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Abstract

Boundary approximation of planar shapes by circular arsschentitative and gualitative advantages
compared to using straight-line segments. We demonstretéy way of three basic and frequent compu-
tations on shapes — convex hull, decomposition, and mexiisl i particular, we propose a novel medial
axis algorithm that beats existing methods in simplicitgl amnacticality, and at the same time guarantees
convergence to the medial axis of the original shape.

1 INTRODUCTION

The plain majority of algorithms in computational geometigve been designed for processlimgar ob-
jects, like lines, planes, or polygons. On the one hand,shisrtainly due to the fact that many interesting
and deep computational and combinatorial questions de alisady for inputs of this simple form. Again,
the pragmatic reason is that algorithms for linear objectsusually both easier to develop and simpler
to implement. To make things work for nonlinear objects, ahharise frequently in practical settings,
such objects are usually approximated in a piecewisedlimamner and up to a tolerable error. Existing
approaches [15] to directly extending polygonal algorihtn curved objects are rare and, due to their
generality, of limited practical use.

In its simplest form, the input object is a single planar sha$, with curved and connected bound-
ary 0.A. Frequent tasks to be performed.dri- each being prior to a variety of more involved computations
— include constructing the convex hull gf, decomposing4 into primitives, and calculating the medial
axis of A. These tasks are well investigated in the case of polygdragdess. In certain situations, however,
the number of line segments required for approximatingwith high accuracy may be prohibitively large.
Even more seriously, making a piecewise-linear approxonaif 0.4 and invoking a polygonal-shape al-
gorithm may generate results that are topologically irexirrthe medial axis is a well-known example.
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The intention of the present paper is to highlight the usearotitar arcs for boundary representation. It
is well known that for nonlinear curve segments the appraiom order increases in comparison to using
straight-line segments. For instance, it has been comgattyy Hollig and Koch [26], and proved far= 2,
that polynomial curves of degrekin the plane have approximation ordzi. Many related results exist in
the rich literature on geometric interpolation, includirgults on circular arcs [32].

In particular, if a given accuracyis achieved by usingv line segments, then as few as= @(N2/3)
circular arcs can accomplish the same. This has been aniisapproximation theory, but in computational
geometry this gain seems to have been less valued than atingnsmall factors in the complexity of
the subsequently applied algorithm. Boundary approxionmably circular arcs may be of advantage also
in a qualitative respect. For instance, it avoids the mastiotopological inconsistencies in medial axis
computations, and it supports the computation of shapetsffas the class of shapes bounded by circular
arcs is closed under offset operations.

We will show that for the three basic problems mentioned abexonvex hull, decomposition, and
medial axis — simple and practical, though still efficiegagithms exist that work for circular arc inputs.
The first two problems are less demanding; we treat them gn#inpoint out the respective favorable (in
our opinion) approach, whose practicality shall encourthgeuse of circular arc boundary representation.
Nevertheless, substantial differences to the polygonsé cecur; see below. For computing the medial
axis, we propose a novel and extremely simple algorithmishizased on a known (though less recognized)
decomposition lemma. After having computed a purely comtirial description of the medial axis using
tailored shape splitting, its individual parts (conics ding segments, like in the polygonal case) are re-
assembled in trivial merge steps.

Suitable circular arc approximations of shapes can be faufidear time. In summary, the obtained
shape processing algorithms are superior in runtime to linei segment based counterparts, retain much
(if not all) of their simplicity, and are even more naturaksiome cases.

2 OUTLINE AND BACKGROUND

We briefly describe the contributions of this paper and ecllaém to existing literature.

Section 3 deals with approximating general curves by skaitabmitives. This is a topic of importance
in geometric modeling and in CAD and NC applications, and yrauite recent results are available [16,
24, 33, 34, 36, 39, 41]. Our aim is to approximate a parametrige c(t) by circular arcs. We assume
thatc(t) is piecewise-polynomial of constant degree, and we usedigairs of smoothly joined circular
arcs) [34, 38, 39] as primitives. A straight-forward biseatalgorithm for biarc generation already fits
our purposes. It uniquely assigns biarcs to parameternvaiterwhich facilitates the error evaluation. An
approximating spline curvé of sizen is computed inO(n) time. It fits the input curve:(t) in slope at
biarc endpoints, and can be tuned to mat¢t) in curvature at certain points (a fact being important in
subsequent medial axis computations). Though not beirimapin the number of arcs, the approximation
order ofb is still three [33, 39]. In contrast, with line segments oaarot exceed order two, and a polyline
of size N = ©(n?/?) is needed to arrive at the same precision.

The remaining sections propose algorithms discular arc shapesA, where the boundarg.A of A
is given as a connected curve composead afircular arcs. Choice is guided by efficiency as well as by
reducibility to basic operations that have robust impletagons [18].

Section 4 outlines an algorithm for computing the convex @fud. This task is one of the most basic to
be performed for a given shape, and has a variety of apgitaincluding shape fitting, motion planning,
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shape separation, and many others. At least four linear-éilgorithms have been developed for polygonal
shapes [6, 23, 31, 35]. The incremental method by Melkmaih $&81ds out by its simplicity, and it is
this candidate we generalize for circular arc shapes. Coedgda the original setting, two difficulties arise.
Deciding inclusion for a currently inserted arc in the conkell constructed so far is no trivial test, and the
convex hull cannot be described by a sequence of input eert€ the shape. We show that a runtime of
O(n) is still possible. The basic subroutine of the algorithm patas the convex hull of only two circular
arcs.

