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Abstract. We propose a method to compute the algebraically correct
medial axis for simply connected planar domains which are given by
boundary representations composed of rational circular arcs. The algo-
rithmic approach is based on the Divide-&-Conquer paradigm, as used
in [2]. However, we show how to avoid inaccuracies in the medial axis
computations arising from a non-algebraic biarc construction of the bound-
ary. To this end we introduce the Exact Circular Arc Boundary represen-
tation (ECAB), which allows algebraically exact calculation of bisector
curves. Fractions of these bisector curves are then used to construct the
exact medial axis. We finally show that all necessary computations can
be performed over the field of rational numbers with a small number of
adjoint square-roots.
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1 Introduction

The medial axis is an important concept for shape description introduced by
Blum [4]. We call a domain S in the plane a simple shape, if it is bounded by
a non-selfintersecting closed curve ∂S. The medial axis of S is composed of the
union of all center points of maximal disks inscribed in S. If S is simple then its
axis has a tree-like structure. The following two definitions stem from [4]:

Definition 1. Given a shape S, a disk D ⊆ S is called maximal, if there does
not exist a disk D′ ⊆ S, D′ 6= D, which contains D. We denote the set of all
maximal disks with MAT (S) (medial axis transform of S).

Definition 2. Given a shape S, its medial axis MA(S) is defined as the union
of all centers of maximal disks in S:

MA(S) := {cD | D ∈MAT (S), and cD is the center of D} .

The medial axis construction for shapes with simple boundary representa-
tions as straight lines or circular arcs is a field that has been tackled with various
techniques. The Divide-&-Conquer approach used in [2] is a simple method for
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efficient axis computation, however, with some minor drawbacks. The biarc con-
struction as described in [2] provides theoretical smoothness, that is however
not representable by usual float or rational number types. Furtheron, degener-
ate branching points of the medial axis cannot be detected exactly. In particu-
lar, the correct representation of the medial axis curve is a challenging task if
the boundary input data does not comply with certain (numerical or algebraic)
quality criteria as being rational representable or providing algebraically smooth
joints between arcs.

An important part of most medial axis algorithms is the bisector computa-
tion. This problem has been approached for various types of rational curves, but
mostly relying on machine arithmetic as in [11, 7].

Our goal is to compute the algebraically correct medial axis. Thus, we have
to cope with exact bisector computation of (arc-supporting) circles. For this
purpose we require all arcs on the boundary, that are involved in the bisector
computation, to be rational. Arcs which do not directly contribute to the medial
axis, but describe a local curvature maximum and thus merely a leaf-point of
the axis, are allowed to be rational square-root expressions (rasqex).

Integers are rasqex. If x and y are rasqex, so are x+ y, x− y, x · y, x/y and√
x. Rasqex have exact comparison operators =, <, and >, realized in LEDA [6,

14] or the Core library [13, 16]. Actually, these two packages are able to represent
arbitrary k-th root numbers, what is more than we need. For our purposes the
FieldWithSqrt concept as provided by the CGAL library [1] is sufficient.

Several details of our algorithm, e.g. bisectors and tritangent circles, are simi-
lar to those needed for the construction of an Apollonius diagram, as examined
extensively in the work of Emiris and Karavelas [8]. They show that the opera-
tions allowed in the rasqex number type are sufficient to compute all predicates.
Similar efforts have been made for ellipses and even more general smooth con-
vex sites [9, 10]. Beside the similarities there are serveral additional aspects we
have to take into account for our approach. First, the medial axis construction
needs parts from the underlying bisectors different from the ones needed for the
Apollonius diagram. Second, while in [8] an incremental approach is pursued, we
intend to show that all steps of our Divide-&-Conquer algorithm can be accom-
plished with rasqex numbers as well, a fact that is not obvious. Furthermore, as
opposed to the Apollonius diagram, we do not deal with single sites and com-
plete circles, but one closed curve composed of circular arcs representing a planar
shape. In this context we consider boundaries that are at least C1-smooth to de-
fine an Exact Circular Arc Boundary or ECAB. (The extension to non-smooth
boundaries only requires an extension of the cases that may occur for bisector
computation.) See Section 2 for detailed definitions.

