
Gray Code Enumeration of Plane Straight-Line Graphs∗

O. Aichholzer1, F. Aurenhammer2, C. Huemer3, B. Vogtenhuber1

1 Institute for Software Technology, University of Technology, Graz, Austria
2 Institute for Theoretical Computer Science, University ofTechnology, Graz, Austria
3 Departament de Matematica Aplicada, Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract. We develop Gray code enumeration schemes for geometric straight-line graphs in the plane.
The considered graph classes include plane graphs, connected plane graphs, and plane spanning trees.
Previous results were restricted to the case where the underlying vertex set is in convex position.

Key words. Geometric graphs, enumeration scheme, Gray codes

1. Introduction

Let E = {e1, . . . , em} be an ordered set. For the purposes of this paper,E will consist of the
m =

(

n

2

)

line segments spanned by a setS of n points in the plane, in lexicographical order.
Consider a collectionA of subsets ofE. For instance, think ofA being the class of all plane
spanning trees ofS. We associate each memberAi ∈ A with its containment vectorbi with
respect toE. That is,bi is a binary string of lengthm whosejth bit is 1 if ej ∈ Ai and 0,
otherwise. A (combinatorial)Gray code for the classA is an orderingA1, . . . , At of A such
that bi+1 differs from bi by a transposition, fori = 1, . . . , t − 1. For example (and as one of
the results of this paper), for plane spanning trees a Gray code exists such that successive trees
differ by a single edge move. Depending on the class we will consider, a transposition will be
an exchange of two different bits (as for the spanning tree class) or/and a change of a single
bit. Combinatorial Gray codes generalize the classical binary reflected Gray code scheme [16]
for listing m-bit binary numbers so that successive numbers differ in exactly one bit position.
See [17] for a survey article. We also refer to [3] for variousresults concerning edge moves in
spanning trees.

Any Gray code for a given classA provides a complete enumeration scheme forA by means
of constant-size operations. Listing all the objects of a given class is a fundamental problem in
combinatorics and, in particular, in computational geometry. Not every enumeration scheme
constitutes a Gray code, however, as a small difference between consecutive objects will not
be guaranteed, in general. For instance, the popular reverse search enumeration technique [6]
lacks this property. When interpreting{A1, . . . , At} as the set of nodes of an abstract graph that
connects two nodesAi andAj wheneverbi andbj are a single transposition apart, any Gray
code for the classA corresponds to a Hamiltonian path in this transposition graph.

Send offprint requests to: F. Aurenhammer
∗ Research supported by the FWF Joint Research Project Industrial Geometry S9205-N12 and Projects MCYT-

FEDER BFM2003-00368 and Gen. Cat 2005SGR00692

2 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

To see a simple example, letA = G be the class of all possible straight-line graphs on a
given point setS. Each of the2m subsets ofE defines a member ofG, for m =

(

n

2

)

. If we
define a transposition to be a change of a single bit (i.e., theinsertion or removal of a single
edge) then the transposition graph forG is the hypercube inm dimensions. The binary reflected
(

n

2

)

-bit Gray code (see Appendix) corresponds to a Hamiltonian cycle in this hypercube, and
constitutes a combinatorial Gray code forG.

While general enumeration schemes for geometric objects have been studied quite exten-
sively, see e.g. [6,2,8,7], respective results for Gray codes are sparse. In particular, all the
known results for straight-line graphs concern the specialcase where the underlying setS of
points is in convex position. Under this restriction, [5], [15], and [10], respectively, treat the
classes of plane (i.e., crossing-free) straight-line graphs, of plane spanning paths, and of plane
perfect matchings, [9,13] study the class of triangulations and plane spanning trees, and [11,
12] the class of diagonal partitions. Many of these Gray codeconstructions are based on the
same idea, namely, on a hierarchy of graphs structured by increasing point set cardinality. In
this paper, we extend this approach to general point setsS, which becomes possible when com-
bining it with classical combinatorial Gray codes. We construct Gray codes for the classPG
of all plane straight-line graphs, the classCPG of all plane and connected straight-line graphs,
and the classST of all plane spanning trees, for a given point set. For the classCPG no results
existed even for the convex case.

