

for all j1, j2 (1 ≤ {j1, j2} ≤ ℓ− 1) such that j1 + j2 ≥ ℓ+ 2;863

(Equivalently: if we denote the matchings from the path P , according to the order in which864
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they appear on P , by M1,M2, . . . ,Mk−2, then these additional edges are all the edges of the865

form MaMb, where a is even, b is odd, and a ≤ b− 3.)866

• Each member of P is also adjacent to two leaves.867

In particular, all such components are isomorphic, and their size is 3(k − 2).868

Figure 21 shows such a component for k = 12. The labels (12, j, χ/χ′, z/z′) (with “EDB” being869

omitted) refer to the vertices of the path P that appear directly above them.870

(12, 1, χ, z) (12, 2, χ, z) (12, 4, χ′, z′)(12, 5, χ′, z′) (12, 3, χ, z) (12, 3, χ′, z′) (12, 4, χ, z) (12, 2, χ′, z′) (12, 5, χ, z) (12, 1, χ′, z′)

Figure 21: The structure of the connected component of DCM12 that contains an EDB-matching.

Proposition 35. The number of components of DCMk that contain EDB-matchings is ℓ · 2ℓ−2.871

Proof. By Proposition 28, the number of DB-matchings of size k−2 is (ℓ−1)·2ℓ−1. Therefore, there872

are 2ℓ−4 pairs of unlabeled DB-matchings of size k − 2. Each such pair produces one connected873

component that contains unlabeled EDB-matchings of size k. z can be chosen in 2k = 4ℓ ways.874

Thus, the number of such components is ℓ · 2ℓ−2.875

To summarize: In this section we described certain connected components of DCMk for even876

values of k. The enumerational results fit those from Table 2. In Section 5 we will show that these877

are precisely the medium components of DCMk for even k.878

5 Big components879

5.1 The survey of the proof880

In Section 3 we defined I- and DB-matchings and proved that they are precisely those matchings881

that form small components. In Section 4 we defined DBD-, DBDL-, EDB- or EDBL-matchings882

and described their connected components. In order to complete the proof, we need to show that883

all other matchings form one (“big”) connected component. We start with some definitions.884

Definitions.885

1. The ring component of DCMk is the connected component that contains the rings.886

2. A special matching is either an I-, DB-, DBD-, DBDL-, EDB- or EDBL-matching.887

3. A regular matching is a matching which is not special.888
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Observe that for k ≥ 5 the rings are regular matchings.889

Theorem 1 follows from the results obtained above and the following theorem.890

Theorem 36. For k ≥ 9, every regular matching M belongs to the ring component.891

Proof. For k = 9 and 10, the statement was verified by a computer program. For k ≥ 11, the proof892

is by induction.893

By Proposition 11, M has at least one separated pair K. Let L = M −K. Now we have two894

cases depending on whether L is special or regular.895

Case 1: L is regular. By induction, L belongs to the ring component in DCMk−2. We perform896

the sequence of operations that converts L into a ring, while K oscillates (that is, on the points897

of K, on each step a block is replaced by an antiblock, or vice versa). In this way we obtain a898

matching of the form R+K ′ where R is a ring of size k−2 and K ′ is a separated pair. We can also899

assume that K ′ is an antiblock (otherwise, if K ′ is a block, we flip K ′ and R: K ′ is then replaced900

by an antiblock, and R by the second ring). If the antiblock K ′ is inserted in a skip of R, then901

the whole obtained matching is a ring of size k, and we are done. Otherwise, the antiblock K ′ is902

inserted between two connected points of R. In such a case we use the following proposition that903

will be proven in Section 5.2.904

Proposition 37. For k ≥ 8, the ring component of DCMk is not bipartite.905

Thus, it is possible to convert the ring R into the second ring by an even number of operations.906

We perform these operations, while K ′ oscillates. After this sequence of operations, we still have907

the antiblock K ′, but the ring R is replaced by the second ring R′, and now the whole matching is908

a ring of size k. Figure 22 illustrates the last step for odd k.