Given an ECAB, the divide-part of the algorithm presented in [2] is applied
(overview in Section 3) with some minor modification of the construction of the
dividing disks (Section 4), as they are crucial for the final reassembling of the
medial axis. The main bisector calculus takes place when arriving at the base
cases which terminate the decomposition process. Pairs of (rational) arcs are
adequately chosen, and the bisectors of their supporting circles are computed.
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It is shown in Section 5 that the bisectors are algebraic curves of degree 4 over
the rational numbers Q, which can be expressed as the product of two quadratic
polynomials (conics) over a simple extension field of Q. The center points of the
arcs stemming from the dividing disks (called artificial arcs) lie on the bisectors,
and are used to isolate those parts of the conic curves which contribute to the
partial medial axes of specific base cases. Details about these base cases are
discussed in Section 6, representing the conquer-part of the algorithm.

2 Exact Circular Arc Boundary

We define a circular boundary representation which fits our needs for an exact
bisector and medial axis construction. This requires some definitions, starting
with rational circles. Let Q denote the set of rational numbers.

Definition 3. For a circle C with center c the following definitions are equiva-
lent:

C is a rational circle⇐⇒ c ∈ Q2 and ∃u ∈ C : u ∈ Q2 (1)
⇐⇒ ∃u, v, w ∈ Q2 : u, v, w ∈ C . (2)

Note that the squared radius of a rational circle is rational. It is also well-
known that on a rational circle C points with rational coordinates are lying
dense (see [15]). This means that near an arbitrary point p on C and for any
ε > 0 one can find a rational point in an ε-environment around p, that lies on
C. We say that an arc is rational, if its supporting circle and its two endpoints
are rational. By extending to rasqex numbers, we can now define rasqex circles
as a superset of rational circles.

Definition 4. For a circle C with center c and squared radius r the following
definitions are equivalent:

C is a rasqex circle⇐⇒ c and r are rasqex .

An arc is rasqex, if its supporting circle and its two endpoints are rasqex. A
rational circle is always a rasqex one, but not vice versa. For our C1-boundary
representation we want to rely on rational circles as much as possible, but to build
a C1-smooth boundary consisting exclusively of rational arcs means a severe
restriction. We therefore soften our demands by allowing rasqex arcs whenever
they are not directly contributing to bisector calculation. This is true for arcs
which describe a local curvature maximum, as such a maximum always defines a
leaf-point of the medial axis which just represents the endpoint of a medial axis
curve. This means such an arc does not contribute to any bisector computation
later on (Section 5), only its center point is eventually required for point location
(Section 6). According boundary construction rules are given in Section 7.

Definition 5. Consider a C1-circular arc boundary representation. An arc that
constitutes a local curvature maximum, and thus a leaf point of the medial axis,
has to be at least rasqex. If all other arcs are rational, then we call this structure
an Exact Circular Arc Boundary (ECAB).
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Note that the restriction to C1 is not a necessary one. For general circular
arc boundaries however we have to deal with more base cases and with bisec-
tor construction between points and circles. This does not pose any problems
concerning computation, but is left aside for reasons of lucidity.

3 The Divide-&-Conquer Algorithm

We are interested in computing the medial axis for a given ECAB boundary.
As our approach is closely related to the work introduced in [2] we first give an
overview here. The algorithm is based on the Divide-&-Conquer paradigm. The
dividing step consists of finding a random disk D ∈ MAT (S) (called dividing
disk) and decomposing S, with the help of D, into sub-shapes. The latter is
done by splitting the boundary, adding artificial arcs that originate from D, and
rearranging the original arcs. After this has been applied recursively, down to
predefined base cases, the merge step is a simple concatenation of the partial
axes at the center points of the dividing disks, as they are guaranteed to lie on
the original medial axis. For a list of base cases that may occur for C1-smooth
boundaries, see Figure 3. We leave the basic algorithmic approach almost un-
changed. But with the help of the properties of the ECAB structure (as opposed
to numerical biarc constructions), and by modifying a few specific steps, a math-
ematically correct representation of the medial axis is made possible:

– The construction of a dividing disk has to be done with care, to take advan-
tage of the properties of rational arcs. The centers of the dividing disks play
a more important role, as they are required to lie exactly on the bisector
curves for segment confinement. This is discussed in Section 4.