The respective challenging question for triangulations remains open. The only known result
is that for triangulations onn = 6 points in nonconvex position a Gray code does not always
exist; see Section 6.

1.1. A hierarchy for plane graphs

Let S = {p1, . . . , pn} be the underlying set of points in the plane. Without loss of generality,
let S be given in sorted order ofx-coordinates. For simplicity, we also assume that no three
points inS are collinear. Then, for1 ≤ k ≤ n − 1, the pointpk+1 lies outside the convex hull
of {p1, . . . , pk}. This property will turn out useful in the subsequent constructions.

Let nowA be one of the classesPG, CPG, or ST . We will define a hierarchy (a tree struc-
ture)HA(S) for A andS such that thekth level of the hierarchy consists of all the members
of A on top of the firstk points inS, for k = 1, . . . , n. That is, each member inHA(S) except
the root (at level1) has a unique parent, and each member inHA(S) which is not a leaf has a
unique set of children.

The Gray code construction forA is done recursively. It hinges on an appropriate rule for
defining the parent of a given member, as well as on a consistent rule for enumerating its chil-
dren. Designing the enumeration rule for the children is thecrucial part, as it has to yield a
Gray code for the children which fits the (previously constructed) Gray code for the parents. In
particular,HA(S) has to be an ordered tree such that the ordering at each of its levels is a Gray
code.

Based on this hierarchical structure we will, in Sections 2,3, and 4, construct gray codes
for the three graph classes mentioned above. Algorithmic issues of these constructions will be
addressed in Section 5. Finally, Section 6 offers a discussion of our results.

Gray Code Enumeration of Plane Straight-Line Graphs 3

2. The classPG

For the classPG of all plane straight-line graphs, things are surprisinglysimple. Let, for this
class, a transposition be the change of a single bit, that is,the insertion or removal of a single
edge. LetG′ be some graph at levelk + 1 of the hierarchyHPG(S), for k ≥ 1. That is,G′ is
some plane straight-line graph whose vertex set is{p1, . . . , pk+1}.

The parent ofG′ is obtained by removing fromG′ the vertexpk+1 and all its incident edges.
This gives a unique graphG at levelk of HPG(S). We say that a vertexpj of G is visible
(from pk+1) if the line segmentpk+1pj does not cross any edge ofG. As we are interested only
in plane graphs, all the children ofG are obtained by adding the vertexpk+1 and connecting
pk+1 to subsets of visible points in all possible ways (includingthe empty set).

Let vG be the number of visible vertices ofG. We can use the binary reflectedvG-bit Gray
codeB(vG) (see Appendix) for encoding all the possible subsets of edges incident topk+1.
(Note thatB(vG) is a cyclic code.) A transposition in this code then means adding or removing
a single edge to a visible vertex. To specify the first and the last subset (i.e., child ofG), we
take∅ for the first child and the singleton set{pk+1pj} for the last child, wherepk+1pj is the
edge tangent to the convex hull ofG from above. (Vertexpj is visible for any choice of the
graphG. In particular,pj is the first visible vertex in counter-clockwise order.) Accordingly, the
first string in the codeB(vG) is 00 . . . 0 and the last string is10 . . . 0.

To construct a Gray code for levelk + 1 of HPG(S), let G andF be adjacent graphs at
levelk of HPG(S). Attaching00 . . . 0 to the string forG andF , respectively, leaves the strings
one transposition apart. The same is true for10 . . . 0. That is, the first child ofG is adjacent
to the first child ofF , and the last child ofG is adjacent to the last child ofF . So we can
runB(vG) followed byB(vF) (the codeB(vF) in reverse order), and so on. The construction of
the desired Gray code is now obvious. In addition, we can use the fact that the number of plane
straight-line graphs onn ≥ 2 points is even (because each convex hull edge appears in exactly
half of the graphs), which by induction implies that this Gray code is cyclic. In the language of
graph theory, our result reads:

Theorem 1.The transposition graph for PG contains a Hamiltonian cycle.

