Gray Code Enumeration of Plane Straight-Line Graphs*

O. Aichholzet, F. Aurenhammér C. Huemet, B. Vogtenhuber

I Institute for Software Technology, University of TechngypGraz, Austria
2 Institute for Theoretical Computer Science, Universityfethnology, Graz, Austria
3 Departament de Matematica Aplicada, Universitat Politecde Catalunya, Barcelona, Spain

Abstract. We develop Gray code enumeration schemes for geometrighgtitane graphs in the plane.
The considered graph classes include plane graphs, cedngletne graphs, and plane spanning trees.
Previous results were restricted to the case where the lymdpvertex set is in convex position.

Key words. Geometric graphs, enumeration scheme, Gray codes

1. Introduction

Let £ = {ey,...,e,} be an ordered set. For the purposes of this papewjll consist of the
m = () line segments spanned by a sebf n points in the plane, in lexicographical order.
Consider a collectiomd of subsets oft. For instance, think ofA being the class of all plane
spanning trees of. We associate each memhér € A with its containment vectob; with
respect toF. That is,b; is a binary string of lengttm whose;* bit is 1 if ¢; € A; and0,
otherwise. A (combinatorialfsray code for the classA is an ordering4,, ..., A; of A such
thatb;,, differs fromb; by a transposition, fof = 1,...,¢t — 1. For example (and as one of
the results of this paper), for plane spanning trees a Grdg emists such that successive trees
differ by a single edge move. Depending on the class we wilkater, a transposition will be
an exchange of two different bits (as for the spanning traesglor/and a change of a single
bit. Combinatorial Gray codes generalize the classicatyineflected Gray code scheme [16]
for listing m-bit binary numbers so that successive humbers differ ictxane bit position.
See [17] for a survey article. We also refer to [3] for varioesults concerning edge moves in
spanning trees.

Any Gray code for a given clas$ provides a complete enumeration scheme4dry means
of constant-size operations. Listing all the objects of\egiclass is a fundamental problem in
combinatorics and, in particular, in computational geasnétiot every enumeration scheme
constitutes a Gray code, however, as a small differencedsgtwwonsecutive objects will not
be guaranteed, in general. For instance, the popular eegearch enumeration technique [6]
lacks this property. When interpretifg!,, . . ., A;} as the set of nodes of an abstract graph that
connects two noded; and A; wheneverm,; andb; are a single transposition apart, any Gray
code for the clasgl corresponds to a Hamiltonian path in this transpositioplgra

Send offprint requests to: F. Aurenhammer
* Research supported by the FWF Joint Research Project lrad@tometry S9205-N12 and Projects MCYT-
FEDER BFM2003-00368 and Gen. Cat 2005SGR00692

2 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

To see a simple example, lgt = G be the class of all possible straight-line graphs on a
given point setS. Each of the2™ subsets ofty defines a member @, for m = (7). If we
define a transposition to be a change of a single bit (i.e.in&ertion or removal of a single
edge) then the transposition graph ¢bis the hypercube im dimensions. The binary reflected
(g)-bit Gray code (see Appendix) corresponds to a Hamiltonyatecin this hypercube, and

constitutes a combinatorial Gray code ¢ar

While general enumeration schemes for geometric objeats haen studied quite exten-
sively, see e.g. [6,2,8,7], respective results for Grayesodre sparse. In particular, all the
known results for straight-line graphs concern the spexcaé where the underlying sgtof
points is in convex position. Under this restriction, [S15], and [10], respectively, treat the
classes of plane (i.e., crossing-free) straight-line lygsapf plane spanning paths, and of plane
perfect matchings, [9, 13] study the class of triangulatiand plane spanning trees, and [11,
12] the class of diagonal partitions. Many of these Gray aoatestructions are based on the
same idea, namely, on a hierarchy of graphs structured lbgasimg point set cardinality. In
this paper, we extend this approach to general pointgetsich becomes possible when com-
bining it with classical combinatorial Gray codes. We const Gray codes for the clag’g
of all plane straight-line graphs, the clasBg of all plane and connected straight-line graphs,
and the clas$7 of all plane spanning trees, for a given point set. For thesdl®¢ no results
existed even for the convex case.

The respective challenging question for triangulatiomsaias open. The only known result
is that for triangulations om = 6 points in nonconvex position a Gray code does not always
exist; see Section 6.