– The bisector computation is now done in an algebraic way, avoiding any nu-
merical errors. The whole computation can be done over the field of rational
numbers with only a few adjoint square-roots, as shown in Section 5.

– The handling of the base cases is more sophisticated, however the algebraic
approach allows us to detect degenerate constellations more easily (Sec-
tion 6).

4 Constructing Dividing Disks

Dividing disks, being maximal disks as defined in Section 1, are required for the
recursive decomposition of a shape S. A general maximal disk has two contact
points on ∂S, which lie on two different arcs when dealing with an ECAB.

As in [2] we start by choosing a random arc p on the boundary. The only
limitation is that p must not define a local curvature maximum, meaning it does
not induce a leaf-point of the medial axis. The ECAB structure then tells us that
p is rational and thus we can choose a rational point tp as close to an arbitrary
point on p as we see fit. See [5] for a detailed algorithm and implementation on
how to choose such a point. For every arc q 6= p of ∂S we construct the disk that
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Fig. 1. Construction of a disk that is tangent to two arcs.

touches p at tp and is tangent to q (see Figure 1). First we construct the line l
passing through the center cp of the supporting circle of p and tp. The center cD
of the maximal disk we are looking for has to be on l. As can be decided by the
signs of curvature of p and q, one of the two points on l being at distance √rq
(radius of the supporting circle of q) from tp is denoted with c′q. This point c′q
forms, together with cD and cq, an isosceles triangle. The bisector l′ between cq
and c′q also contains cD, which means that cD is the intersection point of l and
l′. From all q 6= p only one induces a disk (the smallest one) that lies completely
inside S. This is the sought-after dividing disk D. The use of the ECAB structure
guarantees certain algebraic properties of D. As the point cp as well as tp are
rational, also the line l is rational. The value √rq is not rational in general, as
a consequence so isn’t c′q. However, c′q ∈ Q(√rq)2. Therefore also the point of
intersection between l and l′, being the center of D, is in this extension field.
Values in Q(√rq) can be represented exactly by the rasqex numbers, which makes
later point location on the bisector curves convenient (see Section 5.2 and 6).

Furthermore, we note that the (rasqex) artificial arcs, stemming from the
(rasqex) boundary circle of a dividing disks, always describe a local curvature
maximum when used to extend the partial shapes. This is coherent with the
definition of the ECAB-structure in Section 2.

5 Bisector Computation and Point Location

5.1 Bisector Computation

We next show how to compute the bisector between two rational arcs. Let Cp

and Cq be the supporting circles of the two arcs with centers cp and cq and
squared radii rp and rq, respectively:

Cp(x, y) := (x− (cp)x)2 + (y − (cp)y)2 − rp
Cq(x, y) := (x− (cq)x)2 + (y − (cq)y)2 − rq .

As before, we assume cp, cq ∈ Q2 and rp, rq ∈ Q.
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Definition 6. The bisector curve between the two circles Cp and Cq consists of
all points (x, y) in the plane for which∣∣|(x, y)− cp| ± √rp

∣∣ =
∣∣|(x, y)− cq| ± √rq

∣∣
Roughly said, this bisector curve consists of all center points of circles, which
share exactly one point (of tangency) with Cp and Cq respectively.

Theorem 1. The bisector curve of the two circles Cp and Cq factors into two
curves B1(x, y) = 0 and B2(x, y) = 0 with

B1(x, y) = (d2
1 + d2

2 − r2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y] (3)

B2(x, y) = (d2
1 + d2

2 − r̃2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y] (4)

with d1 := d1(x, y) := |(x, y)−cp|, d2 := d2(x, y) := |(x, y)−cq|, r := √rp−√rq,
and r̃ := √rp +√rq.