It would be interesting to know the average number of visiblevertices for a level-k member
of HPG(S). This information could be used to give bounds on the number of plane straight-line
graphs.

3. Plane spanning trees

Our strategy for constructing Gray codes also works for the classST of plane spanning trees.
A transposition will now be an exchange of two different bits, because the addition (or removal)
of a single edge destroys the tree property.

Consider a memberT ′ at levelk + 1 of the hierarchyHST (S), for k ≥ 1. That is,T ′ is some
plane spanning tree on{p1, . . . , pk+1}. Defining an appropriate parent ofT ′ is less trivial now.

For an arbitrary plane straight-line graphG on {p1, . . . , pk}, let q1, . . . , qv be the visible
vertices ofG (as seen frompk+1) in counter-clockwise order. We define thechain for G,
C(G), as the ordered set of line segmentsqiqi+1, for 1 ≤ i ≤ v − 1. Observe that for every
edgee ∈ C(G) \ G, the set of visible vertices ofG ∪ {e} is the same as forG.

Parent rule: Let G be the graph obtained by removing fromT ′ the vertexpk+1 and all its in-
cident edges. LetG consist ofr ≥ 1 components. We add the firstr−1 edges of the chainC(G)
that connect these components, and define the resulting treeas the parent ofT ′.

4 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

p
k+

e

e

e

e

e

1

1

e3

2

5

6

4

Fig. 1. The chain of a spanning tree

This rule yields a unique parent forT ′. Notice that this parent is well-defined (i.e., belongs
to levelk of HST (S)) becauseG can always be connected to a tree using edges ofC(G), and
no such edge crosses any edge ofG. From the definition of the parent we get the definition for
the children, as follows.

Let T be a tree at levelk of the hierarchyHST (S). For two edgese, e′ ∈ C(T), write e′ ≺ e
if e′ occurs beforee in the total order on the chainC(T). We defineE(T) as the set of all
edgese ∈ T ∩ C(T) such that

(1) removal ofe does not make a non-visible vertex ofT visible, and
(2) no edgee′ ∈ C(T) \ T with e′ ≺ e gives a cycle inT ∪ {e′} that containse.

See Figure 1. The spanning treeT is drawn with bold lines. Its chainC(T) consists of six
edgese1, . . . , e6. Edgese1 and e3 are not part ofT and thus do not belong toE(T). Also,
we havee4, e5 /∈ E(T) because these edges reveal visible points. Finally,e2 /∈ E(T) as the
edgee1 ≺ e2 closes a cycle inT that containse2. (Similarly, we can excludee4 again because
e3 ≺ e4 closes a cycle inT that containse4.) This givesE(T) = {e6}.

Children rule: The children ofT are obtained by removing, for each possible subset ofE(T),
its edges fromT and connecting each resulting component to the vertexpk+1 using a single edge
to some visible vertex, in all possible ways.

It is clear that all the graphs constructed fromT in this way are plane spanning trees on
{p1, . . . , pk+1}. To see that each member of levelk + 1 of the hierarchyHST (S) is generated
exactly once by the children rule (provided all the members of level k have so), we need the
lemma below. Let us color the edges ofE(T) green, and the edges that connect topk+1 red.

Lemma 1.The parent rule and the children rule are consistent.