1.1. A hierarchy for plane graphs

Let S = {pi,...,p.} be the underlying set of points in the plane. Without losserfegality,

let S be given in sorted order af-coordinates. For simplicity, we also assume that no three
points inS are collinear. Then, fot < k£ < n — 1, the pointp,, lies outside the convex hull

of {p1,...,px}. This property will turn out useful in the subsequent canstions.

Let now.4 be one of the classé’G, CPG, or S7. We will define a hierarchy (a tree struc-
ture) H4(S) for A and.S such that the:" level of the hierarchy consists of all the members
of A on top of the firstt points inS, for k = 1,...,n. Thatis, each member iH 4(S) except
the root (at levell) has a unique parent, and each membéef ji{.S) which is not a leaf has a
unique set of children.

The Gray code construction fo4 is done recursively. It hinges on an appropriate rule for
defining the parent of a given member, as well as on a consistienfor enumerating its chil-
dren. Designing the enumeration rule for the children isdheial part, as it has to yield a
Gray code for the children which fits the (previously consted) Gray code for the parents. In
particular,H 4(S) has to be an ordered tree such that the ordering at each e¥éislis a Gray
code.

Based on this hierarchical structure we will, in Section8,2and 4, construct gray codes
for the three graph classes mentioned above. Algorithrsigeis of these constructions will be
addressed in Section 5. Finally, Section 6 offers a disonssi our results.

Gray Code Enumeration of Plane Straight-Line Graphs 3

2. The classPg

For the classPg of all plane straight-line graphs, things are surprisingjipple. Let, for this
class, a transposition be the change of a single bit, th&tesnsertion or removal of a single
edge. Let’ be some graph at levél+ 1 of the hierarchyHpg(S), for k£ > 1. That is,G’ is
some plane straight-line graph whose vertex s¢pis. . ., pry1}-

The parent of7’ is obtained by removing frora’ the vertexp,.; and all its incident edges.
This gives a unique grap& at levelk of Hpg(S). We say that a vertex; of G is visible
(from py,) if the line segmenpy,.1p; does not cross any edge@f As we are interested only
in plane graphs, all the children ¢f are obtained by adding the vertgx,; and connecting
pr+1 to subsets of visible points in all possible ways (including empty set).

Let v be the number of visible vertices 6f. We can use the binary reflected-bit Gray
code B(vg) (see Appendix) for encoding all the possible subsets of ®dugdent topy. ;.
(Note thatB(v¢) is a cyclic code.) A transposition in this code then meansmapar removing
a single edge to a visible vertex. To specify the first and #s¢ $ubset (i.e., child af), we
take () for the first child and the singleton séby.1p;} for the last child, wherey.,,p; is the
edge tangent to the convex hull 6f from above. (Vertey; is visible for any choice of the
graphG. In particularp; is the first visible vertex in counter-clockwise order.) Aatingly, the
first string in the code3(v¢) is 00. .. 0 and the last string i$0 . .. 0.

To construct a Gray code for levél+ 1 of Hpg(S), let G and F' be adjacent graphs at
level k of Hpg(.S). Attaching00 .. . 0 to the string forG and F', respectively, leaves the strings
one transposition apart. The same is truelfor. . 0. That is, the first child of7 is adjacent
to the first child of F, and the last child of7 is adjacent to the last child of. So we can
run B(v¢) followed by B(vr) (the codeB(vr) in reverse order), and so on. The construction of
the desired Gray code is now obvious. In addition, we canheséaict that the number of plane
straight-line graphs on > 2 points is even (because each convex hull edge appears ithyexac
half of the graphs), which by induction implies that this cade is cyclic. In the language of
graph theory, our result reads:

Theorem 1.The transposition graph for PG contains a Hamiltonian cycle.

It would be interesting to know the average number of visugeices for a levek member
of Hpg(S). This information could be used to give bounds on the numbgelame straight-line
graphs.

3. Plane spanning trees

Our strategy for constructing Gray codes also works for thes$S7 of plane spanning trees.
A transposition will now be an exchange of two different plitscause the addition (or removal)
of a single edge destroys the tree property.

Consider a membér’ at levelk + 1 of the hierarchyH s (.S), for k > 1. Thatis,7” is some
plane spanning tree dm, . .., px+1}. Defining an appropriate parent ©f is less trivial now.