Proof. For the bisector-curve there are two cases:

Case 1



{
d1 +√rp = d2 +√rq ∨ d1 −√rp = d2 −√rq

∨ d1 +√rp = −d2 +√rq ∨ d1 −√rp = −d2 −√rq
⇐⇒

{
d1 − d2 = −r ∨ d1 − d2 = r

∨ d1 + d2 = −r ∨ d1 + d2 = r
| 2

⇐⇒ d2
1 + d2

2 − r2 = 2d1d2 ∨ d2
1 + d2

2 − r2 = − 2d1d2 | 2

⇐⇒ (d2
1 + d2

2 − r2)2 = 4d2
1d

2
2

This is exactly the equation for B1(x, y) = 0. Similar for B2(x, y) = 0:

Case 2


{

d1 +√rp = −d2 −√rq ∨ d1 −√rp = −d2 +√rq
∨ d1 +√rp = d2 −√rq ∨ d1 −√rp = d2 +√rq

⇐⇒ (d2
1 + d2

2 − r̃2)2 = 4d2
1d

2
2

Since d2
1, d

2
2 ∈ Q[x, y], r̃2 = (√rp + √rq)2 = rp + 2√rprq + rq ∈ Q(√rprq),

and r2 = (√rp − √rq)2 = rp − 2√rprq + rq ∈ Q(√rprq), it follows that
B1(x, y), B2(x, y) ∈ Q(√rprq)[x, y]. ut
From now on B1 and B2 denote the curves described by B1(x, y) = 0 and
B2(x, y) = 0 respectively.

Theorem 2. B1 and B2 in Theorem 1 are conics, i.e., planar curves of degree
two.

Proof. We will prove that B1 and B2 are conics when the centers of the circles
Cp and Cq lie on the x-axis and symmetrically on both sides of the y-axis:

Cp(x, y) := (x+ d)2 + y2 − rp, Cq(x, y) := (x− d)2 + y2 − rq .
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This is no restriction because every pair of circles with d being half the distance
between their two center points can be moved to this position by rotation and
translation. B1 and B2 are then subject to the same transformation which does
not change their degrees.

For Cp and Cq being in this special position it is

d2
1 = d2

1(x, y) = | (x, y)− cp |2 = | (x, y)− (−d, 0) |2 = (x+ d)2 + y2

d2
2 = d2

2(x, y) = | (x, y)− cq |2 = | (x, y)− (d, 0) |2 = (x− d)2 + y2 .

This yields for the two cases

Case 1


(d2

1 + d2
2 − r2)2 = 4d2

1d
2
2

⇐⇒ (x2 + d2 + y2 − r2

2 )2 = ((x+ d)2 + y2)((x− d)2 + y2)

⇐⇒ 0 = 4x2d2 − x2r2 − d2r2 − y2r2 + r4

4

This is the quadratic equation for B1.

Case 2

{
(d2

1 + d2
2 − r̃2)2 = 4d2

1d
2
2

⇐⇒ 0 = 4x2d2 − x2r̃2 − d2r̃2 − y2r̃2 + r̃4

4

This is the quadratic equation for B2. ut
Altogether this means that the bisector of the two circles Cp and Cq in our
original coordinate system factors into two conics over the field Qpq = Q(√rprq),
which is in rasqex.

Corollary 1. Each of B1 and B2 is either a hyperbola or an ellipse or a pair
of identical lines.

Proof. Looking further at the equations for B1 and B2 in the special case where
the center-points lie on the x-axis we first observe that B1 and B2 are the two
conics described by

B1(x, y) := bx2 − ay2 − ab, B2(x, y) := b̃x2 − ãy2 − ãb̃
with

a =
(√rp −√rq)2

4
=
r2

4
, b = d2 − a = d2 − r2

4
and

ã =
(√rp +√rq)2

4
=
r̃2

4
, b̃ = d2 − ã = d2 − r̃2

4
.

First consider B1. If rp = rq we have a = 0, b = d2 and B1(x, y) = d2x2 consists
of two identical lines along the y-axis. If rp 6= rq it is true that a > 0 and

b > 0 ⇔ d2 >
r2

4
⇔ 4d2 > (

√
rp −√rq)2 ⇔ 2d > |√rp −√rq| .