Proof. Child → parent: LetT ′ be some child constructed fromT . ThenT ′ containsr ≥ 1 red
edges. Ifr = 1 then no green edge has been removed fromT for constructingT ′. According
to the parent rule, we now remove fromT ′ the vertexpk+1, which correctly gives us the single
componentT . Now assumer ≥ 2. Then r − 1 green edges have been removed fromT to
constructT ′, leavingr components. LetKi andKi+1 be two of these components, such that
there is a single (removed) green edgee between them. There is no edgee′ ∈ C(T) \ T with
e′ ≺ e and which gives a cycle inT ∪ {e′} containinge. Thus, when removing fromT ′ the

Gray Code Enumeration of Plane Straight-Line Graphs 5

parents children

first childlast child

first childlast child

first child last child

Fig. 2. Gray code construction for spanning trees

vertexpk+1 and joining components of the resulting graphG according to the parent rule, the
edgee is indeed the first edge ofC(G) that connectsKi andKi+1. (Otherwise we would have
chosene′ for removal instead ofe.) Thus we correctly getT from T ′ again.

Parent→ child: Let T be the parent constructed fromT ′. T is obtained by removingpk+1

and joining ther components of the resulting graphG with edges ofC(G). Let e be such an
edge. Thene is the first edge ofC(G) that connects the respective two components. Therefore,
no edgee′ ∈ C(T) \ T with e′ ≺ e gives a cycle inT ∪ {e′} that containse. Moreover, because
e ∈ C(G) \ G, we know thatG ∪ {e} andG have the same set of visible vertices. In conclusion,
e is indeed a green edge. Thus, by the children rule,T ′ will be constructed as one of the children
of T .

We are now ready to prove:

Theorem 2.The transposition graph for ST contains a Hamiltonian path.

Proof. Let T be a tree at levelk. Define as the first childT f (respectively, as the last childT ℓ)
of T the tree obtained when adding toT the upper (respectively, lower) tangent frompk+1 to
the convex hull ofT . Note thatT f andT ℓ are well-defined children ofT . We claim (and prove
below) that the transposition graph forST contains a path fromT f to T ℓ that contains all the
children ofT . The theorem follows because, for two neighboring treesT andU at levelk, their
first childrenT f andUf , as well as their last childrenT ℓ andU ℓ, are a single transposition apart.

To encode all the children ofT , we have to consider each subsetY ⊆ E(T) of green edges
and, for fixedY , all allowed distributions of red edges. Letg = |E(T)|. Similar to Section 2, the

6 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

binary reflectedg-bit Gray codeB(g) (let us call it thegreen code) is used for encoding all pos-
sible subsets ofE(T). Note thatE(T) = ∅ is possible. Now consider a fixed subsetY ⊆ E(T).
Let T \ Y haver ≥ 1 components. Given an arbitrary visible vertexqj in each componentKj ,
1 ≤ j ≤ r, there exists a Gray codeR(r) (thered code) that starts with the positions of the edges
q1pk+1, . . . , qrpk+1 and that encodes all allowed positions of the red edges; see the Appendix.

Between every two transpositions in the green code we work off the red code. Care has to
be taken when switching between the codes. If a green edge is added (i.e., two components are
joined) then some red edge has to be removed. All other red edges stay at their positions, which
are the starting positions for the subsequent red code. Similarly, if a green edge is removed (i.e.,
a component is split into two) then some red edge has to be added. Again, all other red edges
stay at their positions which are the starting positions forthe next red code.

When combining the green and the red code we obtain a Gray codefor all the children
of T . However, this code will not end with the last childT ℓ of T , in general. To complete the
construction, we proceed as follows.

The green code is started at the subsetY = ∅ of E(T). (Recall thatT f and T ℓ arise as
children for this subset.) As removing∅ from T leaves the single componentT = K1, the
corresponding red code is justR(1). We startR(1) with a red edgee whose choice depends on
the numberv1 of visible vertices ofK1. If v1 > 2 thene is chosen to be not a convex hull tangent
elsee is chosen to be the upper tangent (which corresponds toT f). Now, before runningR(1),
we perform one transposition in the green code and then run the combined code until having
returned to∅. We re-enterR(1) with an edgee′ different frome, which is guaranteed when the
appropriate red edge is removed when inserting the green edge which yields the componentK1.
Finally, R(1) is traversed frome′ to e in any order but so thatT f and T ℓ are adjacent. For
v1 > 2 this is possible because any two strings inR(1) differ by a single transposition. On the
other hand, forv1 = 2 the codeR(1) only contains the two strings fore ande′, which then
correspond toT f andT ℓ.