For an arbitrary plane straight-line graghon {pi,...,px}, let¢,...,q, be the visible
vertices of G (as seen fronp,,) in counter-clockwise order. We define tlebain for G,
C(G), as the ordered set of line segmenig, |, for 1 <i < v — 1. Observe that for every
edgee € C(G) \ G, the set of visible vertices of7 U {e} is the same as fak.

Parent rule: Let G be the graph obtained by removing frafthe vertexp,.; and all its in-
cident edges. Let consist ofr > 1 components. We add the first- 1 edges of the chai@'(G)
that connect these components, and define the resultingdréne parent of”.

4 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

k+1

Fig. 1. The chain of a spanning tree

This rule yields a unique parent f@r. Notice that this parent is well-defined (i.e., belongs
to level k of Hs7(.S)) becauseés can always be connected to a tree using edg&s(6f), and
no such edge crosses any edgé-ofrom the definition of the parent we get the definition for
the children, as follows.

Let T be a tree at levet of the hierarchyHs7(.S). For two edges, ¢’ € C(T), writee’ < e
if ¢’ occurs before: in the total order on the chai@'(7"). We defineE(T') as the set of all
edges € T'N C(T) such that

(1) removal ofe does not make a non-visible vertex®Bivisible, and

(2) noedge’ € C(T) \ T with ¢’ < e gives a cycle i’ U {¢'} that containg.

See Figure 1. The spanning tréeis drawn with bold lines. Its chai@'(7") consists of six
edgeses, ..., es. Edgese; andes are not part ofl” and thus do not belong t&(7). Also,
we haveey, es ¢ E(T) because these edges reveal visible points. Finallg E(7) as the
edgee; < e; closes a cycle if” that containg,. (Similarly, we can exclude, again because
e3 < ey4 closes a cycle if” that containg,.) This givesE(T') = {eg}.

Childrenrule: The children ofl” are obtained by removing, for each possible subs&t(@f),
its edges from¥” and connecting each resulting component to the vejtexusing a single edge
to some visible vertex, in all possible ways.

It is clear that all the graphs constructed frdmin this way are plane spanning trees on
{p1,...,pr+1}. TO see that each member of level- 1 of the hierarchyHs7(.S) is generated
exactly once by the children rule (provided all the membédngwel & have so), we need the
lemma below. Let us color the edgesiofT’) green, and the edges that connectiia ; red.

Lemma 1. The parent rule and the children rule are consistent.

Proof. Child — parent: Letl” be some child constructed frof. Then7” contains- > 1 red
edges. Ifr = 1 then no green edge has been removed filofor constructingl”. According

to the parent rule, we now remove frdi the vertexp,.. 1, which correctly gives us the single
componentl’. Now assume- > 2. Thenr — 1 green edges have been removed frénto
construct?”, leavingr components. Lef{; and K;,; be two of these components, such that
there is a single (removed) green edgeetween them. There is no edgez C(T') \ T with

¢’ < e and which gives a cycle ifi’ U {¢'} containinge. Thus, when removing frorfi” the

Gray Code Enumeration of Plane Straight-Line Graphs 5

parents children

last child first Chil% /\ /\‘ /\‘ /\‘ /\

D PAVal

last child first child

first child last child \/ \/ \-/

Fig. 2. Gray code construction for spanning trees

vertexp,1 and joining components of the resulting graghaccording to the parent rule, the
edgee is indeed the first edge @f (G) that connectd(; and K, ;. (Otherwise we would have
chosere’ for removal instead of.) Thus we correctly get’ from 7" again.

Parent— child: Let 7" be the parent constructed fraf. 7" is obtained by removing;. .
and joining ther components of the resulting graghwith edges ofC'(G). Let e be such an
edge. Ther is the first edge of’(G) that connects the respective two components. Therefore,
no edge’ € C(T') \ T with ¢ < e gives a cycle irf’ U {¢'} that containg. Moreover, because
e € C(G) \ G,we knowthat7 U {e} andG have the same set of visible vertices. In conclusion,
elisindeed a green edge. Thus, by the children rilifeyill be constructed as one of the children
of T.

We are now ready to prove:
Theorem 2.The transposition graph for S7 contains a Hamiltonian path.