That means,
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– if 2d > |√rp −√rq|, then b > 0 and B1 is an hyperbola,
– if 2d = |√rp−√rq|, then b = 0 and B1(x, y) = −ay2 consists of two identical

lines along the x-axis,
– if 2d < |√rp −√rq|, then b < 0 and B1 is an ellipse.

For B2 we always have ã > 0 and

b̃ > 0 ⇔ d2 >
r̃2

4
⇔ 4d2 > (

√
rp +

√
rq)2 ⇔ 2d >

√
rp +

√
rq .

– The two circles Cp and Cq do not intersect iff 2d > √rp +√rq. In this case
b̃ > 0 and B2 is a hyperbola.

– Cp and Cq touch tangentially iff 2d = √rp + √rq. Then B2(x, y) = −ãy2

consists of two identical lines along the x-axis.
– Cp and Cq intersect iff 2d < √rp + √rq. In this case b̃ < 0 and B2 is an

ellipse. ut

5.2 Medial Axis Representation and Point Location

In order to compute and represent the medial axis of the exact circular arc
boundary we must be able to analyze a bisector-conic over the extension field
Qpq. This means that in a so called one-curve analysis we will divide a bisector-
conic B, described by B(x, y) ∈ Q(√rprq)[x, y] = Qpq[x, y], into x-monotone
arcs. This is not difficult and works analogously to the one-curve analysis of a
conic over Q described in [3]. The bisector-conic B is split at its x-extreme points,
that are points whereB(x, y) and the partial derivativeB(x, y)y = ∂B(x,y)

∂y vanish
simultaneously. If the bisector-conic consists of a pair of identical lines, we make
the defining polynomial square-free. Now every resulting x-monotone arc can
be represented by a tuple ([le, ri], nr), where le and ri are the x-coordinates of
the left and right endpoint, respectively. Since le and ri are roots of quadratic
polynomials over Qpq[x], they can be represented by rasqex numbers. The branch
number nr is either 0 or 1 and indicates which of the two x-monotone arcs of
the curve above the x-interval [le, ri] is meant.

As described in Section 4, one major step is point-location. For a given point
u = (ux, uy), the coordinates of which are rasqex, we have to determine the
x-monotone arc of B1 or B2 it lies on. First of all we check whether u lies on B1

or B2 by testing
B1(ux, uy) = 0 or B2(ux, uy) = 0 . (5)

Since all the numbers in B1(ux, uy) and B2(ux, uy) are rasqex numbers, the
exact test for zero can be realized by using the equality operator of the rasqex
numbers. Let us assume that p lies on B1. Next we use the <-operator of the
rasqex numbers to determine the two x-monotone arcs of B1 for which

le ≤ ux ≤ ri . (6)

The last step is to determine whether u lies on the upper or lower branch,
i.e., algebraically whether uy is the greater or smaller root of the polynomial



Exact Medial Axis Computation for Circular Arc Boundaries 9

B1(ux, y). Since B1(ux, y) is a quadratic polynomial the coefficients of which are
rasqex, its two roots r1 and r2 can be computed symbolically by introducing a
new square-root. Now we have to check whether

uy − r1 = 0 or uy − r2 = 0 . (7)

Again this can be done by using rasqex numbers. Notice that in cases where
locally around u neither the second bisector-conic nor the second arc pass by
and all x-extreme points are far away, the three steps for point-location can be
sped up by using isolating intervals for ux and uy and evaluating the expressions
in (5), (6) and (7) with interval arithmetic, if desired.