K

K

R

R′

Figure 22: Illustration to the proof of Theorem 36 when L is regular.
909

This completes the proof of Case 1.910

Case 2: L is special. In this case we use the following proposition that will be proven in911

Section 5.3.912

Proposition 38. Let M be a regular matching of size k (k ≥ 10) that has a decomposition M =913

L+K where K is a separated pair and L is a special matching. Then M has another decomposition914

N + P , where P is a separated pair and N is a regular matching, or M is connected (by a path)915

to a matching that has such a decomposition.916

Thus, M has a decomposition as in Case 1, or it is connected by a path to a matching that917

has such a decomposition. In both cases it means that M belongs to the ring component. This918

completes the proof.919

It remains to prove Propositions 37 and 38.920
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5.2 The ring component is not bipartite for k ≥ 8 (proof of Proposition 37).921

We prove Proposition 37 by constructing a path of odd length from a ring to itself. In figures,922

we mark the matchings alternatingly by white and black squares, starting with a ring marked by923

white. We finish when we obtain the same ring marked by black.924

First we prove the proposition for even values of k. For k = 8, it is verified directly, see Figure 23925

(in this and the following figures, we use “vertical” strip drawings in order to save the space).

Figure 23: Proof of Proposition 37 for k = 8.
926

M ′
a = MaMa Mb Mc M ′

c

Figure 24: Proof of Proposition 37 for k = 10.

For k = 10 refer to Figure 24. We start with a ring Ma represented by a strip drawing. Mb is927

obtained from Ma by applying the operations as in Figure 23 on the flippable set of size 8 marked928

by a blue box. Since the number of these operations is odd, the block outside this flippable set929

is replaced by an antiblock. After the next two steps we reach a drawing Mc. For each drawing930

Mi on the path from Ma to Mc, denote by M ′
i the reflection of Mi with respect to the green line931

(which halves the points). Notice that M ′
c is adjacent to Mc. Therefore, we can obtain the path932

Ma . . .MbMcM
′
cM

′
b . . .M

′
a. This path has odd length, and M ′

a = Ma. Thus, we have found a path933

of odd length from a ring to itself.934

For even k ≥ 12 we prove the statement by induction, assuming it holds for k − 4 and for935

k − 2. Refer to Figure 25. We start from a ring Ma. Mb is obtained from Ma by applying the odd936
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number of operations which transfer the ring of size k − 2 to itself, on the flippable set marked by937

blue. M ′
b is obtained from Mb by applying the odd number of operations which transfer the ring938

of size k − 4 to itself, on the flippable set marked by red boxes. Notice that M ′
b is the reflection939

of Mb with respect to the green line (which halves the points). Therefore, we can obtain the path940

Ma . . .Mb . . .M
′
b . . .M

′
a, where M ′

i is the reflection of Mi with respect to the green line. This path941

has odd length, and M ′
a = Ma. Thus, we have found a path of odd length from Ma to itself.

MbMa M ′
b M ′

a

Figure 25: Proof of Proposition 37 for even k ≥ 12.

942

Now we prove the proposition for odd values of k. For k = 9, it is verified directly. Refer to943

Figure 26. We start from a ringMa, and after four steps we reach a matchingMc which is symmetric944

with respect to the green line. Therefore we can construct a path of even sizeMa . . .MbMcM
′
b . . .M

′
a,945

where M ′
i the reflection of Mi with respect to the green line. M ′

a is the second ring, which is disjoint946

compatible to Ma, and, thus we have a path of odd length from Ma to itself.947

For odd k ≥ 11, we prove the statement using the even case proven above. Refer to Figure 27.948