Proof. Let T be atree at levet. Define as the first child’/ (respectively, as the last chiltf)
of T' the tree obtained when addingTothe upper (respectively, lower) tangent from ; to
the convex hull off". Note thatl'/ and7* are well-defined children ¢f. We claim (and prove
below) that the transposition graph 87 contains a path frori/ to 7 that contains all the
children of 7. The theorem follows because, for two neighboring trEesdU at levelk, their
first childrenT/ andU/, as well as their last childréR’ andU?, are a single transposition apart.
To encode all the children &f, we have to consider each subsetC £(7") of green edges
and, for fixedY’, all allowed distributions of red edges. Let= | E(T)|. Similar to Section 2, the

6 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

binary reflected-bit Gray codeB(g) (let us call it thegreen code) is used for encoding all pos-
sible subsets of'(T"). Note thatF(T") = () is possible. Now consider a fixed sub¥etC E(T).
LetT"\ Y haver > 1 components. Given an arbitrary visible vertgxn each componerk’;,

1 < j < r, there exists a Gray cod¥(r) (thered code) that starts with the positions of the edges
¢1Pr+1, - - -, ¢Prr1 @nd that encodes all allowed positions of the red edgeshse&pgpendix.

Between every two transpositions in the green code we wdrthefred code. Care has to
be taken when switching between the codes. If a green edgielésldi.e., two components are
joined) then some red edge has to be removed. All other reglsestgy at their positions, which
are the starting positions for the subsequent red codel&iwif a green edge is removed (i.e.,
a component is split into two) then some red edge has to bedaddgin, all other red edges
stay at their positions which are the starting positiongtiernext red code.

When combining the green and the red code we obtain a Gray foodsdl the children
of T. However, this code will not end with the last childf of T, in general. To complete the
construction, we proceed as follows.

The green code is started at the subget () of E(T). (Recall thatl/ andT* arise as
children for this subset.) As removirjfrom 7' leaves the single componet = K, the
corresponding red code is juBt1). We startR(1) with a red edge whose choice depends on
the numbep, of visible vertices ofi(;. If v; > 2 thene is chosen to be not a convex hull tangent
elsee is chosen to be the upper tangent (which correspond¥ YoNow, before runningz(1),
we perform one transposition in the green code and then riecdmbined code until having
returned td). We re-enter?(1) with an edge’ different frome, which is guaranteed when the
appropriate red edge is removed when inserting the greesekigh yields the componei; .
Finally, R(1) is traversed fron¥’ to e in any order but so that’ and T* are adjacent. For
v1 > 2 this is possible because any two stringgiifl) differ by a single transposition. On the
other hand, for; = 2 the codeR(1) only contains the two strings far ande’, which then
correspond td@’/f andT®.

A cyclic code for the children ot is obtained in whicl/ andT* are adjacent. Cutting this
code between these two trees gives the desired result.

If the Hamiltonian path in Theorem 2 both starts and ends witinst child (or with a last
child), then we get a Hamiltonian cycle. Constructing suatyele in the general case is left
to further research. Figure 2 illustrates our Gray code ttooon for a set of4 points in
nonconvex position. The inserted pojnt. ; = p4 corresponds to the rightmost vertex.

4. Connected plane graphs

The Gray code construction for the claS§ can be modified to yield a Gray code for the
classCPg of all connected plane straight-line graphs. Allowed tpaosstions will now be an
exchange of two different bits or a change of a single bitalasving either of these types
makes the transposition graph {©PG non-Hamiltonian.

The parent rule needs no modification. Concerning the ahildule, letG be a graph at
level k of the hierarchyHqpg(S). We slightly redefine the sdt(G), namely, as the set of all
edges: € G N C(G) such that

(1) removal ofe disconnectss but makes no non-visible vertex 6f visible, and

(2) noedge’ € C(G) \ G with ¢ < e gives a cycle inG U {¢'} that containg.

Childrenrule: The children of7 are obtained by removing, for each possible subsgt 6f),
its edges frontz and connecting each resulting component to the vertexwith a (nonempty)
set of edges to visible vertices, in all possible ways.

Gray Code Enumeration of Plane Straight-Line Graphs 7

0001 by
0011

(0010
0110
0111
0101

0100

A\ A

bm . s
1100 ——— > starting position

1101
1111

1110

1010 / enter somewhere

1011 %

1001

C
S
{
(1000 by

Fig. 3. Traversing the codé/ (1)

The proof of consistency of the parent rule and the childuda is similar to Lemma 1; we
leave it to the interested reader. As before, let us coloetiges in the set(G) green and the
edges that connect 9., red.

Theorem 3.The transposition graph for CPG contains a Hamiltonian path.