Section 5 deals with shape triangulation, a fundamentidibgi block in algorithms for decomposition,
shortest path finding, and visibility — to name a few. Mostsérg algorithms are meant for polygonal
shapes. They partition a given (simpl&}vertex polygon into triangles without introducing Steipeints.
Efficient candidates are [5, 9, 21, 25, 30] which all showfV log N) runtime. Theoretically more
efficient methods do exist, but when aiming at simplicitypicke should be made from the list above.

When trying to generalize to shapdsbounded by circular arcs, we face two problems. First ofifall,
the use of Steiner points is disallowed, then a partitiopddghto primitives bounded by a constant number
of circular arcs need not exist. (In certain cases, howesh a partition ofAd will exist, but a partition
with straight line segments will not.) Also, not all triarlgtion methods are suited to generalization. This
applies, for instance, to the extremely simple ear cuttieghod in [28] which runs in timé&(r - N'), where
r is the number of reflex vertices of. The triangulation algorithm we propose is closest to Cheigd9].

It manages with an (almost) worst-case minimal number ah8tegoints orv.A4, runs inO(n logn) time,
and uses a dictionary as its only nontrivial data structlitee produced primitives are arc triangles with at
least one straight edge. The most complex geometric oparigtintersecting a circle with a line.

Section 6 is devoted to the medial axis, a frequently usedtsire associated with a given input shape.
Its main applications include shape recognition, solid atiog, pocket machining, and others. Interest in
mathematical properties of the medial axis for general ahépund renewal in recent years [3, 7, 8, 11, 37].
In our case, where the shages simply connected an@ A consists of: circular arcs, its medial axi&/ (A)
is known to be a tree composed @fn) conic edges. Algorithmic work on the (exact) medial axitieit
concentrated on the case whefes a polygon [9, 10, 29], or on general sets of curved arcs 22,27,
37] (and their Voronoi diagram) without, however, explogithe fact that the input arcs define a simple
curve. Though theoretically efficient &3n logn) or better, these algorithms suffer from involved merge
or insertion steps which, even for straight arcs as inp@t,déficult to implement. In addition, numerical
stability issues arise heavily; intersections of conicgehto be determined repeatedly which, when not
calculated exactly, are bound to accumulate the error. dfviirtices of the medial axis are assumed to
be known, the in-between edges can be traced numerically1[]2 This approach, however, requires an
expensive a-priori analysis of the global connectivityisture of the medial axis.

We present a simple randomized divide-and-conquer algorfor computingM (A) that overcomes
these drawbacks. In contrast to comparable algorithms;dbtly part is delegated to the divide step. The
geometrically most complex operations in this step are adimg the intersection of two circles. The merge
step is trivial: it concatenates two medial axes. The exggeaintime is bounded b@(n/?) = O(N), but
is provably better for most types of shape. For exampl@; log n) expected time suffices if the diameter
of M (A) is ©(n). No nontrivial data structures are used.

To guarantee applicability of our methods to approximating medial axes of general shapds a
convergence result is needed. We prove in Section 7 thaf $oilitable approximation @A by circular
arcs,M (\A) is the limit of M () when the approximating arc shaeconverges tod. Related results exist,
but either presuppos€? conditions ondB not attainable by circular arcs [8], or concern only subséts
the medial axis [7] that survive after pruning the Voronagtiam of point samples from.A. It is well
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known [3] that medial axis convergencerist given for polygonal approximations od. While certain
conditions on the approximation with circular arcs guagantonvergence, there is no way to guarantee
convergence for point samples or line segments withoutipgurif we do restrict ourselves to the pruned
partin the case of a point sample (thenedial axis [7]), a data volume 6f(n3) = ©(N?) arises, compared

to n circular arcs orN line segments, for the same approximation quality. In agsioh, circular arcs are
the simplest possible tool for boundary conversion thatauiaes a stable medial axis approximation.

We mention that there exist several point-based methodspimaimate the medial axis in 3D. Using a
proper subset of the Voronoi facets, chosen via the edgé®afital Delaunay triangulation, a convergence
guarantee when taking arsampling can be shown, see [13, 14]. However, these afipesace not needed
for 2D, as the Voronoi diagram vertices of a sample alreadye&ge to the medial axis in this case.

3 APPROXIMATIONBY CIRCULAR ARCS

In order to represent a general shap@ a form suitable for geometric computations, we discusthous
for approximatingd.A by circular arcs. We assume tha#l is given as a polynomial spline curve. While
particular attention is paid to the cubic case, being thetmogular one in applications [19], the methods
can be applied to spline curves of any degree.

Several approaches to generating circular arc splines, ege e.g. [33] for a review. We consider a
simple bisection algorithm consisting of two steps, appmnation and error measurement. A geometric
primitive b (an arc or a biarc) is fitted to a segmertf the given curve:(¢), and the distance fromto s is
numerically computed. The algorithm is relatively easympiement and still adapts the degrees of freedom
to the input data. As a slight disadvantage, the number ofifives (the resulting data volume) is optimal
only in the asymptotic sense.

Define the one-sided Hausdorff distance from a primibive a segment C c(t) as

5(b.s) = i —qll.
(b, 5) = max min ||p — |
(We consideb ands as closed sets.) Letdenote the error tolerance to be met by the algorithm.

Algorithm BISECT (¢, t1)

Constructh

Computed = §(b, clto, t1])

If 6 <ethen return{b}

Else return BISECTR,, L24) U BISECT(f4  ¢;)

Depending on the primitivé used, Algorithm BISECT produces splines of different oyalimerely
continuous () circular arc splines, or tangent continuods') arc splines. When being content with the
former type, we simply can choose férthe unique circular arc passing through the three pat(ts),

c(%il)), andc(t;). To obtainC! arc splines, so-called biarcs [38] are utilized.