We start from a ring Ma. Mb is obtained from Ma by applying an odd number of operations on the949

flippable set of size k− 3 marked by blue, while the remaining flippable triple oscillates. After two950

more steps we reach a matching Md, which is symmetric with respect to the green line. Therefore951

we can construct a path of even size Ma . . .MbMcMdM
′
cM

′
b . . .M

′
a, where M

′
i is the reflection of Mi952

with respect to the green line. M ′
a is the second ring which is disjoint compatible to Ma. Thus we953

have a path of odd length from Ma to itself.954

Remark. We have verified by direct inspection and a computer program that for 2 ≤ k ≤ 7, the955

ring component of DCMk is bipartite.956

5.3 Proof of Proposition 38957

We restate the claim to be proven in this section.958
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Ma Mb Mc M ′
a Ma

Figure 26: Proof of Proposition 37 for k = 9.

Proposition 38. Let M be a regular matching of size k (k ≥ 10) that has a decomposition M =959

L+K where K is a separated pair and L is a special matching. Then M has another decomposition960

N + P , where P is a separated pair and N is a regular matching, or M is connected (by a path)961

to a matching that has such a decomposition.962

Overview of the proof. In the proof to be presented, the possible structure of L plays the central role,963

and we need to refer to the definitions and standard notation of some kinds of special matchings.964

Therefore we replace k by k − 2, and assume from now on that L is a matching of size k and M is965

a matching of size k + 2, where k ≥ 8.966

Since the special matchings have different structure for odd and even values of k, the proofs for967

these cases are separate. It is more convenient to follow the proofs if we use dual graphs. In order968

to simplify the exposition, the elements of the dual graphs that correspond to blocks and antiblocks969

– 2-branches and V-shapes – will be occasionally referred to just as blocks and antiblocks.970

The idea of the proof is similar to that of the [⇒]-part in the proof of Theorem 27. It is given971

that L is a special matching. For some kinds of special matchings we shall proceed as follows.972

Depending on the point where K is inserted into L (or, in terms of dual trees, D(K) is attached973

to D(L)), we shall choose P and show that for this choice the matching N = M − P does not fit974

any of the structures of special matchings (of appropriate parity). Therefore, N must be regular,975

and, thus M has a desired decomposition. For other kinds of special matchings we shall use the976

structure of components that contain special matchings in order to show that M is connected (by977

a path) to a matching that has a desired decomposition.978

5.3.1 Proof of Proposition 38 for odd k.979

First, we recall all possible structures of dual trees of DBD- and DBDL-matchings, and the stan-980

dard notation for DBD-matchings. The dual trees of DBDL-matchings have two possible structures981

referred to as DBDL1 and DBDL2, see Figure 28. Moreover, we recall that I-matchings never have982

antiblocks (Proposition 18), and that for k ≥ 5 they have at least two disjoint blocks (Proposi-983

tion 17).984

Case 1. L is a DBD-matching, K is a block. Refer to the first graph in Figure 28 as to the dual985

tree of L. Due to the symmetry of DBD-matchings, we can assume that D(K) is attached to D(L)986
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Ma Mb Mc Md M ′
a Ma

Figure 27: Proof of Proposition 37 for odd k ≥ 11.

in the point Bi or Di where i ≤
⌈
ℓ−1
2

⌉
. Let P be the antiblock BℓDℓ−1Bℓ−1, and let N = M − P .987

Then N is a regular matching. Indeed, N has an antiblock (Dℓ−1Dℓ−2Bℓ−2), and thus it cannot988

be an I-matching. If D(K) is attached in Bi, then D(N) has a 3-branch, which never happens for989

DBD- and DBDL-matchings. If D(K) is attached in Di, then D(N) has a vertex of degree 4 to990

which at most two leaves are attached, which never happens for DBD- and DBDL-matchings.991

