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Transforming Spanning Trees and Pseudo-Triangulations
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Abstract

Let TS be the set of all crossing-free straight line span-
ning trees of a planar n-point set S. Consider the
graph TS where two members T and T ′ of TS are
adjacent if T intersects T ′ only in points of S or in
common edges. We prove that the diameter of TS is
O(log k), where k denotes the number of convex lay-
ers of S. Based on this result, we show that the flip
graph PS of pseudo-triangulations of S (where two
pseudo-triangulations are adjacent if they differ in ex-
actly one edge – either by replacement or by removal)
has a diameter of O(n log k). This sharpens a known
O(n log n) bound. Let P̂S be the induced subgraph of
pointed pseudo-triangulations of PS . We present an
example showing that the distance between two nodes
in P̂S is strictly larger than the distance between the
corresponding nodes in PS .

1 Introduction

Let S be a set of n points in general position in the
plane (no three points of S are on a common line).
We denote by TS the set of all crossing-free straight
line spanning trees of S. Several authors investigated
the question of whether, and how fast, two members
of TS can be transformed into each other by means of
predefined rules. Avis and Fukuda [5] considered the
graph with node set TS where two spanning trees are
adjacent if they have all but one edge in common (i.e.,
differ by a single edge move). They showed that the
diameter of this graph is at most 2n− 4. The impact
of several more involved transformations, including
length-reducing edge moves and so-called edge slides,
has been studied in Aichholzer, Aurenhammer, and
Hurtado [1]. Recently, Aichholzer and Reinhardt [4]
proved that the edge slide distance between two trees
in TS is O(n2).
Define the graph TS = (TS , A) whose set of arcs A
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consists of pairs of trees in TS that intersect each
other only in points of S or in common edges. In
other words, A contains all pairs (T, T ′) such that no
edge of T crosses any edge of T ′. The arcs of TS cor-
respond to rather powerful transformations, namely,
the replacement of a tree by some ’compatible’ tree.
Not surprisingly, a bound of O(log n) on the diameter
of TS is easily obtained. A core result in [1] states
that TS contains a path of size O(log n) from every
member of TS to the minimum spanning tree of S
such that tree lengths decrease along this path.

In this note we prove that the diameter of TS is
O(log k), where k is the number of convex layers
L1, . . . , Lk of S. That is, L1 is the boundary of the
convex hull of S, and Li is defined recursively as
the boundary of the convex hull of S \

⋃
j<i Lj , for

2 ≤ i ≤ k and k = min{i | Li+1 = ∅}. We do not
know whether this bound is asymptotically tight. In
particular, we do not have any example where the di-
ameter of TS is not a constant.
Interestingly, the diameter of TS is related to flip

distances in pseudo-triangulations. A pseudo-triangle
is a planar polygon with exactly three interior an-
gles less than π. A pseudo-triangulation of S is
a partition of the convex hull of S into pseudo-
triangles whose vertex set is S. The flip graph of
pseudo-triangulations, PS , has as its set of nodes
all possible pseudo-triangulations of S. Two pseudo-
triangulations are connected in PS by an arc if they
differ in exactly in one edge, either by replacement or
removal. In other words, each arc of PS corresponds
to an exchanging or a removing edge flip. Aichholzer,
Aurenhammer, and Krasser [3] (see also [2]) proved
that the diameter of PS is O(n log n). Let P̂S be the
induced subgraph of elements of PS having exactly
2n−3 edges (the minimum number of edges a pseudo-
triangulation of S can have). The elements of P̂S are
called minimum, or pointed, pseudo-triangulations;
each vertex of such a pseudo-triangulation is pointed ,
that is, all its incident edges lie in an angle less than π.
Bereg [6] showed that the diameter of P̂S is still
bounded by O(n log n), and in [2] it is proved that
if the diameter of P̂S is O(n) then the same is true
for PS . On the other hand, the flip distance for trian-
gulations (i.e. pseudo-triangulations having the max-
imum number of edges) is known to be Θ(n2) in the
worst case. In [8], Hurtado, Noy, and Urrutia refined
the bound for triangulations to O(nk).
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For both graphs PS and P̂S it is an open problem
to determine tight asymptotic bounds on the diame-
ter. We prove that the diameter of PS is O(n log k),
using our result for the graph TS . In particular, if the
diameter of TS is constant then the diameter of PS

is Θ(n). We also demonstrate that the distance be-
tween certain nodes in P̂S is strictly larger than the
distance between the corresponding nodes in PS . A
more comprehensive study of the diameters of TS and
PS can be found in Huemer [7].

2 An upper bound on the diameter of TS

We show that the diameter of TS can be related to
the number k of convex layers of the point set S.