5.3 Confining the Partial Axis

In our construction, the medial axis is computed as the union of bisector-conic
segments. Each conic segment is limited by center points of artificial arcs. Con-
sider the case where the bisector of two rational arcs on the circles Cp and Cq

contribute to the medial axis, see for example Figure 3 case (b). The coordinates
of the limiting center points of the artificial arcs are rasqex. With the algorithm
described above the center points can be located on x-monotone arcs of the
bisector-conic. If the bisector-conic is a line or hyperbola, the two center-points
uniquely define the part of the medial axis we are interested in, possibly as a
concatenation of x-monotone arcs. If the underlying bisector-conic is an ellipse,
we have two possibilities for the partial axis. In this case we choose an additional
rational point on one rational arc, say on Cp. With the algorithm from Section 4
we construct a third point on the bisector-conic. For the partial axis we choose
the part of the bisector-curve between the two center points which contains this
new point.

Cp
Cq

Cs

u1

u2

Fig. 2. Two tritangent circles resulting from one line of similitude of the Gergonne
construction. (ϕ(u1, Cp), ϕ(u1, Cq), ϕ(u1, Cs)) = (ϕ(u2, Cp), ϕ(u2, Cq), ϕ(u2, Cs)) =
(1, 0, 0).
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5.4 Center Points of Tritangent Circles

The center points of (at least) tritangent circles, being the branching points of
the medial axis, are another kind of points which are needed for the confinement
of the axis. We will show that the coordinates of such points are rasqex too,
if the three defining circles are rational. A bisector curve between two rational
circles is an algebraic curve of degree 4, and the branching point is one of the
intersection points where all three bisectors between three circles meet.

There exist two different possibilities how a point on a bisector-curve may
describe tangency at its footpoint on a defining circle.

Definition 7. Consider a bisector-curve B and one of its two defining circles C.
For a point t ∈ B let t′C be its unequivocal footpoint on C and ΓC the open region
bounded by C. Then we define the function ϕ(t, C) on B as follows:

ϕ(t, C) =

{
0 if t t′C ∩ ΓC = ∅
1 otherwise

Roughly speaking ϕ(t, C) is 0 if the circle with center t and radius t t′C is
“outer”-tangent to C, and 1 otherwise (see also Figure 2). As proved in Section 5
every bisector B consists of two conic curves, B1 and B2. By construction, the
points of these two conics have certain properties concerning ϕ(., .) which we
investigate next.

Lemma 1. Consider the bisector B consisting of the two bisector-conics B1 and
B2 and its two defining circles Cp and Cq, then

∀t ∈ B1 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 0), (1, 1)} (8)
∀t ∈ B2 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 1), (1, 0)} . (9)

Proof. As derived in the proof of Theorem 1, for every point t on B1 it holds
that

|t− cp|+√rp = |t− cq|+√rq ∨ |t− cp| − √rp = |t− cq| − √rq
∨ |t− cp|+√rp = −|t− cq|+√rq ∨ |t− cp| − √rp = −|t− cq| − √rq .

This leads to

ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 .

For every point x on B2 it is

|t− cp|+√rp = −|t− cq| − √rq ∨ |t− cp| − √rp = −|t− cq|+√rq
∨ |t− cp|+√rp = |t− cq| − √rq ∨ |t− cp| − √rp = |t− cq|+√rq .

This leads to

undefined ∨ ϕ(t, Cp) = 0/1 ∧ ϕ(t, Cq) = 1/0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 0 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 1 .

ut
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We are interested in the situation where three rational circles Cp, Cq and Cs

are given. They define three bisectors: B
′

between Cp and Cq, B
′′

between Cq

and Cs and B
′′′

between Cp and Cs. A branching point u, being the center of a
tritangent circle, lies on all three bisectors and so ϕ(u, .) is well defined for all
three circles. Let

Φ(u) := (ϕ(u,Cp), ϕ(u,Cq), ϕ(u,Cs)) . (10)

Observation 1 Depending on which bisector-conics intersect in a branching
point u, we distinguish between four different sets of contact tuples. For all other
possible combinations of three bisector-conics a common intersection point is
impossible.

u ∈ B′

1 ∩B
′′

1 ∩B
′′′

1 ⇒ Φ(u) ∈ {(0, 0, 0), (1, 1, 1)} (11)

u ∈ B′

1 ∩B
′′

2 ∩B
′′′

2 ⇒ Φ(u) ∈ {(0, 0, 1), (1, 1, 0)} (12)

u ∈ B′

2 ∩B
′′

1 ∩B
′′′

2 ⇒ Φ(u) ∈ {(1, 0, 0), (0, 1, 1)} (13)

u ∈ B′

2 ∩B
′′

2 ∩B
′′′

1 ⇒ Φ(u) ∈ {(1, 0, 1), (0, 1, 0)} (14)