A biarc b consists of two circular arcs with common unit tangent veetiotheir joint. Usually,b is
described by its sourcewith associated unit tangent vectay, and its targef with unit tangent vectoo,,.
Given these data, there exists a one-parameter family @fpiolating biarcs. All possible joints are located
on the circles passing througl andy and having the same oriented angles wittandv,. Several ways for
choosing the jointn have been proposed; see e.g. [34, 39]. For many applicatedtiagm = o N c[to, t1]
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Figure 1:z-magnified error fomn biarcs

is appropriate. To calculate in the cubic case, a polynomial of degrebas to be solved (where a closed-
form solution is still available). The output is@' arc spline with all arc endpoints sitting eit).

In view of subsequent stable medial axis computations, bwéce of m has to be made more care-
fully. Define anapexof ¢(t) as a local curvature maximum. The apices split the cefvginto pieces of
monotonic signed curvature, so-callggirals Following [34], we aim at approximating spirals eft) by
circular arc spirals. To this end, we sptift) at its apices. In the cubic case, these points can be found by
solving polynomials of degreg. Now, we exploit that spiral biarcs can be constructed tloanect two
given pointsz andy, match unit tangents there, and assume a predefined cematane of them. Lek,
andk, be the curvature of(t) atx andy, respectively, and suppose < k,. To match curvature at, we
choose the radius of the first atg, equal tor, = 1/k,. The jointm is obtained by intersecting the circle
supportingb; with the joint circles. According to [34], the radii and curvatures satisfy> r, > 1/k,.
When starting the next biarc frognwith , = 1/k,, (unlessy is an apex), monotonicity of signed curvature
will be preserved.

Each arc is found irfO(1) time, where the constant depends on the degree of the poightonbe
solved. Fig. 1 shows an example of a biarc conversion. ThHedcarve normals visualize the magnified
error distribution.

Concerning the error measurement, each produced ciraulay laas to be matched to its corresponding
segments = c[t;, t1]. This is, of course, trivial when the biarc joint has been chosen to lie efft). In
the case of biarc spirals, we intersect) with the normal ofy; atm. In the case of degree 3 input curves,
this leads to a cubic equation. If multiple solutions witttie total biarc intervalt, t1] exist, then the error
is set toco. Otherwise, we compute the one-sided Hausdorff dista(iges) by substituting the parametric
representation of into the implicit equationk” (with leading coefficientd) of the circle supporting;. If r
is the radius ofx’, andd and D are the minimum and maximum values(é o ¢)(t) for ¢ € [t(, t}], we get

5(bi, s) <max{|Vr2—d—r|,|Vr?+D—rl|}

and this bound is sharp. Consequently, in the cubic c&$g,s) can be evaluated by solving a quintic
polynomial equation on the intervy,, t;]. Alternatively, a simpler upper bound can be calculatedh(@xit
polynomial solving) by replacing and D with the minimum and maximum coefficient of the Bernstein-
Bézier representation [20] dfK o ¢) with respect to[t(,, t}]. As the length ofs decreases, this bound



converges td(b;, s). As another simple but important observation, twe-sidedHausdorff distance be-
tweenb; ands, max{d(b;, s), (s, b;) }, vanishes withi(b;, s) becausé; ands are of constant degree. Thus
controlling the latter distance already ensures thands arec-close with respect to the former one.

In summary, when algorithm BISECT spans a binary recursies withn leaves (the returned prim-
itives), any of the described types of arc splines can betagted inO(n) time.

Let us discuss the asymptotic behaviour of the numbfar decreasing tolerance For a given curve
c(t) with domain|[tg, t1], which is assumed to contain neither inflections nor apiegsconsider primi-
tives having approximation ordér. Adapting the analysis in [33, 39] (as done in the Appendmd, get
§ = O(h*) for the one-sided Hausdorff distanégprovided thatc(t) is approximated with (small) para-
meter step sizé, and thatt is considered a constant.

This relation implies a general lower bound. Roryapproximation ok(¢) obtained by BISECTt, ¢1)
usingn primitives with approximation ordek, the largest step size satisfiag > % Moreover, we
haved < ¢ by the terminating condition of the approximation algamith Fromé = ©((At)*), we get
n = Q(1/e"/*). On the other hand, the minimum step six& taken by any algorithm for an intervl
satisfiesA’t < 1=o - Assume we stop BISEGTy, t;) with doubled step sizeA’t. Then there exists at
least one interval, for example the one containipgpr whichd > . As we havel = O((2At)¥) it follows
thatn = O(1/¢'/*). We obtain:

Lemmal For sufficiently small tolerance, the numbem of primitives constructed by algorithm BISECT
is asymptotically optimal.

Lemma 1 also holds in the general case wh€tég contains inflections and apices, because the resulting
number of spirals o&(¢) is independent of.. In conclusion, to arrive at toleraneg Algorithm BISECT
needsn = ©(1/+/e) circular arcs (ordeB), whereasN = ©(1/4/¢) line segments (orde?) have to be
invested by any polygonal approximation method.

Corollary 1 Compared to approximating the cureét) with a polyline, the data volume drops fraiv to
n = ©(N?/3) when circular arc splines are used.

It should be observed that, the other way round, when apmating c(¢) with a point sample (as
commonly done for medial axis computations [3]), the datume increases t®(n?) compared ton
circular arcs.

4 CONVEXHULL

Let A be some shape given in arc boundary representation. Moo#isphly, 0.4 is approximated by a
simple (i.e., not self-crossing) and connected cune®mposed oh circular arcs. Clearly, ib converges
to 0A then the convex hull ob converges to the convex hull gf. Moreover, the Hausdorff distance of the
two convex hulls is bounded by the Hausdorff distanck afido.4. We show that the convex hull algorithm
for polylines in Melkman [35] can be generalized to simpleaiar arc curves while retaining itsO(n)
runtime.

