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Abstract

For a surface F in 3-space that is represented by a set S of sample points, we construct a coarse approximating

polytope P that uses a subset of S as its vertices and preserves the topology ofF . In contrast to surface reconstruc-

tion we do not use all the sample points, but we try to use as few points as possible. Such a polytope P is useful as

a ‘seed polytope’ for starting an incremental refinement procedure to generate better and better approximations

of F based on interpolating subdivision surfaces or e.g. Bézier patches.

Our algorithm starts from an r-sample S of F . Based on S, a set of surface covering balls with maximal radii

is calculated such that the topology is retained. From the weighted α-shape of a proper subset of these highly

overlapping surface balls we get the desired polytope. As there is a rather large range for the possible radii for the

surface balls, the method can be used to construct triangular surfaces from point clouds in a scalable manner. We

also briefly sketch how to combine parts of our algorithm with existing medial axis algorithms for balls, in order

to compute stable medial axis approximations with scalable level of detail.

1. Introduction

This paper deals with recovering structural information for

a 3-dimensional object that is represented by a sample point

cloud. More specifically, given an object O in 3-space and

an r-sample S of its boundary, we want to find an approxi-

mating polytope P that uses a subset of the points in S as its

vertices and preserves the topology ofO. Our goal is, on the

one hand, to use as few points of S as possible and, on the

other, to get a flexible approximation whose level of detail

can be tuned from coarse to fine. We also (briefly) address

the problem of finding piecewise linear approximations of

the medial axis of O. Motivation for studying these prob-

lems is based on open problems in object simplification and

surface reconstruction, two fundamental tasks in several ar-

eas of computer science, like geometric modeling, computer

graphics, and computational geometry.

The main support structure we use is an approximation
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of the object in question with a union of balls. In the con-

text of object simplification, this approach is used for many

purposes, e.g. collision detection [Hub96], shape matching

[SS04], and shape interpolation [RF96], to name a few. Re-

garding surface reconstruction, approximating objects with

balls also plays a major role, see for example the power crust

algorithm [ACK01], related work [AB99,AK00,AK01] and

also [CL08], naming again only a few.

In our approach, which is similar to work in [CL08],

we build a union of so-called surface balls, centered at the

points in our r-sample S on the surface F of O, whose radii

adapt to the local feature size of F . The desired approxi-

mating polytope P is then extracted from the weighted alpha

shape [Ede95] of a carefully chosen subset of these balls. In

contrast to [CL08], where prior knowledge of the local fea-

ture size of F is assumed, we obtain an estimation of this

function from the data, by using distances to poles [AB99]

(certain vertices of the Voronoi diagram for S). Using a tai-

lored technique of pruning the surface balls, we obtain a

coarse-to-fine approximation of F by polytopes. This is the

first result that uses, from a practical point of view, approxi-

mations of local feature size and medial axis to obtain locally

adaptive reconstructions of an unknown surface.

The polytopes we construct are topologically correct re-

constructions of F . Thus our results differ from existing

multi-scale surface reconstruction techniques in [NSW08,
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CL08, CCSL09, GO08] where topological filtering occurs.

At the coarsest level, the polytope we obtain is what we

call ’seed polytope’, as it provides not only a coarse ap-

proximation of F but also a mapping of the non-used sam-

ple points in S to the vertices of the polytope. Such a map-

ping is needed for incrementally generating approximations

of F based on interpolating subdivision surfaces or Bézier

patches. We stress that the intended purpose of the seed

polytope is not primarily in approximating F but rather in

serving as a (topologically correct and small) starting struc-

ture for subsequent approximations by patches. We thus do

not try to keep the approximation error small for the seed

polytope itself, and use this additional freedom to keep the

polytope small. In a previous related approach [BPR∗07],

point clouds in convex position are approximated by spheri-

cal patches.

Strongly related to the surface reconstruction is the me-

dial axis approximation; we refer to [ABE07] for a recent

survey paper on medial axes and their algorithmic construc-

tion. In this area, many algorithms are based on unions of

balls as well, for example [BO04, GMP07, YBM04]. We

briefly describe how a variant of our approach, now for

balls centered at poles instead on sample points, combines

with an existing medial axis algorithm for balls [AK01]

to an efficient and stable medial axis approximation algo-

rithm for general objects. It is known that sufficiently dense

r-samples lead to topologically correct medial axis approxi-

mations; see [AK00] and, for a result more general than for

poles, [AB03].

2. Definitions and notation

Throughout this paper, letO denote the original solid object

and let F denote its surface. The following definitions are

standard.

Definition 1

• The medial axis transform of O is the (infinite) set of

maximal balls that avoid O, where maximality is with

respect to inclusion. The set of the centers of these balls

forms the medial axis of O. The surface F splits the me-

dial axis in an inner medial axis and an outer medial axis.

• The local feature size lfs(x) of a point x ∈ F is the min-

imum distance from x to any point on the medial axis

of O.

• A finite point set S ⊂ F is an r-sample of F if every

point x ∈ F has at least one point of S within distance

r · lfs(x) [AB99].

In this paper, we will assume that S is an r-sample of F
for r = 0.08.

For each sample point s ∈ S, we define two vertices of the

Voronoi diagram of S as the poles of s, see [AB99]: the inner

pole is the vertex of the Voronoi cell of s farthest away from s

and in the interior ofO, and the outer pole is the farthest one

from s and outside O. For the inner pole p of each site s we

consider the ball with center p and radius ‖p− s‖. We refer

to the set of these polar balls as the (inner) discrete medial

axis transform DMATin. Analogously, we generate a set of

outer polar balls and denote it by DMATout.

Definition 2

• The discrete medial axis DMin (DMout) is the medial

axis of the union of polar balls in the sets DMATin

(DMATout).

• The discrete local feature size l̃fs(x) of a point x ∈ F is

the minimum distance from x to DMin∪DMout.