For example, considering case (11), if u ∈ B′

1∩B
′′

1∩B
′′′

1 , then due to Lemma 1
it holds that

(ϕ(u,Cp), ϕ(u,Cq)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(u,Cq), ϕ(u,Cs)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(u,Cp), ϕ(u,Cs)) ∈ {(0, 0), (1, 1)} .

This is only true if ϕ(u,Cp) = ϕ(u,Cq) = ϕ(u,Cs) = 0 or ϕ(u,Cp) = ϕ(u,Cq) =
ϕ(u,Cs) = 1. The other cases work analogously.

The construction of all possible circles that are tangent to three given circles
is a much discussed topic, with various possible ways of solution (see e.g. [12]).
It is folklore that there exist at most 8 different tritangent circles in this case.
The Gergonne construction, named after french mathematician Joseph Diaz Ger-
gonne, is based on inverse geometry and uses so called lines of similitude. For
three circles in general position, there exist 4 lines of similitude. Each line in-
duces at most 2 tritangent circles, which can both together be assigned to one
specific case (11) to (14) from Observation 1. Note however, that e.g. for case
(13) there may be two solutions of the form (1, 0, 0) and none for (0, 1, 1) (see
Figure 2 for an example).

This means that constellations of three bisector-conics as shown in Obser-
vation 1 have at most two common intersection points. The x-coordinates of
the intersection points of two of the three conics are roots of a degree four
polynomial P1 (which can be derived by a resultant computation). For another
pair of conics we obtain another polynomial P2. We now isolate the common
x-components by computing the greatest common divisor P ′ = gcd(P1, P2). As
at most two common solutions may exist, P ′ is a quadratic polynomial. Its roots
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can be represented exactly by rasqex numbers.3 The same way the possibly two
y-coordinates can be computed. This shows that the coordinates of the center
points of tritangent circles can be represented as rasqex numbers and we get
2 · 2 = 4 candidates for them.

j1 j2

p1
p2 p3

(a) (b) (c) (d)

Fig. 3. The four combinatorial different base cases that may occur for the ECAB
structure, as described in Section 6.

6 Partial Axis Construction

In general, four combinatorially different base cases with ≤ 3 original arcs may
stem from the iterative dividing process (Figure 3). The medial axes of these
base cases are then represented directly by portions of algebraically simple circle
bisectors. After the mathematical elaboration in Section 5 we now have a closer
look at the combinatorial composition of the axes.

(a) The medial axis of base case (a) in Figure 3 consists of parts of the two
bisectors between one of the two arcs incident to p1 and the opposite arc.
As we have a smooth transition at the rational point p1, the two resulting
bisector segments have a tangent point at the joint point j1, which has rasqex
coordinates. Together with the (rasqex) center points of the artificial arcs,
j1 is used to confine the required parts of the conic bisectors as described in
Section 5.3.

(b) The axis is the segment of the two original arcs’ bisector, which is confined
by the two center points of the artificial arcs, see Section 5.3.

(c) The base case of this form represents the generic case for branching points of
the medial axis. Its axis is composed of bisector parts from all pair constel-
lations of original arcs. Let Cp, Cq and Cs be the three circles the original

3 In the special case where P1 and P2 have more than two common roots due to
covertical intersection points, we shear the coordinate system, compute the center
points of the tritangent circles in the sheared system and transform the result back
to the original coordinate system.
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arcs lie on. For isolation of these segments, in addition to the three artificial
center points, the intersection point j2 has to be identified. How to compute
the potential coordinates of such a point, which are also rasqex, is shown
in Section 5.4. Finally we choose the correct intersection point among the
computed ones by computing additional points on the bisector curves and
following them starting at the center point of an artificial arc.