In a nutshell, this algorithm processes each of the verti€éise given polyline in order and maintains
their convex hull. If the currently processed vertgXalls into the convex hullC' H;_+, constructed so far
thenv; is deleted and we put' H; = CH;_;. Otherwise, tangents are placed fresnto C'H;_1, and the



Figure 2: Cases 2.1 (left) and 2.4 (right)

sequence of vertices (if any) between the correspondingréntices of tangency is deleted frafhH; _ in
order to construct' H;.

The linear runtime of this strategy hinges on two proposgio (1) A constant-time inclusion test
v; € CH;_1, and (2) deletion of vertices af' H;_; which are non-extreme i’H; in time proportional
to their number. While (2) is achieved by a standard Grahan 2], proposition (1) is met by exploiting
simplicity of the given polylinexw; € C H; 1 is equivalent to the fact that lies in the wedge spanned by
the interior angle at, wherev was the last vertex added €oH,; ;.

Staying with vertices works correctly with polygonal cusveecause the convex hull of two points equals
the convex hull of their connecting line segment. This iscadirse, not true for a connecting circular arc.
As a consequence, the set of vertices of the convex hull toobstiucted is, in general, no subset of the
input vertices. Also, the inclusion test for a circular ayde inserted is a more complicated operation, The
following variant of Melkman'’s algorithm is able to cope tvitircular (and more general) arcs and still runs
in O(n) time. Its main subroutine computes the convex hull of only ascs.

Letb; ...b, be the given simple circular arc curve. The second endpdiatch ard; (in this order)
is called thetarget of b;. Some of the arcs may be line segments, and the curve may he ckssume
first that the curve i€!. Let C H denote the convex hull operator, and abbrevi@t (b, .. .b;) asCH;.
Consult Figure 2.

Algorithm HULL
ConstructC Hy, = C'H (b1b2). Letwv be the last point along the chalipb, that lies onC Ho.
Fori = 3,...,n, process the are; as follows:

Search for the first are,, of C' H;_; clockwise fromw that contributes with non-zero length@ (a, b;)
and such that this hull an@H;_, are on the same side of Similarly, search for the first are, counter-
clockwise fromv with analogous propertiesa & cis possible.) Arca andc already provide the informa-
tion needed to constru€t H; correctly.

Case 1 Arc a (and equivalently, arc) does not exist. This meansH; | ¢ CH(b;). PutCH; = CH(b;),
and assign te the target ob;.

Case 2 Arcsa andc do exist. Check for some tangety, which appears of'H (a, b;) and is clockwise
tangent toC'H;_1, c.f. Figure 2 (right). Also, check for some tangeft,which appears ot'H (¢, b;) and
is counter-clockwise tangent t0H,;_;.



Case 2.1 Tangentg,, andt. both do not exist. This meansc CH; 1. PutCH; = CH;_1.

Case 2.2 t, exists (uniquely) but. does not. Let, = z,y,, Wherez, is its point of tangency on
CH;_,. To obtainC H;, delete fromC' H;_; the clockwise part betweenandz,, and add, and the piece
of the arch; betweery, andv. Updatev as the last point alonly on C H; (eithery, or b;’s target).

Case 2.3 t. exists (uniquely) but, does not. Let. = z.y., with z. being its point of tangency on
CH;_1. To getC H;, delete fromC' H;_; the counter-clockwise part betweerandzx., and addt. and the
piece of the ar®; betweerny,. andv. Updatev as in Case 2.2 (eithey. or b;'s target).

Case2.4t, andt. both do exist. Here we gét H; by deleting arcs frond’ H;_; as in Cases 2.2 and 2.3,
and then adding,, t., and the piece df; betweeny, andy.. We updatey as the point among, andy, that
is closer to the target df.

Correctness of algorithm HULL is verified by observing thatand¢. are indeed tangents from the
currently inserted arg; to the convex hulC H;_; constructed so far. Thereby, as the algorithm stands now,
it is of importance that the input curve @'. This guarantees that the boundarydfl;_; is C* as well
(except possibly at the target &f 1), such that the aras andc are found correctly. Minor modifications in
the selection criteria for these arcs will make the algamitlvork without this restriction.

The runtime is dominated by the search dcandc, where the necessary number of calls of the two-arc
hull subroutine is proportional to the total number of arosstructed or deleted. This number(gn)
because only)(1) arcs are constructed petoop. The rest can be accomplishedl1) time per arad; if
C'H, is stored as a doubly linked list, or ®(n) total time if C'H; is represented in a (more space-saving)
dequeue.

5 TRIANGULATION

We next propose a triangulation algorithm for circular anames. Define aarc triangle as a (simply
connected) face bounded by at most three circular arcseségments.

A partition of a circular arc shapd into arc triangles need not always exist when the use of &tein
points is disallowed. (Observe, however, that such a partinay exist, although a partition od with
straight line segments may not.) The situation does notgghdrthen arcs describing A arez-monotone
pieces (and hence span semi-circles at most), which we gslime below. In fact, there are examples
where at leastn — 7 Steiner points are necessary. See Figure 3. For no pair ife®iof the depicted
shapeA does there exist a connecting circular arc insitle Thus no part of4 can be split off using a
circular arc between two vertices. The interested readgramavince her/himself that placing— 4 Steiner
points as shown is no waste. The asserted lower bound thiew$plbecause each of the resulting faces
needs additional Steiner points. Note that a single pointgue suffices only if circular arcs rather than line
segments are used to split the face.