Proof. We mimic the proof for spanning trees (Theorem 2). The gresle stays unchanged,
whereas the red code has to be modified &k the levelk member of the hierarch¥cpg(.S)
whose children are to be encoded, andYef E(G) be the current subset of green edges.
For each component; of G\ Y we have to encode all possible nonempty subsets of visible
vertices (i.e., of red edges). A modified red cadeachieving this is given in the Appendix.
This code exists for every fixed starting position of red edge

When switching between the codes, if a green edge is remaxedg component is split
into two) then some red edge is added to keep the graph cathédt other red edges are held
fixed. Conversely, if a green edge is added (i.e., two compisrege joined) then either all red
edges are held fixed or one of them is removed. This gives énerg} positions of the modified
red code for the subsequent subset of green edges. Whenriogthe green code and the
modified red code we proceed as follows.

The green code is started with removing fréhthe subseY” = (). The modified red code for
the resulting single componeht; = G is just M (1), that is, basically a binary reflected Gray
code. Let, ..., b, be the strings i/ (1). We havek > 3 andk odd. Recall that, = G* is the
last child, and), = G/ is the first child, ofG. Now putm = % The stringb,,, = 110...01is
the string with lowest index whose leading bitiSNe takeb,, as the starting position fav/(1).
Now, before running/(1), we do one transposition in the green code, and then run tie co

8 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

bined code until the subs@tis reached again. Lét be the string at whicd/(1) is re-entered.
That is,b, describes the final positions of the red edges for the lastetlibin the green code.
(Note thaty” = {e} is a singleton set; addingforms the componerit’; = G.) To complete the
code construction, we need a traversal\6f1) that starts withh, and ends wittb,,,, whereb,

andb, are consecutive, and where any two consecutive stringssngke transposition apart.

Caser > m. See Figure 3. We start the traversal with the stribhgs . b0, ...b;_, and
continue with the stringé,_, 10,16, _2by_,12bx_-13b._5 ... @and so on, untib,, is reached.
Observe thab, andb, differ by an exchange of two bits, and that ; andb,_,.,; for fixed
differ only in the leading bit. (Ifr is even then the string,,_; = 010...0 is left out in this
sequence. But thep,_; can always be put between two suitable strings, nam@ly . ..0 and
0110...0.)

Caser < m. The traversal is similar, namely the strings .. b.b; . .. b;_, followed by the
stringsby_ 10,4161 2bg_r_2b_»_3b,3 ... and so on, untib,,,.

Caser = m. In this case, we do not re-ent#f (1) atb, = b,,, but at its neighbob,, ; =
010...0. This corresponds to removing some red edge when the grgen édefined above) is
added. That is, an exchange of two bits takes place. Theeddsaversal is given by the strings
b—1bm—2 ... b1bgbg_1 ... bp.

In conclusion, a cyclic code for the children 6fis obtained where the first child@’ and
the last childG* are adjacent.

5. Algorithmic issues

To perform a Gray code enumeration of a given graph clasthe hierarchyH 4(S) is tra-
versed in preorder and its leaves are reported &ar {PG,S7,CPG}, each non-leaf mem-
ber of H4(S) has at least two children. Consequently, the time complégidominated by
computing the leaves. When computing the children of a gpa®ntG, the main tasks are
calculating the chaiW'(G) and the se¥((G) of green edges. Both tasks can be accomplished
intime O(k log k) if G hask vertices, as is shown below.

Let L be any connected plane straight-line graph. Thelissects its convex hull into (topo-
logically) connected subsets, called theesof L. Towalk around a facé’ of L means travers-
ing those edges df, and of the convex hull of,, that boundF’. Edges that bound’ from both
sides are traversed twice.

Now, let the parentG live on the points{py,...,px}. Assume thatz has components
Ky, ..., K,. For computingC(G), we first compute the chaifi(X;) for each componenk’;
separately, as follows. Define the graphas the union ofK; with the two tangent edges
from p,,.1 to K;. There is a unique facé’ of L incident top,,,. Starting fromp;.;, we
walk aroundF’ and update visible vertices. That is, we check their contaimt in the currently
spanned angle as seen frpp ; using a stack. Having available the chaings;), . .., C(K,),
we combine them to the chaii(G). To this end, we sort the set of all their vertices radially
aroundpy 1, and scan this set while deleting nonvisible vertices. Elzesions need (k log k)
time in total.