• The pole distance D̂(x) of a point x is the distance to the

nearest pole.

We will see that D̂ is a good estimate of l̃fs (Corollary 5.5),

as well as an upper bound on the true local feature size

(Lemma 5.1). In practice, D̂ is easier to compute than l̃fs,

and the true local feature size is not computable at all.

The weighted α-shape is the dual shape of a union of balls

[Ede95]. It is a simplicial complex whose vertices are the

centers of the balls, and which is homotopy-equivalent to

the union of balls. We will refer to the weighted α-shape of

DMATin as Ain and to the one of DMATout as Aout.

Proposition 2.1 [AK01] Let Ain and Aout be the weighted

α-shapes of DMATin,DMATout. Then we have

DMin∪DMout ⊆Ain∪Aout.

3. Our approach

The flowchart in Figure 1 gives an overview of the work

flow for the three tasks considered in this paper: Comput-

ing a seed polytope, a scalable surface reconstruction, and

the medial axis.

In all cases we start with an r-sample S of the object O
as input and compute from it the two discrete medial axis

transforms DMATin and DMATout.

These sets serve two purposes: For seed polytopes and

scalable surface reconstruction we use them in order to esti-

mate bounds on the local feature size of the sample points.

For medial axis approximation, we use a pruned version of

DMATin with slightly enlarged radii, representing the object

O in a compact and faithful way.

The union of surface balls. A surface ball is a ball with

center at a sample point s∈ S. For seed polytopes, our goal is

to represent the surface F of O in a topological correct way

with as few faces as possible. We try to make the surface

balls as large as possible, while guaranteeing correct topol-

ogy of the the unionU(BF ) of the set BF of surface balls. A

subsequent pruning step will throw away some of these balls

whenever the sample is denser than necessary. For surface
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Figure 1: Work flow

reconstruction, we will output meshes of scalable complex-

ity. The only modification necessary to reach this goal is to

choose surface balls with smaller radii.

Pruning. To decide which balls to keep, we solve a combi-

natorial problem. We (virtually) shrink the balls in BF and

compute a minimal subset B′
F of BF such that the shrunk

balls cover the sample S. This is a set covering problem,

which is solved by a heuristic. The advantage of this ap-

proach is that the selection of the pruned subset proceeds

now in a purely combinatorial manner, without regard to ge-

ometry and topology. The radii of the shrunk balls are cho-

sen in such a way that covering of S by a subset of shrunk

balls guarantees that the original, unshrunk, surface balls

cover the surface F , and moreover, their union represents

the topology of F correctly.

The polyhedral approximation. Finally we compute the

weighted α-shape of B′
F , which has the same topology as F

and which gives the desired seed polytope. The vertices of

the weighted α-shape are points in S, because the centers of

the balls in B′
F have been chosen from S. We use the power

diagram of B′
F to find out which vertex of the polytope each

sample point s ∈ S belongs to and provide a list of pointers

representing this relation.

Medial axis approximation. The medial axis algorithm of

Amenta et al. [AK01] could be used to compute the medial

axis of the union of the balls in DMATin. However, medial

axes are in general unstable because of their disproportional

response to even small perturbations on the object surface.

α

F

Figure 2: A wiggly curveF with a point sample on a straight

line. (Adapted from [AK00].)

Therefore, and also due to noise and numerical inaccuracies,

DMATin might contain balls far from a reasonably pruned

approximation of the medial axis of O in practice, as small

details might be (correctly) approximated that nevertheless

are not needed in the application. Moreover, because S is a

dense r-sample, the centers of the balls in DMATin sample

the medial axis in a much too dense way. We provide an ad-

equate input for the medial axis algorithm [AK01] by reduc-

ing the number of balls significantly and thereby stabilizing

DMATin.

This is done by adding a small distance ε to the radii of

the balls in DMATin. Thus we get an enlarged set DMAT′
in

which we use to compute a covering matrix. Our set covering

algorithm finds a small subset DMAT′′
in of DMAT′

in which

covers all sample points (but not necessarily F ). The goal

of stabilization of DMATin is implicitly reached because the

set covering algorithm favors balls covering many sample

points (which have their center near the medial axis and are

therefore usually larger than unstable ones). The degree of

simplification (and thus the level of detail of the approxi-

mated medial axis) is scalable by the choice of ε.

No implementation of the algorithm developed in [AK01]

was available and so we have implemented it using CGAL

[CGA]. We obtain—in combination with our pruning

technique—stable and efficient medial axes. In practice, the

approach works even for poorly sampled inputs which do

not meet the r-sampling condition at all; see a companion

paper [AAHK09]. Of course, no theoretical guarantees can

be given in that case.

Obtaining the local feature size. A distinguishing feature

of our problem setting is that we cannot get a lower estimate

on the local feature size. Figure 2 shows a section of a curve

F that consists of alternating short circular arcs. The hor-

izontal lines are part of the medial axis. The points of the

r-sample S are aligned vertically. By reducing the angle α,

such an example can be built for any r > 0. The algorithm

sees only these samples. Thus, to the algorithm, this input is

indistinguishable from a very densely oversampled straight

line.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Aichholzer, Aurenhammer, Kornberger, Plantinga, Rote, Sturm, Vegter / Recovering Structure from r-Sampled Objects

4. Technical results

In order to generate adequate sets of polar balls and surface

balls (in both cases, the topology must be maintained), we

need to derive certain information concerning the local fea-

ture size of the sampled object. The present and the subse-

quent section are devoted to this issue. We obtain several

new properties of r-sampled objects for suitable values of r.

Let Min and Mout denote the inner and the outer medial

axis of the given object O, respectively. We start by bound-

ing the distance of poles to the respective parts of the medial

axis—a result crucial for bounding the radii of surface balls

in Section 5.