Figure 3: Many Steiner points



The triangulation algorithm we are going to describe ini@es at mosgn — 5 Steiner points (on the
boundary of4, rather than in its interior), runs ifl(n log n) time, and uses a dictionary as its most involved
data structure. The produced primitives are arc trianglesrevat least one edge is a line segment. Standard
plane sweep is used to compute the vertical visibilitiesdisA for each pair (vertex, arc) adA. Each
such pair defines a vertical line segment that splitand ends at a Steiner point . A decomposition
of A into arc triangles and arc trapezoids results. No priorifgue is needed, as all events guiding the
plane sweep (namely, the verticesdd) are known in advance and thus canabeorted beforehand. For
simplicity, suppose that their-coordinates are pairwise different.

Lemma 2 The decomposition above contains exagthy 2 Steiner points.

Proof. Let us call a vertexypek if it vertically sees exactlyt arcs, i.e., defineg Steiner points. We have
vertices of type$, 1, and2. At each type2 vertexwv, the shaped is vertically split into three parts, each part
having a typed vertex as a-extremum. Two such parts lie on the same side of the sglitégment, and
among their extreme typ@vertices, we map to the one which is:-closer tov. This mapping is injective,
and does not address the twaextrema ofd A. The lemma follows. O

The obtained faces are exactly— 1 in number, at least two being arc triangles. Each fActat is
an arc trapezoid can be easily split into arc trianglest’ I convex then a line segment will do. Also, if
at least one of the two arcs @7’ is avoided by the central ling of their supporting circles, then a single
splitting arc or line segment fdr' exists (because there is a normagtihat touches that arc at an endpoint).
Otherwise, we use an intersectiongofvith a reflex arc or®F’ as a Steiner point and split with two arcs.
Figure 4 illustrates two typical cases. In total, at nibst- 5 Steiner points are used for an arc triangulation.

We stress the fact that generalizing the classical planegvige polygon triangulation [25] — though
well possible inO(n log n) time — results in a more complicated algorithm for arc trilagion. Large parts
already swept across have to be remembered for later piogessid the produced primitives are more
complex than arc trapezoids. Also, line segments beinglsamepusly tangent to two given circles have to
be calculated, whereas in our algorithm the most complexabipa is intersecting a circle with a straight
line. As an open question we pose finding an algorithmahafysmanages with a (nearly) optimal number
of Steiner points, not only in the worst case.

Figure 4: Splitting arc trapezoids



6 MEDIAL AXIS

Let .4 be the circular arc shape under consideration. (In the $ezjlebjects are considered to be topologi-
cally closed sets.) Call a disk C .4 maximalif there exists no dislO’ different fromD such thatD’ > D
andD’ C A holds. The medial axis\/(.A), of A is defined as the set of all centers of maximal disks.

As the boundary ofd is a connected and simple curve witttircular arcs,M (A) is finite, connected,
and cycle-free [11] and thus forms a tré¥.(.4) can be decomposed in&(n) edgeswhich are maximal
pieces of straight lines and (possibly all four types of)icen Endpoints of edges will be calleertices
of M(A). Compared to polygonal shapes, the medial axis for ciradashapes is not more complicated,
as both structures contain edges of de@re@egeneral.

The contribution of this section is a simple and practicald@mized algorithm for computing/(.A).
It works by divide-and-conquer and accepts as input anyriitien of 0.4 by circular arcs and/or line
segments. The costly part is delegated to the divide steghwiasically consists of inclusion tests for
arcs in circles. In particular, no conics take part in theglewations. The merge step is trivial; it just
concatenates two partial medial axes. The expected rumsitneunded b)O(n3/2), and will be proved to
be O(n polylog n) for several types of shape. A qualitative difference to texismedial axis algorithms
is that acombinatorialdescription ofM (A) is extracted first, which can then be directly (and robustly)
converted into a geometric representation. We base ouritllgoon the following simple though elegant
decomposition lemma [11].

Lemma3 Consider any maximal disk for A. Let A,,..., A; be the connected componentsof D,
and denote withp the center ofD.

uywm:OM%um
i=1

t
(2 {p}=1M(4UD)
i=1
In plain words, having at hands some maximal disk one can aterthe medial axes for the resulting
components recursively, and then glue them together atgéesoint. However, the desired efficiency of
this strategy calls for a balanced decomposition. Its erist is given below.

Lemma4 There exists a maximal digk for .4 such that at most arcs fromd.A are (completely) contained
in each component of \ D.

Proof. Each poinip € M (.A) corresponds to a unique maximal digk for A. Let f(D,) be the number of
arcs fromd A in the largest component induced BY,. As long asf(D,) > %, the component that realizes
f(D,) is unique, and we can decreaeD,) by continuously moving on M (A) such thatD,, enters into
this component. This process terminates at some poiwheref(D,) < 5. \We never move back the way
we came, as the component we move out never exceeds a Qze of O

We are left with the algorithmic problem of finding some maaindisk that yields a well-balanced
partition. Observe that the optimal pojitabove may be not unique, because the nunfb#y,) is invariant
under motion op within the relative interior of any fixed edgeC M (A). Let us defin@Valk(e) as the path
length inM (A) from e to p*. Further, defin€Cut(e) as the size of the smaller one among the two subtrees
which constituteM (A) \ {e}. See Figure 5. Any tree with small 'cuts’ tends to have shweeiks’, in the
following respect.
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Figure 5: Walk (dashed) and cut (dotted)

Lemmab5 Lete be an edge of/(.A), chosen uniformly at random. ThéfjWalk(e)] = ©(E[Cut(e)]).