(d) Bisector construction is done as in case (b). However, unlike in case (b), one
of the two confining points is not an artificial center point, but a center point
of an original arc which represents a leaf point of the medial axis structure.

An arbitrary variation of the case depicted in Figure 4 may arise as a degen-
erate exception, which is an occurrence of an axis branching, where more than
three bisectors meet in one point. For our dividing process this means that we
arrive at a shape, whose boundary is an alternating sequence of artificial and
original arcs. Here no generic dividing disk exists that would lead to combinato-
rially smaller partial shapes.

Granted algebraic correctness, as is the case in our setting, such degenerate
cases can be detected easily: whenever an alternating arc sequence is recognized
we compute the bisectors of all pairs of arcs which are only separated by one
artificial arc. If all these bisectors intersect in one single point then a degen-
erate case has occured. Computation is based on the principle introduced in
Section 5.4, meaning that again rasqex numbers are sufficient for exact calcu-
lation. This guarantees a correct indication of such a case which then can be
handled accordingly. This elegant and intuitive handling of degnerate cases is
one of the main improvements over the numerical afflicted approach in [2].

For the axis construction the bisector curves between original arcs that are
neighbored via a single artificial arc are of interest. They all intersect in one
common point which is, together with the center points of the artificial arcs,
required for the segment confinement.

Fig. 4. Degenerate case example.

c0

c1

c2

c̃

c′
p0

p1

p2

p̃

p′

Fig. 5. Boundary construction which sat-
isfies ECAB properties.
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7 ECAB Construction

Our approach works on shapes S whose boundary ∂S is an ECAB. Thus in this
final chapter we present a simple construction to obtain such a shape. In this
construction only one single arc cannot be chosen rational but has to be rasqex.
In accordance to the defintion of ECAB we shift this rasqex arc to a region
where the curvature has a local maximum and therefore the medial axis has a
leaf-point.

1. We start by choosing two rational points which represent the center of a
circle and one endpoint of an arc on it (c0 and p0 in Figure 5). This circle is
rational with respect to our definition in Section 2.

2. On the (rational) line through c0 and p0 we choose another rational point
c1, being the center of the next circle.

3. As c1 and p0 are rational, we can choose the next rational point p1 in any
ε-neighborhood around an arbitrary point on the circle with center c1 and
radius ‖c1 − p0‖.

4. We repeat the last two steps until we arrive at the closing circle which has
to represent a local curvature maximum of the boundary.

5. It is in general not possible to find a rational closing circle. But following the
construction of a maximal disk as described in Section 4 we obtain a rasqex
arc with the supporting circle centered at c′ and with radius ‖c′ − p′‖.
Note: If the closing arc resulting from this ECAB construction, which is

generally not rational, is treated like an artificial arc, then it can be handled
without any further modification as part of the base cases depicted in Figure 3.

8 Conclusion

We showed that, given a boundary essentially composed of rational arcs (ECAB),
the Divide-&-Conquer approach for medial axis construction from [2] can be
adapted for algebraically exact calculation. Furthermore, encouraged by [8], we
were able to show that the rasqex number type is sufficient for all arising com-
putations. Intermediate steps and procedures are discussed in detail, and a con-
struction guide for a simple ECAB is provided. What is missing so far is an
analysis of the degrees of the geometric predicates involved in our computation.
This is left as a topic for future research.

An extension to circular boundaries with non-differentiable arc joints only
causes an increase of base and bisector cases (see also [2]). The same applies for
straight line segments, which also introduce parabolic curves to the axis. Exact
computation for boundary representations with curves of algebraically higher
degree may be a topic for future work, although the bisector complexity grows
considerably in this context.

We would like to point out again, that the self-contained representation by
rasqex numbers is a beneficial one. Correctness of the result and exactness during
computation (allowing e.g. the efficient detection and handling of degenerate
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cases) are achieved by applying only moderate changes to the original (floating
point) algorithm. We think that with the exact computability of the medial axis
the algorithm recommends itself for implementation in geometric libraries as
CGAL [1].

References

1. Cgal, Computational Geometry Algorithms Library, http://www.cgal.org
2. Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Rabl, M.:
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