A cyclic code for the children ofT is obtained in whichT f andT ℓ are adjacent. Cutting this
code between these two trees gives the desired result.

If the Hamiltonian path in Theorem 2 both starts and ends witha first child (or with a last
child), then we get a Hamiltonian cycle. Constructing such acycle in the general case is left
to further research. Figure 2 illustrates our Gray code construction for a set of4 points in
nonconvex position. The inserted pointpk+1 = p4 corresponds to the rightmost vertex.

4. Connected plane graphs

The Gray code construction for the classST can be modified to yield a Gray code for the
classCPG of all connected plane straight-line graphs. Allowed transpositions will now be an
exchange of two different bits or a change of a single bit. Disallowing either of these types
makes the transposition graph forCPG non-Hamiltonian.

The parent rule needs no modification. Concerning the children rule, letG be a graph at
level k of the hierarchyHCPG(S). We slightly redefine the setE(G), namely, as the set of all
edgese ∈ G ∩ C(G) such that

(1) removal ofe disconnectsG but makes no non-visible vertex ofG visible, and
(2) no edgee′ ∈ C(G) \ G with e′ ≺ e gives a cycle inG ∪ {e′} that containse.

Children rule: The children ofG are obtained by removing, for each possible subset ofE(G),
its edges fromG and connecting each resulting component to the vertexpk+1 with a (nonempty)
set of edges to visible vertices, in all possible ways.

Gray Code Enumeration of Plane Straight-Line Graphs 7

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

starting position

enter somewhere

b1

bk

bm

br

Fig. 3. Traversing the codeM(1)

The proof of consistency of the parent rule and the children rule is similar to Lemma 1; we
leave it to the interested reader. As before, let us color theedges in the setE(G) green and the
edges that connect topk+1 red.

Theorem 3.The transposition graph for CPG contains a Hamiltonian path.

Proof. We mimic the proof for spanning trees (Theorem 2). The green code stays unchanged,
whereas the red code has to be modified. LetG be the level-k member of the hierarchyHCPG(S)
whose children are to be encoded, and letY ⊆ E(G) be the current subset of green edges.
For each componentKj of G \ Y we have to encode all possible nonempty subsets of visible
vertices (i.e., of red edges). A modified red codeM achieving this is given in the Appendix.
This code exists for every fixed starting position of red edges.

When switching between the codes, if a green edge is removed (i.e., a component is split
into two) then some red edge is added to keep the graph connected. All other red edges are held
fixed. Conversely, if a green edge is added (i.e., two components are joined) then either all red
edges are held fixed or one of them is removed. This gives the starting positions of the modified
red code for the subsequent subset of green edges. When combining the green code and the
modified red code we proceed as follows.

The green code is started with removing fromG the subsetY = ∅. The modified red code for
the resulting single componentK1 = G is justM(1), that is, basically a binary reflected Gray
code. Letb1, . . . , bk be the strings inM(1). We havek ≥ 3 andk odd. Recall thatb1 = Gℓ is the
last child, andbk = Gf is the first child, ofG. Now putm = k+1

2
. The stringbm = 110 . . . 0 is

the string with lowest index whose leading bit is1. We takebm as the starting position forM(1).
Now, before runningM(1), we do one transposition in the green code, and then run the com-