For the clas$3, it suffices to compute the chaifi) for each parent:. For the classeS7T
andCPg, we also have to compute the respective €&t§). Observe thaty is always con-
nected for these two classes.

Gray Code Enumeration of Plane Straight-Line Graphs 9

For calculatingk/(G), we defineL. = G U C(G). We color the edges € C(G) asblack or
white depending on whethere G or not. Let us first handle the case for the cl&§5 where
G is a plane spanning tree.

Initially, £(G) contains all black edges. We treat each facef L incident toC(G) sepa-
rately, leaving out the face incidentjg, ;. Let F" havev vertices. To test property (1) (visibility
change) inD(vlogv) time, we first compute the chaii(F’) of the graphF” whose edges are
all the non-black edges df. Then we check containment of each vertesf C'(F”) in the vis-
ibility anglesa(e) spanned by the black edgesf F. If = € a(e) thene is deleted fromE(G).
To test property (2) (induced cycle) (v) time, we observe that' has at most one white
edgee’. (G would be disconnected, otherwise.}lexists (and thus all other edgesiobelong
to G by the connectedness 6f) then we delete fronk(G) all black edgeg of F' with ¢’ < e.
This leaves the correct séY{ ().

If CPG is the considered class then property (1) also requires éotesonnectedness. But
removal ofany black edge: of F’' leaves connected if and only if all edges éf are part of5.
So all black edges af' have to be deleted frofd (&) in the affirmative case.

We may (inductively) assume thét is given in sorted adjacency list representation. So
the graphd. and all their faces can be computed fréfin O(k) time. For computing”(G)
and E(G), each such face is considered at most once. We conclude:

Theorem 4.Let A be any of the classes PG, S7,CPG, for a given set S of n points in the
plane. A Gray code enumeration of .4 can be performed in O(nlogn) time per member.

For the classs7 this result is superior to the result for (non-Gray code)rneearation in [6],
whereO(n?) time per tree is needed. Note that the average number ofehilaf a member is
only a constant, as there aéc™) plane straight-line graphs dh for ¢ depending on the class
but not onn; see [4]. Thus, on the average(n logn) time has to be invested for constructing
each child.

6. Discussion

We have shown that, for several classes of plane straigétgiiaphs, their transposition graph
is Hamiltonian. With small adaptions, our enumeration sob® can be made to work for point
sets containing collinear points. Thus, for instance, wegravide Gray codes for the respective
graph classes on the grid.

Atk

Fig. 4. Transposition graph for triangulations

10 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

To see some negative example, consider the class of ajjtdatons of the point sef, and
let a transposition be an edge flip [14]. The sim@point example in Figure 4 shows that the
corresponding flip graph is not Hamiltonian, in general. ldwer, it still may be true that this
property is attained for sufficently large point sets.

For pseudo-triangulations, see e.g. [1], the situationcdaar as well. If only edge-removing
(respectively, edge-inserting) flips are allowed then tipeditaph is not Hamiltonian. Figure 5
gives a counterexample. Our conjecture is that the flip gbsggomes Hamiltonian when both
edge-exchangingnd edge-removing flips are admitted. The flip graph of minimunpginted)
pseudo-triangulations is Hamiltonian for all sets of up fmoints. (Only edge-exchanging flips
are allowed in order to stay within this class.) We believs th be true for general point sets.
Our hierarchical approach possibly may be used to settiethoblems.

l
&/ \A
Fig. 5. Graph for pseudo-triangulations and removing flips

Let us mention that the efficient generation of random spantiees, plane graphs, or con-
nected plane graphs is stillan open problem. Progress cailghpbe made by selecting random
children for members in the respective graph classes.

7. Appendix

The binary reflected Gray code

The binary reflected Gray cod@(n) for n-bit numbers is defined recursively as follows.
B(1) is a list of two one-bit strings, namely 1. Forn > 2, B(n) is formed by taking the list
for B(n — 1), prepending the bi to every string, and then taking the list fé(n — 1) in
reversed order and prepending thelbib every string. That is,

B(n):{O-B(n—l) o1-Bn—1) if n>2

where- ando denote character and list concatenation, respectivety/ttaa overline operator
indicates list reversal. Consecutive stringditrn) differ by a single bit, as do the first and the
last string. That isB(n) is a cyclic code.