Case 2. L is a DBD-matching, K is an antiblock. Again we assume that D(K) is attached992

to D(L) in the point Bi or Di where i ≤
⌈
ℓ−1
2

⌉
. Denote by P the antiblock BℓDℓ−1Bℓ−1, and993

let N = M − P . Then N is a regular matching. Indeed, N cannot be an I-matching because it994

has at least one antiblock. If D(K) is attached in B0 or B1, then M is special (DBD), while it is995

assumed to be regular. If D(K) is attached in Bi, i ≥ 2, then D(N) has three disjoint antiblocks996

(K, B0D1B1 and Dℓ−1Dℓ−2Bℓ−2), which never happens for DBD- and DBDL-matchings. If D(K)997

is attached in Di, then D(N) has a vertex of degree 5 and has no blocks, which never happens for998

DBD- and DBDL-matchings.999

Case 3. L is a DBDL-matching, K is a separated pair. Such a matching M is adjacent to1000

a matching M ′ = L′ +K ′ where L′ is the DBD-matching adjacent to L, and K ′ is the flip of K.1001

For M ′ the statement holds by Cases 1 and 2. Therefore, it also holds for M .1002
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DBD

Bℓ−1

Bℓ

Dℓ−3

Bℓ−2Bℓ−3

Dℓ−2

B4B3B2

D4D3D2D1

B1

B0

DBDL2

DBDL1

Dℓ−1

Figure 28: Dual trees of odd size special matchings from medium components.

Case 4. L is an I-matching, K is a block. In such a case M is also an I-matching (by1003

Theorem 27), and, thus, it cannot be regular. So, this case is impossible.1004

Case 5. L is an I-matching, K is an antiblock. L has at least two disjoint blocks. Therefore,1005

M has at least one block K ′. Clearly, K ′ is disjoint from K. Denote L′ = M −K ′. L′ cannot be1006

an I-matching because it has an antiblock (K). If L′ is a DBD- or a DBDL-matching, we return1007

to Case 1 or 3 (with L′ and K ′ in the role of L and K). If L′ is regular, we are done.1008

5.3.2 Proof of Proposition 38 for even k.1009

We recall all possible structures of the dual trees of DB-, EDB- and EDBL-matchings. As we saw1010

in Section 4.2, the dual tree of any EDB-matching has one of three possible structures, and the1011

dual tree of any EDBL-matching has one of six possible structures; this structures will be referred1012

to as in Figure 29 (EDB1, EDB2, etc.). For dual trees of DB-matchings and of EDB1-matchings1013

(that is, the EDB-matchings in which the edges e and e′ belong to the face Dj where 2 ≤ j ≤ ℓ−2),1014

we also recall the standard notation of vertices.1015

Case 1. L is a DB-matching. Refer to the labeling of D(L) as in Figure 29. D(K) is attached1016

to D(L) in some point Bi or Di. If i ≥
⌈
ℓ
2

⌉
, let P be the antiblock B0D1B1. If i <

⌈
ℓ
2

⌉
, let P be1017

the block Dℓ−1DℓBℓ. Denote N = M − P . We claim that N is regular.1018

In the case i ≥
⌈
ℓ
2

⌉
, in the left side of D(N) we have an antiblock B2D2D1, and D2 has degree1019

3. Therefore, if N is special, it can be only a antiblock Q that appears in the left side of DB, EDB1,1020

EDB3, EDBL1, EDBL2, EDBL4 or EDBL5 (it is marked by a red frame in Figure 29). However,1021

in such a case, upon restoring D(P ) (attaching it to one of the leaves of Q) we obtain a matching1022

that fits the same structure, and therefore, is also special. This is a contradiction since M = N +P1023

is a regular matching.1024

In the case i <
⌈
ℓ
2

⌉
the reasoning is similar: in the right side of D(N) we have a block1025

Dℓ−2Dℓ−1Bℓ−1. and Dℓ−2 has degree 3. Therefore, if N is special, it can be only a block R1026

that appears in the right side of DB, EDB1, EDB2, EDBL1, EDBL2, EDBL3 or EDBL6 (it is1027

marked by a blue frame in Figure 29). Upon restoring D(P ) (attaching it to the central point1028

of R) we obtain a matching that fits the same structure, and therefore, is also special. This is a1029
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Figure 29: Dual trees of small and medium special matchings.