8 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

bined code until the subset∅ is reached again. Letbr be the string at whichM(1) is re-entered.
That is,br describes the final positions of the red edges for the last subsetY in the green code.
(Note thatY = {e} is a singleton set; addinge forms the componentK1 = G.) To complete the
code construction, we need a traversal ofM(1) that starts withbr and ends withbm, whereb1

andbk are consecutive, and where any two consecutive strings are asingle transposition apart.
Caser > m. See Figure 3. We start the traversal with the stringsbr . . . bkb1 . . . bk−r and

continue with the stringsbk−r+1br−1br−2bk−r+2bk−r+3br−3 . . . and so on, untilbm is reached.
Observe thatb1 andbk differ by an exchange of two bits, and thatbr−i andbk−r+i for fixed i
differ only in the leading bit. (Ifr is even then the stringbm−1 = 010 . . . 0 is left out in this
sequence. But thenbm−1 can always be put between two suitable strings, namely0010 . . .0 and
0110 . . . 0.)

Caser < m. The traversal is similar, namely the stringsbr . . . b1bk . . . bk−r followed by the
stringsbk−r−1br+1br+2bk−r−2bk−r−3br+3 . . . and so on, untilbm.

Caser = m. In this case, we do not re-enterM(1) at br = bm, but at its neighborbm−1 =
010 . . . 0. This corresponds to removing some red edge when the green edgee (defined above) is
added. That is, an exchange of two bits takes place. The desired traversal is given by the strings
bm−1bm−2 . . . b1bkbk−1 . . . bm.

In conclusion, a cyclic code for the children ofG is obtained where the first childGf and
the last childGℓ are adjacent.

5. Algorithmic issues

To perform a Gray code enumeration of a given graph classA, the hierarchyHA(S) is tra-
versed in preorder and its leaves are reported. ForA ∈ {PG,ST , CPG}, each non-leaf mem-
ber of HA(S) has at least two children. Consequently, the time complexity is dominated by
computing the leaves. When computing the children of a givenparentG, the main tasks are
calculating the chainC(G) and the setE(G) of green edges. Both tasks can be accomplished
in timeO(k log k) if G hask vertices, as is shown below.

Let L be any connected plane straight-line graph. ThenL dissects its convex hull into (topo-
logically) connected subsets, called thefaces of L. To walk around a faceF of L means travers-
ing those edges ofL, and of the convex hull ofL, that boundF . Edges that boundF from both
sides are traversed twice.

Now, let the parentG live on the points{p1, . . . , pk}. Assume thatG has components
K1, . . . , Kr. For computingC(G), we first compute the chainC(Ki) for each componentKi

separately, as follows. Define the graphL as the union ofKi with the two tangent edges
from pk+1 to Ki. There is a unique faceF of L incident topk+1. Starting frompk+1, we
walk aroundF and update visible vertices. That is, we check their containment in the currently
spanned angle as seen frompk+1 using a stack. Having available the chainsC(K1), . . . , C(Kr),
we combine them to the chainC(G). To this end, we sort the set of all their vertices radially
aroundpk+1, and scan this set while deleting nonvisible vertices. These actions needO(k log k)
time in total.

For the classPG, it suffices to compute the chainC(G) for each parentG. For the classesST
andCPG, we also have to compute the respective setsE(G). Observe thatG is always con-
nected for these two classes.

Gray Code Enumeration of Plane Straight-Line Graphs 9

For calculatingE(G), we defineL = G ∪ C(G). We color the edgese ∈ C(G) asblack or
white depending on whethere ∈ G or not. Let us first handle the case for the classST where
G is a plane spanning tree.

Initially, E(G) contains all black edges. We treat each faceF of L incident toC(G) sepa-
rately, leaving out the face incident topk+1. LetF havev vertices. To test property (1) (visibility
change) inO(v log v) time, we first compute the chainC(F ′) of the graphF ′ whose edges are
all the non-black edges ofF . Then we check containment of each vertexx of C(F ′) in the vis-
ibility anglesα(e) spanned by the black edgese of F . If x ∈ α(e) thene is deleted fromE(G).
To test property (2) (induced cycle) inO(v) time, we observe thatF has at most one white
edgee′. (G would be disconnected, otherwise.) Ife′ exists (and thus all other edges ofF belong
to G by the connectedness ofG) then we delete fromE(G) all black edgese of F with e′ ≺ e.
This leaves the correct setE(G).