Theorem 4.1 For an r-sample S, let p be an inner (resp.

outer) pole of a sample point s ∈ S, and denote with Bp the

inner (outer) polar ball of s, with radius Rp. The distance

from p toMin (Mout) is at most O(r) ·Rp.

In the limit, when the sampling density approaches zero,

poles and the medial axis coincide, as has already been

shown by Amenta et al. [ACK01, Theorem 35]. In contrast to

this result, we give an explicit quantitative analysis in terms

of r. Results similar to Theorem 4.1 have been shown (see

e. g. [ACK01, Lemma 34], on which Theorem 35 is based,

or [BC01, Proposition 16]). However, we could not use these

results, since they hold only when the angle between the two

closest surface points to a given point onMin (Mout) is not

too small, (These points form the γ-medial axis.)

Proof The idea of the proof is to turn the polar ball Bp into

a medial ball, while not moving its center too much. The

proof is based on several technical lemmas which are given

subsequently. We proceed in three steps, see Figure 3:

1. While keeping the center of Bp fixed we shrink the ra-

dius of Bp until the ball becomes empty, touching the

surface F of O at some point x0. By Lemma 4.2 below,

the difference ∆1 between the new radius and the original

radius Rp is at most ∆1 = O(r2) ·Rp.

2. We expand the shrunken ball from the touching point x0

by moving its center in the direction
→
x0p until either

(2a) the ball has the original radius Rp of Bp, or

(2b) the ball touches the surface at another point. If this

occurs we have found a point of Min within distance

∆1, and we are done.

3. In case (2a), we “roll” the new ball B′
p (with radius Rp)

on the surface. More precisely, let K1 be the component

of Bp∩F which contains x0. Consider the balls of radius

Rp that are tangent to F in a point of K1 and lie on the

same side of F as p. The locus of the centers of these

balls is the inner parallel surface F̄ of K1. We claim that

the rolling ball touches another point of F , and therefore

F̄ contains a point of Min.

We prove this by contradiction. Let us suppose that the

ball can roll on K1 without ever touching a second point

p

F

K1

Bp

O(r2)

B′

p

p′ ∈ F
mx ∈ F

Rp
Rp

Rp

my ∈ F

x0

Figure 3: After shrinking and expanding the ball Bp we roll

the new ball B′
p on K1 (e.g. the gray ball).

Bp
BT

t

cp x v

l
Rp

l · r l · sin α

α

Figure 4: Deepest penetration into Bp

of F . K1 cuts Bp into two parts: B+ containing p, and

the rest B−. By Lemma 4.4 below, B+ is completely cov-

ered by the tangent balls ofK1. Since by assumption these

balls never hit another point of F , it follows that K1 is

the only component of F ∩Bp. Let s ∈ Bp be the sam-

ple point whose pole is p. This point must lie on K1 and

therefore we can roll the empty tangent ball of radius Rp

to s. The radius RM of the medial ball at s is therefore

at least Rp. On the other hand, each point of the me-

dial axis is contained in the Voronoi cell of the nearest

sample point, therefore ‖p− s‖= Rp ≥ RM . This implies

Rp = RM and the tangent ball at s has its center on Min,

and we are done. We remark that this last case can ac-

tually never arise, since Rp > RM unless the medial axis

branches and the ball touches F in several points.

We have established that F̄ contains a point mx of Min

which is the center of a medial ball with radius Rp touch-

ing K1 in x. We know by Lemma 4.3a that the angle

γ = ∠mxxp is at most 3r + O(r). Thus, ‖p−mx‖ ≤
Rp · (3r+O(r2)).

In the following, we will assume that p is an inner pole.

(The situation is symmetric for outer poles.)

Lemma 4.2 Let p be a pole with polar radius Rp. The surface

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.



Aichholzer, Aurenhammer, Kornberger, Plantinga, Rote, Sturm, Vegter / Recovering Structure from r-Sampled Objects

p

x

K1

F

T

nx

w

σ+

y

Figure 5: The tangent balls of K1 cover B
+

F cannot get closer to p than

Rp

(√
1−4(r2− r4

4 )− r
2
)
≥ Rp

(
1−3r

2−O(r4)
)

.

For an r-sample with r = 0.08 the distance between the cen-
ter p of a polar ball with radius Rp and F is larger than

0.9807 ·Rp.

Proof Let x be the point on F closest to p. Let BT be

an empty outer ball tangent to x with center c and radius

l = lfs(x). By the sampling condition, there must be a sam-

ple t within distance rl of x. t lies outside the balls Bp and

BT and therefore the distance from x to the circle ∂Bp∩∂BT

is at most r · l (see Figure 4). Thus, the angle α = ∠cpt is

bounded by sin α
2 ≤ r

2 . For fixed l and Rp, the point x is clos-

est to p when α is maximized. We thus analyze the situation

for sin α
2 = r

2 :

sinα = 2sin
α

2
cos

α

2
≤ 2 ·

r

2

√
1− r2

4 =

√
r2− r4

4

‖v− p‖ =
√
R2
p− (l · sinα)2 =

√
R2
p− l2 · (r2− r4

4 )

‖v− x‖ =
√

(l · r)2− (l · sinα)2 =
√

(l · r)2− l2 · (r2− r4

4 ) =
l · r2

2

‖x− p‖ ≥ ‖v− p‖−‖v− x‖

√
R2
p− l2 · (r2− r4

4 )−
l · r2

2

The inner polar ball Bp contains a point of Min ( [ACK01,

Corollary 13]), therefore l ≤ 2Rp. It follows that the distance

between p and F is at least

√
R2
p−4 ·R2

p · (r2−
r4

4 )−Rp · r
2 =

Rp ·
(√

1−4 · (r2− r4

4 )− r
2
)
,

as claimed in the lemma.

Lemma 4.3 Let x be a surface point x inside a polar ball Bp

with center p.

a) The angle γ between −→xp and the surface normal at x is

bounded by 3r+O(r2) = O(r).
b) (The penetration bound) The distance from x to the

boundary of Bp is is bounded by 3
2 lfs(x)(r

2 +O(r3)).