contradiction as above.1030

Case 2. L is an EDB1-matching with j =
⌈
ℓ−1

2

⌉

. Refer to the labeling of D(L) as in1031

Figure 29. The proof is similar to that of Case 1. If D(K) is attached to D(L) “in the right part”1032

– that is, in Bi or Di with i ≥ j, or in one of the points E,E′, – we take P to be the leftmost1033

antiblock. If D(K) is attached to D(L) “in the left part” – that is, in Bi or Di with i < j, – we take1034

P to be the rightmost block. We assume (for contradiction) that N = M − P is special. However,1035

depending on the case, D(N) has an antiblock or a block with a vertex of degree 3. Therefore it1036

can fit a special matching in a specific way. Upon restoring P , we see that D(M) fits the same1037

structure as D(N), and, therefore, M is special – a contradiction.1038

Case 3. L is an EDB-matching not of the kind treated in Case 2, or an EDBL-matching.1039

By Corollary 34, L is connected by a path to a matching L′ of the kind treated in Case 2. Therefore,1040

M = L+K is connected by a path to M ′ = L′ +K ′ where K ′ is either K or its flip. As we saw in1041

Case 2, M ′ has a desired decomposition, therefore, the statement of Theorem holds for M .1042

We have verified all the cases, and, so, the proof is complete.1043
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5.4 The order of the ring component1044

In Introduction, the ring component was referred to as the “big component”. In order to show that1045

it indeed has the biggest order, we need to compare its order with that of medium components.1046

Proposition 39. For each k ≥ 9, the order of the ring component is larger than the order of the1047

components that contain DBD- (for odd k) or, respectively EDB- (for even k) matchings.1048

Proof. Since the total number of vertices in DCMk is Ck, and we know the order and the number1049

of all other components, we obtain that the for odd k the order of the ring component of DCMk is1050

C2ℓ−1 − 1 ·
1

ℓ

(
4ℓ− 2

ℓ− 1

)

− ℓ · (2ℓ− 1)2ℓ−3,

and for even k it is1051

C2ℓ − 2 · ℓ 2ℓ−1 − (6ℓ− 6) · ℓ 2ℓ−2.

Thus, we need to show that for odd k ≥ 9 we have1052

C2ℓ−1 −
1

ℓ

(
4ℓ− 2

ℓ− 1

)

− ℓ(2ℓ− 1)2ℓ−3 > ℓ,

or, equivalently,1053

C2ℓ−1 >
1

ℓ

(
4ℓ− 2

ℓ− 1

)

+ ℓ(2ℓ− 1)2ℓ−3 + ℓ; (3)

and that for even k ≥ 10 we have1054

C2ℓ − ℓ 2ℓ − ℓ(6ℓ− 6)2ℓ−2 > 6ℓ− 6,

or, equivalently,1055

C2ℓ > ℓ 2ℓ + ℓ(6ℓ− 6)2ℓ−2 + 6ℓ− 6. (4)

First, notice that Inequalities (3) and (4) hold asymptotically since the growth rate of (C2ℓ−1)ℓ≥11056

and of (C2ℓ)ℓ≥1 is 16; that of
(
1
ℓ

(
4ℓ−2
ℓ−1

))

ℓ≥1
is 256

27 ≈ 9.48; and that of other terms is at most 2. In1057

order to show that they hold for k ≥ 9, we verify them for ℓ = 5, and show that for ℓ ≥ 5 we have1058