If CPG is the considered class then property (1) also requires a test for connectedness. But
removal ofany black edgee of F leavesG connected if and only if all edges ofF are part ofG.
So all black edges ofF have to be deleted fromE(G) in the affirmative case.

We may (inductively) assume thatG is given in sorted adjacency list representation. So
the graphsL and all their faces can be computed fromG in O(k) time. For computingC(G)
andE(G), each such face is considered at most once. We conclude:

Theorem 4.Let A be any of the classes PG,ST , CPG, for a given set S of n points in the
plane. A Gray code enumeration of A can be performed in O(n logn) time per member.

For the classST this result is superior to the result for (non-Gray code) enumeration in [6],
whereO(n3) time per tree is needed. Note that the average number of children of a member is
only a constant, as there areO(cn) plane straight-line graphs onS, for c depending on the class
but not onn; see [4]. Thus, on the average,O(n log n) time has to be invested for constructing
each child.

6. Discussion

We have shown that, for several classes of plane straight-line graphs, their transposition graph
is Hamiltonian. With small adaptions, our enumeration schemes can be made to work for point
sets containing collinear points. Thus, for instance, we can provide Gray codes for the respective
graph classes on the grid.

Fig. 4. Transposition graph for triangulations

10 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

To see some negative example, consider the class of all triangulations of the point setS, and
let a transposition be an edge flip [14]. The simple6-point example in Figure 4 shows that the
corresponding flip graph is not Hamiltonian, in general. However, it still may be true that this
property is attained for sufficently large point sets.

For pseudo-triangulations, see e.g. [1], the situation is unclear as well. If only edge-removing
(respectively, edge-inserting) flips are allowed then the flip graph is not Hamiltonian. Figure 5
gives a counterexample. Our conjecture is that the flip graphbecomes Hamiltonian when both
edge-exchangingand edge-removing flips are admitted. The flip graph of minimum (or pointed)
pseudo-triangulations is Hamiltonian for all sets of up to5 points. (Only edge-exchanging flips
are allowed in order to stay within this class.) We believe this to be true for general point sets.
Our hierarchical approach possibly may be used to settle these problems.

Fig. 5. Graph for pseudo-triangulations and removing flips

Let us mention that the efficient generation of random spanning trees, plane graphs, or con-
nected plane graphs is still an open problem. Progress can possibly be made by selecting random
children for members in the respective graph classes.

7. Appendix

The binary reflected Gray code
The binary reflected Gray codeB(n) for n-bit numbers is defined recursively as follows.

B(1) is a list of two one-bit strings, namely0, 1. Forn ≥ 2, B(n) is formed by taking the list
for B(n − 1), prepending the bit0 to every string, and then taking the list forB(n − 1) in
reversed order and prepending the bit1 to every string. That is,

B(n) =

{

0, 1 if n = 1

0 · B(n − 1) ◦ 1 · B(n − 1) if n ≥ 2

where· and◦ denote character and list concatenation, respectively, and the overline operator
indicates list reversal. Consecutive strings inB(n) differ by a single bit, as do the first and the
last string. That is,B(n) is a cyclic code.

The red Gray code
For a given setY of green edges, let the graphT \ Y consist of the componentsK1, . . . , Kr.

Let componentKj havevj visible vertices, and let1, . . . , vj be any fixed ordering of these
vertices. The red codeR(1) for the first componentK1 is given by1, 2, . . . , v1. That is,R(1)

Gray Code Enumeration of Plane Straight-Line Graphs 11

consists ofv1 strings of lengthv1 each having a single bit1. Assume we are given a red code
R(s) for K1, . . . , Ks, for s < r. Then the red codeR(s + 1) is given by

1 · R(s) ◦ 2 · R(s) ◦ 3 · R(s) ◦ . . . ◦ vs+1 · R(s)

where the last sublist may also bevs+1 · R(s), according to the parity ofvs+1.