Part b of the lemma is similar to Lemma 4.2, except that

the penetration of the surface point x into the pole ball Bp is

measured in terms of lfs(x), and not in terms of the radius of

Bp.

The proof of Lemma 4.3 is omitted for lack of space.

To complete the proof of Theorem 4.1, we still need to

show that the tangent balls of K1 cover all parts of B+. Re-

call that K1 cuts Bp in two parts: B+ containing p, and the

rest B−.

Lemma 4.4 The tangent balls of K1 completely cover B+.

Proof Let w ∈ B+ and let x be the closest point of K1. We

claim that the tangent ball at x covers w. If x lies in the in-

terior of K1, then wx is perpendicular to F , and the claim

is obvious. Let us assume that x is at the boundary of K1,

that is Bp ∩F (see Figure 5). Assume that the surface nor-

mal nx does not go through p; otherwise it is obvious that

w is covered. Consider the plane σ through nx and through

the point p. Figure 5 shows the projection on this plane. Lo-

cally around x, F is approximated by the tangent plane T

and Bp∩F is the halfspace of T that projects onto the ray xy

in Figure 5. It follows that x can only be the point of K1 clos-

est to w, if w lies in the plane σ and in the closed halfplane

σ+ of σ which is bounded by nx and does not contain p.

5. Construction of balls

5.1. Polar balls

For the set DMATin of inner polar balls, it is well

known [AK00] that the union of the balls in this set is home-

omorphic to the original object O. Recall that each ball in

DMATin is the circumball of a Delaunay tetrahedron and

therefore has at least four points of S on its boundary and

no such point in its interior. From DMATin we generate a

set DMAT′
in of slightly enlarged balls which are still cen-

tered on S. Such a ball typically covers tens or even hun-

dreds of points of S. In a subsequent set covering step, this

redundancy in covering will be eliminated, and thereby only

a small and stable subset of DMAT′
in will be kept. We have

to ensure, for the goal of topologically correct medial axis

approximation, that the union of DMATin and the union

of DMAT′
in are topologically equivalent. Using the lower

bound on the discrete local feature size of sample points de-

veloped in Lemma 5.4 below, it is easy to check whether

DMAT′
in∩Aout = ∅.

5.2. Surface balls

In order to maintain correct topology of the piecewise linear

surface reconstruction, the surface balls we generate have to
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Figure 6: Distance from pole p to the medial axis point mx

be large enough such that their union does not only cover S

but also F and, on the other hand, these balls avoid the me-

dial axis of the union of the balls in DMATin and DMATout.

The above restrictions limit the possible radii to a certain

range. Maximizing the radii within this range will lead to a

coarse result (which is desirable for seed polytopes), while

minimizing the radii of the surface balls will lead to a faith-

ful and detailed representation of the object. The choice of

the radii determines the degree by which the surface balls

are pruned in a subsequent set covering step.

5.2.1. Lower bound on the radii

To ensure that F is completely covered by surface balls we

choose the radii of the surface balls such that they cover at

least the intersection of their site’s Voronoi cells with F . For

a point s in an r-sample, this intersection is covered by a

sphere around swhose radius is ρ ≥ r
1−r · lfs(s), see [AB99],

and so the surface balls need to have at least that radius. As

lfs(s) is unknown, we need to estimate it in terms of the dis-

tance D̂(s) between s and the nearest among the poles of all

sample points. Using Lemma 5.1 below, we get

lfs(s) ≤ 1.2802 · D̂(s)

and so we must choose the radius ρ of a surface ball around

s to be at least

ρ ≥ r
1−r ·1.2802 · D̂(s).

The distance D̂(s) can be calculated relatively easily using a
spatial search structure.

Lemma 5.1 Let s ∈ S be a point of an r-sample S with r ≤
0.08, and let D̂(s) = ‖s− p‖ denote its distance to the nearest
pole p. Then

lfs(s) ≤ 1.2802 · D̂(s).

Proof The local feature size of s cannot be larger than D̂(s)
plus the distance from p to the medial axis. To bound the

latter distance for a specific value of r, we revisit the cases

developed in Theorem 4.1 (and we use the notation intro-

duced there). If case (2a) occurs we know that F̄ contains a

point mx ∈Min (Mout); see Figure 6. By Lemma 4.3a, the

maximum angle between the touching point x ∈ K1 of the

medial ball centered at mx and p is γ = ∠mxxp < 14.99◦ if

r ≤ 0.08. By Lemma 4.2,

d = ‖x− p‖ ≥

(√
1−4(r2− r4

4 )− r
2

)
·Rp > 0.9807 ·Rp.

Therefore

‖p−mx‖ ≤ 2 ·Rp · sin(
γ

2
)+(1−0.9807)Rp < 0.2802 ·Rp

which is at most 0.2802 · D̂(s) because s lies outside the po-
lar ball centered at p. Otherwise, case (2b) occurs and by

Lemma 4.2, p is not farther fromMin (Mout) than

Rp · (1−

√
1−4 · (r2− r4

4 )+ r
2) < 0.0193 ·Rp.

The lemma follows.

5.2.2. Upper bound on the radii

To prevent surface balls from ”different” parts of F from

intersecting we want to ensure that they don’t reach the dis-

crete medial axis DMin (resp. DMout). Thus, the discrete lo-

cal feature size l̃fs(s) is an upper bound on the radius that

we can use. We will replace l̃fs(s) by a smaller value, that is

easier to compute, see Proposition 2.1.

Consequently, the minimum distance from s to any of the

two weighted α-shapes is a lower bound on l̃fs(s). Comput-

ingAin andAout and determining the minimum distance di-

rectly would consume too much time and memory, however.