Proof. Orient all the paths in\/(.A) away from the poinp*. This defines a partial ordex on the edges
of M(A). That is, for any two edges ande’ on the same path tp*, we writee’ < e if ¢’ is at closer
distance t@*. We have the set equality

U {(a,e) |a <e} = U {(e,;b) | b= e}

ecM(A) e€M(A)

because either set contains each pair of the relation gxaatle. The (disjoint) subsets united in the left
set, L, represent all the paths il (.A) between its edges andp*. Thus we havezZ|Walk(e)] = L - |L|,
wherem is the number of edges @f/(.A). Each subset united in the right s&t, represents that one among
the two subtrees i/ (A) \ {e} which avoidsp*. So we get: - |R| > E[Cut(e)], because foCut(e) we
always consider the smaller subtree. Moreover, if we négte® all the subtrees of sizes larger thdh
then the cardinality of the set drops by a constant factoat{ahost4, if < would be a total order, hence
less). This impliesz[Cut(e)] > L - @. The lemma now follows froniR| = |L|. O

Lemma 5 motivates the following disk finding algorithm whicbmbines random cutting with local
walking. Its main subroutine, MAX{, selects for an aré C d.A its midpointz and returns the unique
maximal disk for.A with x on its boundary. For the ease of description, we assumehisatisk splits
A into exactly two components. The algorithm can be easilypteh otherwise, and its runtime even
decreases. Let> 3 be a (small) integer constant.

Procedure CUT (A)

Putd’ = A

Repeat
Choose a random atoof 9 A’
ComputeD=MAX(b) and letA, be the larger

component ofd induced byD

AssignA’ = A'N Ay

Until A, contains less than — 2 arcs

ReportD

11



Procedure WALK (A)

Choose a random atcof 9.A
ComputeD=MAX(b)
Let Ay be the larger component induced by
While Aq contains more than — * arcs do
Let by (b2) be the first (last) complete arc 64 in A
ComputeD;=MAX(b1) and Do=MAX(b3)
Assign to.A, the smaller one of the respective larger
components ofd for D, and D,
Memorize the corresponding didk € {D;, D>}

ReportD

The disk finding algorithm now runs CUR) and WALK(.A) in parallel and terminates as soon as the
first disk is reported. To analyze its runtime, let us firstsidar the assignment of arcs 6l to edges
of M(A), as done in subroutine MAX. Namely, if MAXf=D then arcbh is mapped to the edge that
contains the center ab. Observe that eitheb, 1, or 2 arcs are mapped to a fixed edge. Moreover, no
two unaddressed edges and no two doubly addressed edgesgiieaned. This assignment is sufficiently
uniform to convey randomness from arcs to edges. Let Aj@ut(e)] = ©(k). The expected number of
loop executions in procedure CUA) is O(%), because each time the expected reduction in siz€,aind
thus of Ay, is ©(k). On the other hand, by Lemma 5, the expected number of loaquégas in procedure
WALK (A) is O(k), because each time a progress of one edge is made on thetikespath inA/(.A). In
the worst case of walk length being balanced with cut nun@dbgund ofO(y/n) on the expected number
of loop executions in at least one of C{UZ) and WALK(.A) holds.

The costly part in both procedures is their subroutine MAXpge expected number of calls obeys the
same boundQ(y/n). ComputingD=MAX (b) has a trivial implementation which runs @(n) time: We
initialize the diskD as the (appropriately oriented) halfplane that suppiogsits midpointz and, for all
remaining arc$; C 0.A that intersectD, we shrinkD so as to touctd; while still being tangent té at x.
The most complex operation for shrinkidgis computing the intersection of two circles. In particukamd
unlike previous medial axis algorithms, no conics take {pageometric operations.

In summary, the randomized complexity for computing the ialegkis is given byl'(n) = T(%n) +

T((1 - 3)n) + O(n3/2) for ¢ > 3, which evaluates t@'(n) = O(n*?2). In many cases, however, will the
algorithm perform substantially better. L&be the graph diameter éf (A). Then the loop in WALKA) is
executed less thaintimes. So, for example, if = ©(logn) then an overall runtime a(n log? n) is met.
For the other extreme casé—= O(n), our strategy is even faster. With constant probabilityedge on the
diameter is chosen, artl(n) such edges haveCut(e) = O(n). The expected number of loop executions
in CUT(.A) now is onlyO(1), and anO(n log n) algorithm results. We conjecture that the latter situation
is quite relevant in practice. In many applications, foritgb shapes their medial axes will not branch
extensively. Even if so, the branching will be independdnt,decause each branch will be approximated
by a large number of circular arcs in order to achieve thegineeld precision.

The output of the algorithm is a list @?(n) points onM (.A), namely, the centers of the splitting disks,
plus a list ofO(n) edges connecting them. Each edge is given implicitly byéfinéhg two arcs o.A. To
make sure that the reported point list includes all the eestiofM/ (A), base cases that involve constantly
many (pieces of) original arcs fromA have to be solved directly. (The constant is at n3ai$to.A is C*.)
Note that the algorithm works exclusively a4 except for a final step, where the conic edged/bfA)
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Figure 6: Small point sample (dashed Voronoi diagram) \&efew arcs (solid medial axis)

are explicitly calculated and reassembled. This givestasacreased numeric stability in comparison to
existing approaches.

Opposed to approximating4 with the same accuracy by a polyline of si¥g our circular arc algorithm
takesO(n3/?) = O(N) time; see Corollary 1 in Section 3. Thus, even for (probalalsey worst-case
inputs, our simple algorithm competes asymptotically weth previous methods. Other advantages over
polygonal (and also point sample) approximations are dusttin the next section.

/ CONVERGENCE OF MEDIAL AXIS

A well-known unpleasant phenomenon of the medial axis imggbility under perturbations of the shape
boundary. Several papers discussing this issue have bddishad recently. A result in [8] shows that
stability is, in general, not given unless perturbatiors@#. In particular, medial axis convergence is not
guaranteed for polygonal approximations. To deal with garehapes, the so-calledmedial axis has been
introduced as a tool in [7]. After drawing a point sample frtm shape boundary, the Voronoi diagram
of these points is constructed and pruned appropriatele Xfimedial axis converges to the original for
vanishing sample distance. Drawbacks are the large sanzgdos a close (and homotopy-equivalent)
approximation, the lack of it€'! behavior, and the need of computing a general planar Vordiagram.
Figure 6 gives an illustrative example.