The modified red Gray code

As above, let the graphG \ Y consist of the componentsK1, . . . , Kr whereKj hasvj visible
vertices. DefineBj as the binary reflectedvj-bit Gray codeB(vj), but without the string00 . . . 0.
(The set of red edges connectingKj to pk+1 has to be nonempty.)Bj is still a cyclic code,
because an exchange of two bits (i.e., of two edges) is an allowed transposition for the graph
class,CPG, under consideration. We now number the strings inBj consecutively from1 towj =
2vj−1, starting from an arbitrary string. The modified red codeM(1) for the first componentK1

is then given by1, 2, . . . , w1. The construction forM(s + 1) proceeds along the same scheme
as for the red codeR above.

References

1. O. Aichholzer, F. Aurenhammer, P. Braß, H. Krasser. Pseudo-triangulations from surfaces and a
novel type of edge flip. SIAM Journal on Computing32 (2003), 1621-1653.

2. O. Aichholzer, F. Aurenhammer, H. Krasser. Enumerating order types for small point sets with
applications. Order19 (2002), 265-281.

3. O. Aichholzer, F. Aurenhammer, F. Hurtado. Sequences of spanning trees and a fixed tree theorem.
Computational Geometry: Theory and Applications21 (2002), 3-20.

4. M. Ajtai, V. Chvátal, M.M. Newborn, E. Szemerédi. Crossing-free subgraphs. Annals of Discrete
Mathematics12 (1982), 9-12.

5. R. Arenas, J. Gonzalez, A. Marquez, M. Puertas Gonzalez. Grafo de Grafos Planos de un Poligono
Convexo. Jornadas de Matematica Discreta y Algoritmica4 (2004), 31-38.

6. D. Avis, K. Fukuda. Reverse search for enumeration, Discrete Applied Mathematics65 (1996), 21-
46.

7. S. Bereg. Enumerating pseudo-triangulations in the plane. Computational Geometry: Theory and
Applications30 (2005), 207-222.

8. S. Felsner. On the number of arrangements of pseudolines,Discrete & Computational Geometry18
(1997), 257–267.

9. M. C. Hernando, F. Hurtado, A. Marquez, M. Mora, M. Noy. Geometric tree graphs of points in
convex position. Discrete Applied Mathematics93 (1999), 51-66.

10. M. C. Hernando, F. Hurtado, M. Noy. Graph of non-crossingperfect matchings. Graphs and Com-
binatorics18 (2002), 517-532.

11. C. Huemer, F. Hurtado, M. Noy, E. Omana-Pulido. Gray codes for non-crossing partitions and dis-
sections of a convex polygon. In: Proc. X Encuentros de Geometria Computacional, Sevilla, 2003,
20-23.

12 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

12. C. Huemer, F. Hurtado, J. Pfeifle. Gray codes and polytopal complexes for dissections of a polygon
into k-gons. In: Proc. XI Encuentros de Geometria Computacional,Santander, 2005, 31-38.

13. F. Hurtado, M. Noy. Graph of triangulations of a convex polygon and tree of triangulations. Compu-
tational Geometry: Theory and Applications13 (1999), 179-188.

14. F. Hurtado, M. Noy, J. Urrutia. Flipping edges in triangulations. Discrete & Computational Geome-
try 22 (1999), 333-346.

15. E. Rivera-Campo, V. Urrutia-Galicia. Hamilton cycles in the path graph of a set of points in convex
position. Computational Geometry: Theory and Applications 18 (2001), 65-72.

16. F. Ruskey. Simple combinatorial Gray codes constructedby reversing sublists. Springer Lecture
Notes in Computer Science762 (1993), 201-208.

17. C. Savage. A survey of combinatorial Gray codes. SIAM Review 39 (1997), 605-629.

Received: December 22, 2002
Final version received: December 22, 2002