We show how to estimate this distance, again using the dis-

tance D̂(s) to the nearest pole to s.

Lemma 5.2 Let s be a sample point, and let v be a point with

the following properties

• v lies in the Voronoi cell of s.

• v is not in the interior of the polar ball around the pole p

of s that lies on the same side of F as v.

Then

(a) ‖v− s‖=O(r) · lfs(s). In particular, for r = 0.08, the dis-
tance to s is at most 0.123 · lfs(s).

(b) The distance from v to the closest point v̄ on the surface

is O(r2 lfs(s)) = O(r2 lfs(v̄)). For r = 0.08, the distance

‖v− v̄‖ is at most 0.0355 · lfs(s) ≤ 0.0424 · lfs(v̄).

Lemma 5.3 Let pq be an edge of the weighted α-shape Ain

(Aout). Then the exterior angle of intersection between the

polar balls Bq, Bp around p and q is at least 120◦.

Based on the preceding lemmas, it is possible to derive

the following bound on l̃fs(s).

Lemma 5.4 Ifm is a point on an edge pq of DMATin (or in a
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triangle pqr of DMATin) and v is outside or on the boundary

ofU(DMATin) then

‖m− v‖ ≥ 0.817 ·min{‖p− v‖,‖q− v‖},

(or ‖m−v‖≥ 0.817 ·min{‖p−v‖,‖q−v‖,‖r−v‖}, respec-
tively).

The proofs for these lemmas are given in the appendix.

Corollary 5.5 Let s ∈ S be a sample point, and let D̂(s) be
its distance to the nearest pole. Then

D̂(s) ≥ l̃fs(s) ≥ 0.817 · D̂(s).

Proof Since the poles are part of the discrete medial axis, the

inequality l̃fs(s) ≤ D(s) is obvious. For the other direction,

we bound l̃fs by the distance from v to the weighted α-shape

A of the polar balls, which contains the discrete medial axis.

The proof of the lower bound on the ratio

l̃fs(v)

D
=

‖v−m‖

D
≥max

{
‖v−m‖

‖v− p‖
,
‖v−m‖

‖v−q‖

}
,

follows from Lemma 5.4.

5.3. Topological Correctness

To show that the unionU(BF ) of surface balls is homotopy-

equivalent to the surfaceF , we follow the standard approach

of using a fibration (a partition of U(BF ) into a continuous

family of curves, each intersecting F in a single point) and

moving the boundaries ofU(BF ) along the fibers towards F .

The usual fibration by surface normals does not work

since the medial axis might be closer than it appears from

looking at the sample points, see Figure 2. Instead we use

the fibers of the union U(DMATin) of all polar balls. It is

known that this union is homotopy-equivalent to O, and its

boundary is homotopy-equivalent to F [AK00].

The boundary of the union U(DMATin) is not smooth,

but still, it is in a certain sense “smooth from the inside”

(it has no convex edges or vertices) and has therefore a rea-

sonable fibration connecting the boundary to its inner me-

dial axis DMATin, see Figure 7. We concentrate on the in-

ner discrete medial axis DMATin; the outer discrete medial

axis DMATout is treated analogously. The fibers are line seg-

ments that partitionU(DMATin)\DMin, and they run from a

surface point v on the boundary to a point m on the inner dis-

crete medial axis DMin. In three dimensions, there are three

types of fibers: from a point v on a spherical patch of the

boundary to a vertex m of the medial axis; from a point v on

a circular edge formed as the intersection of two spheres to a

point m on an edge of the medial axis; and from a vertex v of

the boundary, formed as the intersection of three (or more)

spheres to a point m on a face of the medial axis. Our proof

treats all three cases uniformly.

We take the radius of the surface balls as ρD̂(s) where the
factor ρ can be chosen in the interval

ρmin = 0.24≤ ρ ≤ ρmax = 0.56. (1)

v

m

v
′

m
′

Figure 7: Part of the fibration which is used to show isotopy.

The shaded area is the weighted α-shape.

≤ k1 · ‖v − m‖

v

s
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m
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rs

t

s0

x

1

k1 · ‖v − m‖

v

s
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m

rs

s0 x0

1

x

(a) (b)

Figure 8: A ball Bs that intersects the fiber vm improperly

The upper bound ensures that the surface balls do not inter-

sect the discrete medial axis, and the lower bound ensures

that they are large enough to cover the surface completely.

The bounds are stricter that would be required to reach only

these two goals, since we also want to achieve ensure topo-

logical correctness of the unionU(BF ) of surface balls:

Lemma 5.6 If ρ is chosen in the interval (1), every fiber from

a point v on the boundary of U(DMATin) to a point m on

the medial axis ofU(DMATin) starts in the unionU(BF ) of
surface balls and intersects the boundary ofU(BF ) precisely
once.

The lemma implies that the boundary ofU(BF ) can be con-

tinuously deformed along the fibers into the boundary of

U(DMATin), and thus the two boundaries are homotopy-

equivalent. The boundary of U(DMATin) is already known

to be homotopy-equivalent to F , and thus, the correct topol-

ogy is established.

Proof For simplicity we prove the bound for ρ = 0.3. The
calculation for general ρ is slightly more involved.

Let Bs be a surface ball around a sample point s such that

the segment vm enters Bs in a point x, see Figure 8a. We

will show that this does not lead to a violation of the lemma,

because the segment vx is covered by the union of surface

balls. We assume without loss of generality that vm is verti-

cal and ‖m−v‖= 1. We first show that xmust have distance

‖x− v‖ ≤ k1 for k1 = 0.074.
Suppose that this is not true. The medial ball of radius 1

around m is inside the union of balls, and hence it does not
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Figure 9: A ball Bs that intersects the fiber vm improperly, v

lies either inside F (a) or outside F (b)

contain s: ‖s−m‖ ≥ 1. We claim that this implies

‖s− x‖ > 0.37 · ‖s−m‖. (2)

We know that smust lie outside the ball of radius 1 aroundm;

s must also lie above the horizontal line through x. Thus, s

is restricted to the shaded area in the figure. The ratio ‖s−
x‖/‖s−m‖ is minimized when x is as low as possible (‖x−
v‖ = k1) and s is at the lower right corner s0 of this area.