Observation 1 Let ∆ be a triangulation of S. Let x
be a point of S which lies on some layer Li of S, for
i ≥ 2. Then ∆ contains an edge xy that does not
cross Li and such that y lies on a layer Lj with j < i.

Proof. If such an edge does not exist then x must be
a pointed vertex of ∆. But a triangulation does not
contain pointed vertices, except on layer L1. �

Theorem 1 Let a point set S be given whose number
of convex layers is k. The diameter of TS is O(log k).

Proof. Define a layer tree to be a non-crossing span-
ning tree of S which contains all but one edge of each
layer Li of S and which connects consecutive layers
(by single edges); Figure 1 gives an example. We show
below that any given spanning tree T ∈ TS can be
transformed into some layer tree using O(log k) trans-
formations, as defined by the arcs of TS . This implies
the theorem, because two layer trees clearly can be
made to coincide by applying at most two transfor-
mations.
Consider some triangulation ∆ that contains T .

Due to Observation 1, for every point x ∈ S \ L1 there
is an edge in ∆ to some layer with lower index. We
select one such edge per point in S \ L1, and in ad-
dition, all edges but one of L1. The selected edges
constitute a new spanning tree, T ′, of S. As T ′ and T
live in the same triangulation, a single transformation
is capable of replacing T by T ′.
For a point x ∈ S, let gk(x) be the shortest path

from x to a point on Lk such that gk(x) does not
cross T ′. As no edge of T ′ crosses any layer twice,
gk(x) visits points on layers with increasing index. On
the other hand, by Observation 1, there is a path g1(x)
from x to L1 that does not cross T ′ and that visits
points on layers with decreasing index. Now, for all
points x on layers L1, . . . , Lk/2 take the path g1(x),
and for all points x on layers Lk/2, . . . , Lk take the
path gk(x). The union of all these paths with L1

is a connected graph, G. By construction, G nei-
ther crosses the tree T ′ nor the layer Lk/2. We select
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Figure 1: A layer tree for k = 3

from G a spanning tree, T ′′, which contains L1 minus
one edge. T ′ can be transformed into T ′′ in one step,
and T ′′ can be transformed into a spanning tree T1

that contains, in addition, Lk/2 minus one edge, in
one more step.
In summary, after a constant number of transfor-

mations we arrive at two independent subproblems
of size k/2. Therefore, with the same effort, we can
transform the tree T1 into a tree that contains, in ad-
dition to L1 and Lk/2, from both layers Lk/4 and L3k/4

all edges but one. We conclude that O(log k) tranfor-
mations suffice to generate a layer tree for S. �

3 Bounding the diameter of PS

Next we show that an upper bound on the diameter
of TS also gives an upper bound on the diameter of
the flip graph PS of pseudo-triangulations. We make
use of a lemma from [3] on flip distances in simple
polygons.

Lemma 2 Let Q be a simple polygon with m edges.
The flip distance between any two triangulations of Q
is O(m), if exchanging, removing, and inserting edge
flips are allowed.

Theorem 3 Let a set S of n points be given. If the
diameter of TS is d then the diameter of PS is O(nd).

Proof. Every pseudo-triangulation of S can be com-
pleted to a triangulation by applying O(n) inserting
edge flips. It thus suffices to show that any two tri-
angulations ∆1 and ∆2 are connected in PS by a se-
quence of O(nd) flips. Let ∆1 and ∆2 contain span-
ning trees T1 and T2 of S, respectively. There is a
path of length d in TS which connects T1 and T2. We
show that for consecutive trees T and T ′ on this path,
the distance in PS between any triangulation ∆ con-
taining T and any triangulation ∆′ containing T ′ is
O(n).
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Let us ’cut’ the triangulation ∆ along the edges
of T . This gives several triangulated polygons. Note
that no edge of T ′ crosses any edge of such a polygon,
because T ′ and T are adjacent in TS . By Lemma 2, we
can modify the triangulation within each such poly-
gon Qi so as to contain all the edges of T ′ within Qi

in O(mi) flips, if Qi has mi edges. Thus ∆ can be
transformed into a triangulation ∆′′ that contains T ′

in O(
∑
mi) flips. This sum is bounded by n+2(n−1),

counting the edges of L1 plus two times the edges of T .
Similarly, in a second step, we cut ∆′′ along T ′ and
transform ∆′′ into the desired triangulation ∆′ using
another O(n) flips. �

Corollary 4 The diameter of the flip graph PS is
bounded by O(n log k), where k is the number of con-
vex layers of S.