RHSℓ+1

RHSℓ
< 10 and

LHSℓ+1

LHSℓ
> 10 in them both.14 We omit further details.1059

6 More enumerating results, concluding remarks, and open prob-1060

lems1061

6.1 Vertices with largest degree1062

In Section 3 we characterized matchings with smallest possible degrees (as vertices of DCMk): 01063

and 1. One can expect that the matchings with the largest degree are the rings. Here we show that1064

this is indeed the case.1065

14 LHS and RHS denote the left-hand side and the right-hand side of the respective inequalities.
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Proposition 40. For each k > 1, the vertices of DCMk with the maximum degree are precisely1066

those corresponding to the rings. Their degree is the kth Riordan number,1067

rk =
1

k + 1

⌊k
2⌋∑

i=1

(
k + 1

i

)(
k − i− 1

i− 1

)

. (5)

Proof. Let M be any matching of size k which is not a ring. Let e = PαPβ be a diagonal edge1068

of M . Modify the point set X2k by transferring Pβ to the position between Pα and Pα+1 (on Γ).1069

Denote the modified point set by X ′
2k Let M ′ be the matching of X ′

2k whose members connect the1070

pairs of points with the same labels as M . It is easy to see that M ′ is a non-crossing matching, and1071

that each flippable partition of M (given by labels of endpoints of edges) is a flippable partition of1072

M ′. Therefore d(M) ≤ d(M ′). We repeat this procedure until we eventually reach a ring R. Thus,1073

we have d(M) ≤ d(R). Moreover, since the partition that consists of one set (whose members are1074

all the edges) is flippable in R but not in M , we have in fact d(M) < d(R).1075

In order to find d(R), we proceed as follows. Assume that R is the ring with edges P1P2,1076

P3P4, . . . , P2k−1P2k. For each 1 ≤ i ≤ k, contract the edge P2i−1P2i into the point P2i. The1077

induced modification of flippable partitions of R is a bijection between flippable partitions of R and1078

non-crossing partitions of {Q1, Q2, . . . , Qk} without singletons. The partitions of the latter type1079

are known to be enumerated by Riordan numbers [25, A005043]. See [7] for bijections between this1080

structure and other structures enumerated by Riordan numbers. The explicit formula for the kth1081

Riordan numbers is as in Eq. (5) (see [10] for a simple combinatorial proof), and asymptotically1082

rk = Θ∗(3k).1083

6.2 Number of edges1084

In this section we consider enumeration of edges of DCMk. Denote, for k ≥ 1, the number of1085

edges in DCMk by dk; moreover, set d0 = 1. Let z(x) be the corresponding generating function1086

z(x) =
∑

k≥0

dkx
k, and let Z(x) = 2z(x) − 1.1087

Proposition 41. The function Z(x) satisfies the equation1088

Z(x) = 1 +
2x2Z4(x)

1− xZ2(x)
. (6)

Moreover, dk = Θ∗(µn) with µ ≈ 5.27.1089

Proof. Any edge e of DCMk corresponds to a pair of disjoint compatible matchings – say, Ma and1090

Mb. By Observation 4, Ma ∪Mb is a union of pairwise disjoint cycles that consist alternatingly of1091

edges of Ma and Mb. We can color them by blue and red, as in Figure 3. If we ignore the colors,1092

these cycles form a non-crossing partition of X2k into even parts of size at least 4. Given such a1093

partition, each polygon can be colored alternatingly by two colors in two ways. Each way to color1094

alternatingly all the polygons in such a partition corresponds to an edge of DCMk. However, in1095

this way each edge is created twice because exchanging all the colors results in the same edge.1096

Since each part in the partition can be colored in two ways, the total number of edges of DCMk1097

is equal to the number of non-crossing partitions of X2k into even parts of size at least 4, when1098

each partition is counted 2p−1 times, where p is the number of parts. Equivalently, H(x) is the1099
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generating function for the number of such partitions of X2k where each part is colored by one of1100

two colors. Since the part that contains 1 is a polygon of even size at least 4, and the skip between1101

any pair of consecutive points of this polygon possibly contains further partition of the same kind,1102

we have1103

Z(x) = 1 + 2x2Z4(x) + 2x3Z6(x) + 2x4Z8(x) + 2x5Z10(x) + . . . ,

which is equivalent to Eq. (6).1104

We can estimate the asymptotic growth rate of (dk)k≥0 as follows. By the Exponential Growth1105

Formula (see [12, IV.7]), for an analytic function f(x) the asymptotic growth rate is µ = 1
λ , where1106

λ is the absolute value of the singularity of f(x) closest to the origin. It is easier to find λ for1107

Y (x) = xZ(x). From Eq. (6) we have1108

2Y 4(x) + Y 3(x)− xY 2(x)− xY (x) + x2 = 0.