Here we have ‖s− x‖2 +(1− k1)
2 = 1, from which one can

compute ‖s− x‖/‖s−m‖ = ‖s− x‖ > 0.37.
On the other hand, since m ∈ DMATin ⊆ Ain, we have by

definition ‖s−m‖ ≥ l̃fs(s) ≥ 0.817D̂(s), by Lemma 5.4.

Thus, the radius rs of Bs is rs = ‖s−x‖≤ ρD̂(s)≤ ρ/0.817 ·
‖s−m‖ < 0.368 · ‖s−m‖, contradicting (2).

Let us denote the extreme positions of s and x in the above

analysis by s0 and x0.We have established that x and s lie

below horizontal line s0x0, see see Figure 8b. For an arbitrary

x and s we now claim

‖s− x‖

‖x− v‖
≥

‖s0− x0‖

‖x0− v‖
≥ 5. (3)

We know that s must always lie higher than x, For a fixed

point x, we can rotate s around x until it lies at the same

height as x, without changing the above ratio, So we can

assume that s and x lie at the same height, with ‖x− v‖ ≤
k1. The sample s cannot lie in the polar ball around m, and

in particular, s must lie below the dotted line segment. The

claim (3) follows.

Now to complete the proof we will show that the segment vx

is covered by a surface ball, namely by the ball around the

surface sample t closest to v. We are done if we can show

that the radius rt of this ball is at least ‖t− v‖+‖v− x‖:

rt = ρD̂(t) ≥ ‖t− v‖+‖v− x‖ (4)

This implies that rt ≥ ‖t− v‖ and rt ≥ ‖t− x‖ (by the tri-

angle inequality), and thus ensures that the whole segment

vx is covered. It establishes also that the starting point v of

the fiber is covered, irrespective of whether another ball Bs

intersects vm “in an improper way”.

First we show that there is a sample point t with

‖t− v‖ ≤ 0.123 · lfs(t) (5)

We distinguish two cases:

(a) v lies inside F (on the same side as m), see Figure 9(a).

Let t be the sample point closest to v. The point v satisfies

the assumptions of Lemma 5.2 with respect to t: By defini-

tion, v lies in the Voronoi cell of t. Moreover, v lies in none

of the polar balls around the vertices of DMATin. Thus, by

Lemma 5.2a, ‖t− v‖ ≤ 0.123 · lfs(t).
(b) v lies outside F , see Figure 9(b). By Lemma 5.4, there is

a pole p in DMATin such that

‖p− v‖ ≤
1

0.817
· ‖m− v‖ ≤ 1.224 · ‖m− v‖

The segment vp must intersect F in some point v̄.

Lemma 4.3b limits the penetration of the surface point v̄ into

the ball Bp:

‖v̄− v‖ ≤ (3/2 · r2 +O(r3)) · lfs(v̄).

In particular, for r = 0.08,

‖v̄− v‖ ≤ 0.0114 · lfs(v̄).

The nearest sample point t from v̄ is less than r · lfs(t) away:

‖v̄− t‖ ≤ r · lfs(t)

The Lipschitz condition yields

lfs(v̄) ≤ lfs(t)+‖v̄− t‖ ≤ (1+ r) · lfs(t).

Therefore we get:

‖t− v‖ ≤ ‖v− v̄‖+‖v̄− t‖

≤ 0.0114 · lfs(v̄)+ r · lfs(t)

≤ 0.0114 · (1+ r) lfs(t)+ r · lfs(t)

≤ 0.093lfs(t) ≤ 0.123lfs(t)

proving (5).

We have, by Lipschitz continuity, and using (3),

D̂(t) ≥ D̂(s)−‖s− x‖−‖x− v‖−‖v− t‖

≥ ‖s− x‖/ρ−‖s− x‖−‖x− v‖−‖v− t‖

≥ 5(1/ρ−1)‖x− v‖−‖x− v‖−‖v− t‖

> 10.6 · ‖x− v‖−‖v− t‖ (6)

By (5) and Lemma 5.1, we have ‖v− t‖ ≤ 0.123 · lfs(t) ≤
0.123 ·1.2802 · D̂(t) < 0.1575D̂(t) and hence

D̂(t) > 6.3 · ‖v− t‖ (7)

Multiplying (6) by 0.095, (7) by 0.175, and adding them to-

gether yields

0.27D̂(t) ≥ ‖x− v‖+‖v− t‖, (8)

implying (4).

6. Pruning by set covering

If we have a sample that is much denser than required by our

conditions, we will get a correct “surface reconstruction”,

but we would like to obtain a coarser approximation to re-

duce the data, while maintaining topological correctness. We

will therefore only use a subset of the surface balls.
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Figure 10: The segment vm is covered by the enlarged ball

around u.

We establish a condition that is easy to check and guaran-

tees the correct topology: As before, we use balls of radius

ρD̂(u) around surface points u; for each ball we also con-

sider a shrunk copy of radius ρ̄D̂(u), where ρ̄ = 0.03 < ρ.

We can then prove the following statement.

Theorem 6.1 If the shrunk balls around the points u of a

subset S′ ⊆ S cover all sample points S, then the union of

the original balls (of radius ρD̂(u)) around these points is

homotopy-equivalent to F .

Proof The proof proceeds via the statement of Lemma 5.6.

In that proof, we have established the existence of a sample

point t that is close enough to v such that the ball around t

covers the segment vx. This is extended to the present setting

as follows: we can now no longer be sure that the ball around

t is used, but there must be a (shrunk) ball around some sam-

ple point u that covers t. Then the (original) ball around u is

large enough to guarantee that it reaches vx.