We prove in this section that convergence of the medial axgeuthe Hausdorff distance comes as a
byproduct of the careful (though, of course, sfill) biarc boundary conversion described in Section 3.

Given some shapél and a poinip on its medial axis\/(.A), denote withD,, the unique maximal disk
with centerp. Recall that)/(.A) is a geometric graph [11], defined as the set of centers of aimal
disks for A. Define aleaf of M (.A) as a vertex with a single incident edge. There are two waysdow
vertex of M (.A) can be a leaf; it is either the center of the osculating ciatlen apex (a point of maximal
curvature) oA, or it is a ‘sharp’ vertex ob.A. The first type will be called proper leaf Our convergence
proof is based on an analysis of the behavior of the medialiaxthe vicinity of proper leaves, as well as at
points being sufficiently distant from proper leaves.

For a pointp € M (.A) define¢, < 7 as the largest angle atspanned by two points in the sBt, N 0 A.
Further, put

kp = &

_ . 4
= which is equivalent to cos %” =1—-—. Q)
1—cos=¢ kp
2
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Whenp is a proper leaf theg, = 0 andk, = oo. The lemma below, which addresses the parts of the
medial axis sufficiently remote from the proper leaves, duatsassume any regularity condition for the
shape boundaries. A convergence result in a similar spigtesented in [4].

Lemma6 Let.4 and B be two shapes whose (two-sided) Hausdorff distance sat&fi@.A, 0B) = «.
Let D,, denote any maximal disk fot whose radius-, fulfills », > k, - € > 0. Then there exists a maximal
disk D, for B such thafllp — ¢|| < k), - €.

Proof. Letz,y € D, N d.A be two points realizing the anglg, that is,/zpy = &,. Let D}, be the largest
disk centered ab and contained ir8, and letz € D; N oB. DefineD, as the maximal disk with respect
to B and containingD;,; then clearlyz € 9D,. We consider the set of all diskS, containingD;, and
satisfyingz € 0D,. Within this set we defind; as the disk satisfyinglp — s|| = k, - . See Figure 7 for
an illustration.

Figure 7: Notions from the proof of Lemma 6.

Without loss of generality we assume that the angle Zxpz < 7 satisfiesa > &,/2; otherwise one
may swapr andy. Due to this, and taking (1) into account, we get

kp-rp-cosagkrp'rp-cos%” = p-rp-(l—kip) =ky-rp—4r, (2)
As we assumed thaf, > k, - €, we obtain
kp-rp-cosa < ky-rp—2r, — 2k, - €+ 2¢. )
This inequality implies
r12,+(k:p-z—:)2—2'7‘p'l<:p-z—:-cos(7r—a) < (rp—2e+ky-e) 4)
Dueto|p — z|| = r, and||s — p|| = k, - €, we thus have
lp —l® +lls = plI* =2 llp — || - |Is = pll - cos(m — @) < (r, — 26 + &y - £)*. (5)
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Finally we apply the law of cosines to get

|s —z| <7p—2e+k, - or equivalently,

|ls—z|| +e<rp—e+ky-c. (6)

On the other hand, the radiljs — z|| of D; is at least, — € + k,, - ¢, by construction. Consequentli;
contains the-neigborhood oft, hence at least one point 88. This impliesD, C D,, hence

lp—all <llp—sll =ky-e. ()
This completes the proof. O

Letp € M(A) be a proper leaf, let € 9.A be the corresponding apex, and consider some padying
on the unique edge incident g Then the maximal diskD, touchesdA at two points, which are the
endpoints of a segment 0fA throughzx of length, say/. Whenq — p then clearly?/ — 0. The following
lemma describes the speed of this convergence.

Lemma7 If 9.Ais piecewise analytic and? in the neighborhood of then there exists a constaat > 0
such that
lg = pll < w- £

Proof. For a pointy € 0.A, letn, denote the normal line 0.4 throughy. Given an apex of 0.A, define
‘[1’ = {ny N Nz ‘ Y 7é Zs d(yrr) S €7 d(Z,.Z’) S E}a

with distanced being measured alongd. Clearly,q € I,.. Using the formal Taylor expansion 6f4 at x
it can be proved directly that(p, I,) < w - £? for suitablew > 0. O

We are now prepared to prove the claimed convergence result.

Theorem 1 Let some shapel with piecewise analytic bounda@.A be approximated by a sequence of
shapes,,, wheredB,, is a spline ofn circular arcs produced by the spiral preserving variant d§érithm
BISECT. For the one-sided Hausdorff distardoge have

§(M(B,),M(A) = O(™') and
S(M(A), M(Bn)) = O(n=*?),

Proof. We will give the full proof only for the case of globallg? boundaryd.4 which does not contain
circular arcs. The proof generalizes easily to the case eMidris an arbitrary concatenation of analytic
pieces, and thus, in particular, may contain sharp vertices

As 0.A is assumed to be globally?, all leaves ofi/ (A) are proper leaves. For sufficiently largeeach
leaf of M (A) is also a leaf ofV/(B,,), and all leaves oMM (5,,) are contained i/ (.A). This is because the
circular arc splined3,, preserves not only spirals, but also position, normal veetod curvature at each
apexz of 0A.