This is a square equation with respect to x; solving it we obtain that Y (x) is the compositional1109

inverse of1110

V (x) =
x

2

(

1 + x+
√

1− 2x− 7x2
)

.

The singularity points of Y (x) correspond to the points where the derivative of V (x) vanishes.1111

Analyzing V (x), we find that the singularity point of Y (x) with the smallest absolute value is1112

λ ≈ 0.1898. Therefore, the asymptotic growth rate of (dk)k≥0 is µ ≈ 5.2680.1113

6.3 “Almost perfect” matchings for odd number of points1114

In this section we consider, without going into details, the following variation. Let X2k+1 be a set1115

of 2k + 1 points in convex position. In this case we can speak about almost perfect (non-crossing1116

straight-line) matchings – matchings of 2k out of these points, one point remaining unmatched.1117

Clearly, the number of such matchings is kCk. The definition of disjoint compatibility and that of1118

disjoint compatibility graph are carried over for this case in a straightforward way. In contrast to1119

the case of perfect matchings of even number of points, we have here the following result.1120

Claim 42. For each k, the disjoint compatibility graph of almost perfect matchings of 2k+1 points1121

in general position is connected.1122

This claim can be proven along the following lines. For k = 1, 2, it is verified directly. For1123

k ≥ 3, we apply induction similarly to that in the proof of Theorem 36. The rings in this case1124

are the matchings that contain only boundary edges and one unmatched point. For fixed k, there1125

are exactly 2k + 1 rings that are uniquely identified by their unmatched point. Denote by Rj the1126

ring whose unmathced point is Pj . Then the ring Rj is disjoint compatible to exactly two rings,1127

namely, Rj−1 and Rj+1. Thus, the rings induce a cycle of size 2k + 1.1128

Let M be an almost perfect matching, and let P be the unmatched point. We show that M1129

is connected by a path to the rings as follows. It is always possible to find a separated pair K1130

which is not interrupted by P (suppose that K connects the points Pi, Pi+1, Pi+2, Pi+3). We let K1131

oscillate, while transforming L = M −K into a ring R (on 2k − 3 points). It is possible to assume1132

that after this process K is replaced by an antiblock K ′. Now either K ′ + R is a ring and we are1133

done, or R has the edge Pi−1Pi+4. In the latter case we continue the reconfiguration: K ′ continues1134

to oscillate, while we “rotate” R so that its unmatched point moves clockwise. Eventually, we will1135

reach two matchings in which R is replaced by rings whose unmatched points are Pi−1 and Pi+4.1136

For one of them, we still have the antiblock K ′, and the whole matching is a ring.1137
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6.4 Summary and open problems1138

We showed that for sets of 2k points in convex position the disjoint compatibility graph is al-1139

ways disconnected (except for k = 1, 2). Moreover, we proved that for k ≥ 9 there exist exactly1140

three kinds of connected components: small, medium and big. For each k we found the number1141

of components of each kind. For small and medium components, we determined precisely their1142

structure.1143

For sets of points in general position, the disjoint compatibility graph depends on the order1144

type. Therefore only some questions concerning the structure can be asked in general. We suggest1145

the following problems for future research.1146

1. Connectedness for a general point set. What is more typical for set of points in general1147

position: being the disjoint compatibility graph connected or disconnected? The former1148

possibility can be the case since, intuitively, one of the reasons for the disconnectedness when1149

the points are in convex position is the fact that all edges connect two points that lie on the1150

boundary of the convex hull. One can conjecture, for example, that the disjoint compatibility1151

graph is connected if the fraction of points in the interior of the convex hull is not too small.1152