The red Gray code

For a given set” of green edges, let the grafih\ Y consist of the components,, .. ., K.
Let componentk; havev; visible vertices, and let, ..., v; be any fixed ordering of these
vertices. The red codg(1) for the first componenk’; is given by1,2,...,v;. Thatis,R(1)

Gray Code Enumeration of Plane Straight-Line Graphs 11

consists ofv; strings of lengthy; each having a single bit. Assume we are given a red code
R(s) for Ky, ..., K, for s < r. Then the red cod&(s + 1) is given by

1-R(s) o 2-R(s) o 3-R(s)o...ovs1-R(s)
where the last sublist may also bg ; - R(s), according to the parity af;, .

The modified red Gray code

As above, let the grapf \ Y consist of the components,, . . ., K, whereK; hasv; visible
vertices. Defings; as the binary reflected-bit Gray codeB(v;), but without the string0 . . . 0.
(The set of red edges connectiag to p,.; has to be nonemptyl,; is still a cyclic code,
because an exchange of two bits (i.e., of two edges) is awedldransposition for the graph
classCPG, under consideration. We now number the string8jiiconsecutively from tow; =
2vi —1, starting from an arbitrary string. The modified red cddél) for the first componenk’;
is then given byl, 2, ..., w;. The construction fol/(s + 1) proceeds along the same scheme
as for the red cod& above.

References

1. O. Aichholzer, F. Aurenhammer, P. Bral3, H. Krasser. Rsét@ngulations from surfaces and a
novel type of edge flip. SIAM Journal on Computig (2003), 1621-1653.

2. O. Aichholzer, F. Aurenhammer, H. Krasser. Enumeratirdgotypes for small point sets with
applications. Ordet9 (2002), 265-281.

3. O. Aichholzer, F. Aurenhammer, F. Hurtado. Sequencepaniring trees and a fixed tree theorem.
Computational Geometry: Theory and Applicatidis(2002), 3-20.

4. M. Ajtai, V. Chvatal, M.M. Newborn, E. Szemerédi. Crivgsfree subgraphs. Annals of Discrete
Mathematicsl2 (1982), 9-12.

5. R. Arenas, J. Gonzalez, A. Marquez, M. Puertas Gonzale#o@e Grafos Planos de un Poligono
Convexo. Jornadas de Matematica Discreta y Algoritrdi¢2004), 31-38.

6. D. Avis, K. Fukuda. Reverse search for enumeration, BtecApplied Mathematic65 (1996), 21-
46.

7. S. Bereg. Enumerating pseudo-triangulations in theepl@omputational Geometry: Theory and
Applications30 (2005), 207-222.

8. S. Felsner. On the number of arrangements of pseudobissete & Computational Geometiy
(1997), 257-267.

9. M. C. Hernando, F. Hurtado, A. Marquez, M. Mora, M. Noy. Getric tree graphs of points in
convex position. Discrete Applied Mathemati&3(1999), 51-66.

10. M. C. Hernando, F. Hurtado, M. Noy. Graph of non-crosgiagect matchings. Graphs and Com-
binatorics18(2002), 517-532.

11. C. Huemer, F. Hurtado, M. Noy, E. Omana-Pulido. Gray sdde non-crossing partitions and dis-
sections of a convex polygon. In: Proc. X Encuentros de Géiem@omputacional, Sevilla, 2003,
20-23.

12 O. Aichholzer, F. Aurenhammer, C. Huemer, B. Vogtenhuber

12. C. Huemer, F. Hurtado, J. Pfeifle. Gray codes and polympaplexes for dissections of a polygon
into k-gons. In: Proc. Xl Encuentros de Geometria Computacic@ehtander, 2005, 31-38.

13. F. Hurtado, M. Noy. Graph of triangulations of a convekygon and tree of triangulations. Compu-
tational Geometry: Theory and Applicatioh8 (1999), 179-188.

14. F. Hurtado, M. Noy, J. Urrutia. Flipping edges in triatagions. Discrete & Computational Geome-
try 22 (1999), 333-346.

15. E. Rivera-Campo, V. Urrutia-Galicia. Hamilton cycleghe path graph of a set of points in convex
position. Computational Geometry: Theory and Applicagi®8 (2001), 65-72.

16. F. Ruskey. Simple combinatorial Gray codes construbtedeversing sublists. Springer Lecture
Notes in Computer Sciend&?2(1993), 201-208.

17. C. Savage. A survey of combinatorial Gray codes. SIAMi&ed9 (1997), 605-629.

Received: December 22, 2002
Final version received: December 22, 2002