Let us remove frond3,, the containing circular arg, for each apex whose osculating disk is contained
in B,, (and hence is maximal fd$,,). This decompose3s,, into components. We defing, as the minimum
of the lengths of all the removed args. This minimum length shrinks to zero, &1 does not contain
circular arcs, and it behaves @¢n~1) by construction of3,,. Now define

&n = 2arcsin(d, /2L), (8)
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Figure 8: Exact medial axis of circular arc boundary repnegtéon (IJC) versus polygonal
boundary representation (GA).

where L. denotes an upper bound on the geometric diameters of allhthgesss,,. Apart from disks for
leaves, each maximal disk,, for 3, has contact to at least two different components. (Otheviiere
would be a supplementary leaf af (5,,).) For such a diskD,, we have the angle inequality, > &,

provided thatn is sufficiently large (due to the fact that— oo impliesd,, — 0).

Becaused,, = Q(n~!) and sincelL is a constant, we havé — cos(&,/2) = Q(n~2). Moreover,
§(0A,0B,) = O(n~3) by construction. That is, the condition in Lemma 6 holds fonaximal disksD,
for B,, (with exception of finitely many proper leavey whenn is sufficiently large. Indeed, in Lemma 6
we havek, - = O(n~1). By the same lemma, this is also a bound |pn— ¢|| and therefore we get
S(M(B,), M(A)) = O(n™).

The other direction can be proved similarly. For each teaff M/ (.A), with corresponding apexof 0.4,
we define a neighborhoat, on 8.4 of lengthn—3/4. Removal of all the segments leads us to two types
of maximal disksD,, for 4, depending on whethdp, touches a single segment (g is then close t), or
not. For the latter type, the analysis is the same as abodestaows thay; approaches the center of some
maximal disk forB,, at speed)(n—%/2). For the former type, due to Lemma 7, the distance betwesd
leaf p (which is also a leaf ofV/(B,,)) behaves a®)((n3/4)?), i.e., the same. The one-sided Hausdorff
distanced(M (A), M (B,,)) thus converges at that speed. O

Note that the global convergence speed of the medial axis reg$pect to the Hausdorff distance
is O(n~!), whereas the error of the boundary approximation impro@e® @ —3). This is due to the
behavior of the medial axis close to its leaves. When weicesturselves to the--medial axis [7] forany
A > 0, thend,, in formula (8) becomes a constant, and the approximatioadsEd (n~3) by Lemma 6.
This compares favorably to using a sizepoint sample ord.A and pruning its Voronoi diagram, as the
approximation speed is then orfy(m—1).

8 CONCLUSIONS

We have given several examples for the efficient handlingpapes with nonlinear boundaries. In particular,
the use of circular arcs for boundary conversion has beewrsho be highly useful. Our results profit

from the confluence of geometric approximation theory andmatational geometry. To our knowledge,
this is the first systematic approach in this direction. Carad to conversion into polylines, the gain in
efficiency increases with the complexity of the subsequégdrdhm. This makes affordable suboptimal
(hence sometimes less complicated) algorithms.
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Based on the theoretical investigations in the presentrpapdiave developed an efficient and reliable
implementation of the 2D medial axis construction; see ¢t]details and empirical evaluations. An exam-
ple of the obtained results is given in Figure 8. It shows tteeemedial axis of a circular arc approximation
as opposed to the exact medial axis of a picewise-linearoappation.

Other approximating primitives could be considered (&ughics), but circular arc splines seem to yield
the best trade-off. The presented algorithms, in principlark for arbitrary primitives. In particular, in our
medial axis algorithm, the added numerical complexity isrased further by the algorithm itself. This is
a nontrivial property of this algorithm, which is the first¢ombine practicality, efficiency, and stability [1].
Its generalization to shapes with holes is possible, as Le&fhms a counterpart for this case.

Finally, we raise the question of whether results of thisgpajan be extended to three-space.
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APPENDIX

Letc(t) be a given analytic curve on the doméin ;] and suppose tha{t) contains neither inflections
nor apices ifty, t1|. For given step siz&, consider geometric primitivég¢, h) that approximate the curve
segments:[t,t + h]. The geometric primitives are either line segments or ardsascs. Assume that the
domain ofe(t) can slightly be enlarged oy, t1 + hAmax], Wherehn,.x is a suitable constant which specifies
the largest stepsize.

In order to evaluate the one-sided Hausdorff distance t@nk) to c[t, ¢+ h], we analyze the stationary
pointsT = 7; of the function

d(r,t,h) = qenl[)l(it{lh) llg —c()|l, 7€t t+h],

which are characterized by

0
Ed(?,t,h) . =0, i=1,...,s(t).
Provided that: is sufficiently small, the numbe(¢) of stationary points is independent#ofFor instance,
this number isl for line segments an#l for arcs interpolating three points. For each stationalntpe we
consider the associated distance
di (t7 h) = d(TZ (t7 h)a t» h)

where we definel;(t,0) = 0. The one-sided Hausdorff distanéé(t, h), c[t,t + h]) is the maximum of
all these distances.

For each value of, consider the Taylor expansiontat 0. The first non-vanishing derivative is used to
define the remainder term,

it ) = o A () -,

where[k] indicates thek'" derivative with respect to the step sizeandh (k) € [0, h]. The orderk of this
term is called thepproximation orderof the geometric primitive; it equal? for line segments and for
circular arcs.

Since the curvez(t) contains neither inflections nor apices, and due to the comess of its do-
main[to, t1], there exist positive constant§ D such that the functiong; satisfy
[K]

0<C<d;"(t,0) <D.

Moreover, since thé'" derivative is continuous, there exists a step gize 0 such that

V(t,h*) € [to,t1] x [0, 9] : % < d’l(t,h*) < 2D.

Consequently, it is sufficiently small, then the one-sided Hausdorff disteheatisfies

1, 1.,
—— <0< — .
palt S0 2bh

This provess = ©(h*) for the case wherg is a constant.
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