We know, by the pruning condition, that the covering con-

tains a ball of radius ρD̂(u) around a sample point u such

that the shrunk ball with radius ρ̄D̂(u) covers t:

‖u− t‖ ≤ ρ̄D̂(u)

From this, together with the above bound (8) on ‖t− x‖, we
obtain

‖u−x‖≤‖u−t‖+‖t−x‖≤ ρ̄D̂(u)+(ρ− ρ̄)D̂(u) = ρD̂(u),

and thus the ball Bu covers x.

We try to select a minimum subset of surface balls whose

shrunk copies cover the whole sample. This is an instance of

the (in general NP-hard) set covering problem. In [AAH∗07]

and [AAHK09] a combination of exact and heuristic meth-

ods is described which yields not only an approximate solu-

tion but also a lower bound on the optimal solution, and in

our setting the gap between them is typically quite small.

To get the input data for the set covering problem, the

information about the sample points covered by each ball,

we use a simple spatial search structure, e.g. a kd-tree.

The lemma remains true if the shrinking factor 0.03 is

replaced by a smaller number. This parameter allows us to

scale the algorithm to different levels of coarseness or re-

finement of the approximation. If the shrinking factor ap-

proaches 0, each shrunk ball will contain no sample points

except its center, and thus the full sample will be used.

The small radius 0.03 · D̂ that we have proved may not

seem very impressive, but it must be seen in relation with

the sampling constant r = 0.08. Thus, balls will start to be

eliminated as soon at the actual sampling density exceeds the

required minimum by a factor of about 4–5 (in terms of the

sampling radius).

The same approach works for approximating the me-

dial axis. Here we start with an enlarged set of polar

balls DMAT′
in, and produce an (almost) minimum subset

DMAT′′
in whose union covers S.

7. Experimental data

Due to lack of space, we only include two examples showing

the output produced by our implementations, one for surface

reconstruction and one for medial axis approximation.

Figure 11 illustrates how different choices of radii for sur-

face balls lead to different levels of detail in the approximat-

ing polyhedral surface mesh. The initial point cloud for this

‘double torus’ model consists of 85237 points. Due to the

effect of pruning, the mesh for the big ring is more and more

coarsened, whereas the necessary details are preserved for

the small ring. The running times for these computations (for

a single threaded application on a Core2 Duo E6700 CPU)

are shown in Table 1. Filtered floating point arithmetic has

been used.

Figure 11abc 11def 11ghi

Surface balls 55s 55s 55s

Pruning - 35s 159s

# Remaining balls 85237 4198 549

Weighted α-shape 217s 7s 1s

Table 1: Runtimes for the double torus model in Figure 11

We have implemented the medial axis algorithm for balls

in [AK01] with CGAL [CGA] and have used it to com-

pute the exact medial axis of the union of the balls in the

set DMAT′′
in. The output is a topologically correct approx-

imation of the medial axis of the original object. The level

of simplification is tuned by the parameter ε which specifies

how much to grow the radii before the pruning. Figure 12

(model provided by the AIM@SHAPE Repository [AIM])

shows four pruned medial axis transforms and medial axes,

computed from a set of 39779 polar balls using different val-

ues of ε. Table 2 shows the elapsed runtimes (in seconds) on

the same computing platform as before.

The observed runtimes are practical for moderately large
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(a) Without pruning:

85237 balls

(b) Transparent (c) Mesh on top of

85237 vertices

(d) After moderate

pruning: 4198 balls

(e) Transparent (f) Mesh on top of

4198 vertices

(g) After heavy prun-

ing: 549 balls

(h) Transparent (i) Mesh on top of

549 vertices

Figure 11: Double torus reconstruction

Figure 12(a) 12(b) 12(c) 12(d)

Polar balls 87.1s 87.1s 87.1s 87.1s

Pruning 151.2s 207.5s 289.3s 340.9s

Medial axis 152.2s 25.7s 4.2s 1.3s

Table 2: Runtimes for the medial axes in Figure 12

data sets, but naturally cannot compete with mesh recon-

struction methods that do not come with a topological guar-

antee (see e.g. [KBH06]) or with medial axis algorithms

which are not scalable [SFM07]. Still, our approach com-

pares well with mesh reconstruction methods with guaran-

tee; see e.g. [DGH01]. The strength of our method lies in

combining topological correctness with scalability.
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Appendix A: Proofs of technical lemmas

Lemma A.1 (Lemma 5.2) Let s be a sample point, and let v

be a point with the following properties

O(r · lfs)

p

≥ lfs(s)

O(r)

≥ lfs(s)

n

O(r2 · lfs)

m

Bp

Bm

v

v̄ s

Figure 13: A point v that is not covered by the polar ball

must lie close to the surface.

• v lies in the Voronoi cell of s.

• v is not in the interior of the polar ball around the pole p

of s that lies on the same side of F as v.

Then

(a) ‖v− s‖=O(r) · lfs(s). In particular, for r = 0.08, the dis-
tance to s is at most 0.123 · lfs(s).

(b) The distance from v to the closest point v̄ on the surface

is O(r2 lfs(s)) = O(r2 lfs(v̄)). For r = 0.08, the distance

‖v− v̄‖ is at most 0.0355 · lfs(s) ≤ 0.0424 · lfs(v̄).

Proof We perform the calculation for r = 0.08, and only

indicate the asymptotic dependence on r. We will first

show part (a). Let p be the pole of s on the same side

of the surface as v. If ‖v− s‖ > kr · lfs(s) for k = 1.536,
the angle between sv and the surface normal is at most

arcsin 1
k(1−r)

+ arcsin r
1−r < 47.2◦, see [AB99, Lemma 4].

Similarly, the angle between the normal and sp is at most

2arcsin r
1−r < 12.8◦. In total the angle vsp is less than 60◦.