2. Isolated matchings. In order to construct isolated matchings for sets of points not only in1153

convex position, we can use the following recursive procedure. First, any matching of size 11154

is isolated. Next, let M = M1 ∪ {e} ∪ M2, where M1 and M2 are isolated matchings, and1155

the edge e blocks the visibility between M1 and M2 (see Figure 30(a)). Then it is easy to1156

see that M is also isolated. For matchings of points in convex position, this construction1157

gives all isolated matchings: indeed, one can easily show that for this case this construction1158

is equivalent to that from the definition of I-matchings (see Section 3.2). However, for points1159

in general (not convex) position it is possible to find an isolated matching that cannot be1160

obtained by this recursive procedure: see Figure 30(b).1161

(a) (b)

e

M2M1

Figure 30: (a) A recursive construction of isolated matchings. (b) An isolated matching that cannot
be obtained by this construction.
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[19] M. Ishaque, D. L. Souvaine and C. D. Tóth. Disjoint Compatible Geometric Matchings. Dis-1208

crete Comput. Geom., 49:1 (2013), 89–131.1209

[20] J. Propp. The many faces of alternating-sign matrices. In Discrete Models: Combinatorics,1210

Computation, and Geometry, Volume AA of DMTCS Proceedings (2001), 43–58.1211

[21] A. Razen. Crossing-Free Configurations on Planar Point Sets. Dissertation, ETH Zurich, No.1212

18607, 2009. http://dx.doi.org/10.3929/ethz-a-005902005. Also in: A lower bound for the1213

transformation of compatible perfect matchings. Proceedings of the 24th European Workshop1214

on Computational Geometry (2008), 115–118.1215

[22] A. V. Razumov and Yu. G. Stroganov. Combinatorial nature of ground state vector of O(1)1216

loop model. Theor. Math. Phys., 138:3 (2004), 333–337.1217

[23] M. Sharir and W. Welzl. On the number of crossing-free matchings, cycles, and partitions.1218

SIAM J. Comput. 36:3 (2006), 695–720.1219

[24] R. P. Stanley. Enumerative Combinatorics. Volume 2. Cambridge University Press, 1999.1220

[25] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/ .1221

[26] H. N. V. Temperley and E. H. Lieb. Relations between the ‘percolation’ and ‘colouring’ problem1222

and other graph-theoretical problems associated with regular planar lattices: some exact results1223

for the ‘percolation’ problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 322:1549 (1971),1224

251–280.1225

[27] B. Wieland. Large dihedral Symmetry of the set of alternating sign matrices. Electron. J.1226

Combin., 7 #R37 (2000).1227

46

http://dx.doi.org/10.3929/ethz-a-005902005
http://oeis.org/

	Introduction
	Basic definitions and main results
	Background and motivation
	Outline of the paper.

	Further definitions and basic results
	Flipping
	Merging and splitting of matchings
	Combinatorial and topological matchings
	The map and the dual tree
	Blocks and antiblocks

	Small components and vertices of small degree
	General discussion
	Small components for odd k (Isolated Matchings)
	Leaves
	Enumeration of I- and L-matchings
	Strip Drawings and DB-components
	Small components for even k (Pairs)

	Medium components
	Medium components for odd k
	Medium components for even k

	Big components
	The survey of the proof
	The ring component is not bipartite for k 8 (proof of Proposition 37).
	Proof of Proposition 38
	Proof of Proposition 38 for odd k.
	Proof of Proposition 38 for even k.

	The order of the ring component

	More enumerating results, concluding remarks, and open problems
	Vertices with largest degree
	Number of edges
	``Almost perfect'' matchings for odd number of points
	Summary and open problems