Lemma 2 also holds for pointed pseudo-triangu-
lations [3]. Thus, we are also interested in the
graph T̂S of pointed spanning trees of S, where two
trees are adjacent if there exists a pointed pseudo-
triangulation which contains them both. If we can
bound the diameter of T̂S by d then the diameter of P̂S

is O(nd), applying the argumentation of Theorem 3.
Moreover, the bound O(nd) carries over to the flip
graph PS by a result in [2].

4 Comparing distances in PS and P̂S

In a pointed pseudo-triangulation the number of edges
is minimum. This suggests that this type of pseudo-
triangulation is most flexible as far as adaption by
flips is concerned. In other words, one might conjec-
ture that the distance between two nodes of PS does
not increase when we are required to stay within the
subgraph P̂S of PS . In the following we present an
example that refutes this conjecture. Assume n > 9
in the following.
The underlying set S of n points is shown in

Figures 2 and 3. It consists of three subsets
P = {p1, .., pn/3}, Q = {q1, .., qn/3}, and R =
{r1, .., rn/3−1} in convex position, and one interior
point m. The last point is chosen to lie to the left
of p1qn/3, of q1rn/3−1, and of r1pn/3. Two pointed
pseudo-triangulations PT1 (Figure 2) and PT2 (Fig-
ure 3) are drawn on S.

Lemma 5 The distance between PT1 and PT2 in P̂S

is at least n− 3.

Proof. Every pointed pseudo-triangulation of S has
exactly 2n− 3 edges. PT1 and PT2 have the n/3− 1
edges rim in common, plus the n − 1 edges of the
convex hull of S. Thus 2n/3 − 1 edges are different.
We will show that to obtain the very first edge of
PT2 that is not in PT1, at least n/3− 1 (exchanging)
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Figure 2: The pseudo-triangulation PT1

edge flips are required. Then, when the first edge is
present, there still remain at least 2n/3 − 2 different
edges. For each such edge, at least one flip is needed
in addition. This gives a lower bound of n− 3 flips.
PT1 contains edges mqi and q1pi which must be

transformed into edges pn/3qi and mpi of PT2. If the
first edge of PT2 that is created is of type pn/3qi then
this edge crosses n/3 − 1 edges q1pi. All these edges
must be replaced beforehand. If, otherwise, the first
edge of PT2 that is created is of type mpi then either
all edges mqi or all edges mri must be replaced first,
because the point m has to stay pointed. So, in any
case, at least n/3− 1 flips are necessary to obtain the
first edge of PT2. �

Lemma 6 The distance between PT1 and PT2 in PS

is at most 2n/3.

Proof. We construct a sequence of 2n/3 flips that
transforms PT1 into PT2. The edge flip that inserts
the edge mp1 into PT1 is applied first. Now edge q1pi

is flipped into edge mpi+1 by an exchanging flip, for
i = 1, . . . , n/3 − 1. Next, edge mqi is exchanged by
edge pn/3qi+1, for i = 1, . . . , n/3−1. Finally, we apply
the edge flip that removes mqn/3 and gives PT2. �
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Figure 3: The pseudo-triangulation PT2
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Corollary 7 There exist pointed pseudo-triangula-
tions PT1 and PT2 whose distance in the graph P̂S

can only be realized by a flip sequence that affects
edges common to PT1 and PT2.

Proof. To see this, let the subset R in Figures 2 and 3
consist of a single point r1. Then the edgemr1 is com-
mon to PT1 and PT2. If flipping mr1 is not allowed
then at least n− 3 flips are needed to transform PT1

into PT2, by the same arguments as in the proof of
Lemma 5. Otherwise, we change mr1 (in PT1) to the
edge mp1 first. Then we apply the same sequence of
2n/3− 2 exchanging flips as in the proof of Lemma 6.
Finally, mqn/3 is changed to mr1 which gives PT2.
This sequence consists of only 2n/3 flips. �

Note that the reduction in flip distance in Lemma 6
and Corollary 7, respectively, stems from creating the
edge mp1. This edge is outruled in Lemma 5 by the
required pointedness ofm, and in Corollary 7 by being
the result of flipping the common edge mr1.

5 Conclusion and open problems

We gave a bound on the diameter of the graph TS of
non-crossing spanning trees and related this result to
transforming pseudo-triangulations. The problem of
bounding the diameter of TS is also of interest on its
own. So far we were not able to find two non-crossing
spanning trees on the same point set S whose distance
in TS is more than constant.

Conjecture 1 The diameter of TS is sublogarithmic.

We also restate the well known problem of deter-
mining the diameter of the flip graph PS of pseudo-
triangulations.

Conjecture 2 The diameter of PS is o(n log n).
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