Since ‖v− s‖ ≤ ‖p− s‖, by the definition of the pole, it fol-
lows that v must be contained in the polar ball around p,

whose radius is ‖p− s‖, a contradiction. We thus conclude

that v is contained in a ball of radius

kr · lfs(s) ≤ 0.123 · lfs(s) (= O(r lfs(s)))

around s. Since v avoids the polar ball Bp around p, it lies in

the shaded region indicated in Figure 13. The direction sp of

the polar ball deviates at most 2arcsin r
1−r < 12.8◦ (=O(r))

from the normal direction n at s. Thus the “highest” possible

position of v is as indicated in the figure. We know that the

surface must pass above the opposite medial ball Pm of s,

and thus we can estimate the distance from v to the surface

and prove (b). A straightforward calculation gives the bound

‖v− v̄‖ ≤ 0.0355lfs(s) (= O(r2 lfs(s))). By the Lipschitz

condition,

0.0355lfs(s) ≤ 0.0355
1−0.123−0.0355 lfs(v̄) ≤ 0.0424 · lfs(v̄)

is obtained.
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γ ϕq
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Figure 14: Schematic figure of an intersection of two polar

balls such that their intersection point v is not covered by the

union of polar balls.

Lemma A.2 (Lemma 5.3) Let pq be an edge of the weighted

α-shape Ain (Aout). Then the exterior angle of intersec-

tion between the polar balls Bq, Bp around p and q is at

least 120◦.

Proof Since pq is an edge of the weighted α-shape, there is

a point v on the intersection of the boundaries of the two po-

lar balls Bp and Bq which is not covered by any other polar

ball, see Figure 14. Therefore, the neighborhood of v con-

tains points outside all polar balls and, by Lemma 5.2. v is

close to F : For the closest surface point v̄ we have

d = ‖v− v̄‖ ≤ 0.0424 · lfs(v̄).

Without loss of generality, we assume lfs(v̄) = 1. Consider

the medial ball B of v̄ on the opposite site, with center m

and radius ‖v̄−m‖ ≤ lfs(v̄) = 1. By [ACK01, Lemma 17],

a polar ball Bp or Bq intersects a medial ball D on the op-

posite site at angle β ≤ 2arcsin2r. Let us focus on one ball

Bp and the angle φp between this ball and the surface normal

vm. The other ball is treated in the same way, and the total

exterior angle is then φp +φq.

We have φp = γ−π, where γ = ∠pvm. To get an upper bound

on φp (or on γ), let us fix the angle γ and try to find circles

Bp and D that are consistent with this situation. We have the

following constraints:

(i) 1 = lfs(v̄) ≥ ‖v̄−m‖;
(ii) d := ‖v− v̄‖ ≤ 0.0424 · lfs(v̄) ≤ 0.0424;
(iii) The intersection angle between Bp and D is β ≤

2arcsin2r.

This gives us a distance ‖c− v‖ = 1+ d, using the triangle

inequality we get ‖q− v‖ = 1−d. For the triangle qcv only

the segment qc is of unknown length. We consider also a

second triangle, formed by the points q,c and one intersec-

tion point i of the medial ball with the polar ball Bq. Again

only the distance of the segment qc is unknown. From the

v

p q

>120
◦

v0

m

Bp Bq

Figure 15: The distance from the sample point s to the

weighted α-shape

triangles we get the following equations:

cosβ =
1+(1−d)2−‖c−q‖2

2(1−d)
, cosγ =

(1+d)2+(1−d)2−‖c−v‖2

2(1−d)(1+d)
,

for β = ∠cvq = π − β = π − 2 arcsin2r, γ = ∠qic, d =
0.0355. Solving these equations for γ gives an angle ϕ =
2 · (γ−π/2) > 120◦.

Lemma A.3 (Lemma 5.4) If m is a point on an edge pq of

DMATin (or in a triangle pqr of DMATin) and v is outside

or on the boundary ofU(DMATin) then

‖m− v‖ ≥ 0.817 ·min{‖p− v‖,‖q− v‖},

(or ‖m−v‖≥ 0.817 ·min{‖p−v‖,‖q−v‖,‖r−v‖}, respec-
tively).

Proof We first consider the case when m lies on an edge

pq,as illustrated in Figure 15. Let m′ be the point on pq that

is closest to v. If m′ is one of the endpoints p or q, we are

done:

‖m− v‖ ≥ ‖m′− v‖ = min{‖p− v‖,‖q− v‖}.

Otherwise we know that m′ − v is perpendicular to pq. We

know from Lemma A.2 that the intersection of the two polar

balls Bp and Bq cannot be too thin: their angle of intersec-

tion is at least 120◦. For fixed balls Bp and Bq, the angles

and hence the ratios are minimized when s lies on the inter-

section between the balls (the point v0 in the figure).

Now keeping v0 fixed at the intersection and considering

a variation of the balls Bp and Bq, maintaining min{‖v−
p‖,‖v− q‖}, it is clear that the distance from v to the edge

pq is minimized when the angle ∠pvq is at its upper bound

of 60◦ and the two distances are equal: ‖v− p‖ = ‖v− q‖.
Then the ratio ‖v− v‖/‖v− p‖ = cos30◦ > 0.866.
Now consider the case when m lies in a triangle pqr. If the

point m′ on pqr that is closest to v lies on an edge or at a

vertex of the triangle, we have reduced the problem to the

previous case. Otherwise we know that m′− v is perpendic-

ular to pqr. The remaining argument is similar as in the case

of an edge: The extreme situation is a triangular pyramid

with equal angles ∠pvq = ∠qvr = ∠rvp = 60◦ at the apex

m and equal sides ‖p− v‖ = ‖q− v‖ = ‖r− v‖. The ratio

between the height of this pyramid and the length ‖p− v‖ is√
(1+2cos60◦)/3 > 0.817.
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