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Abstract

Boundary approximation of planar shapes by circular arcs has quantitative and qualitative advantages
compared to using straight-line segments. We demonstrate this by way of three basic and frequent compu-
tations on shapes – convex hull, decomposition, and medial axis. In particular, we propose a novel medial
axis algorithm that beats existing methods in simplicity and practicality, and at the same time guarantees
convergence to the medial axis of the original shape.

1 INTRODUCTION

The plain majority of algorithms in computational geometryhave been designed for processinglinear ob-
jects, like lines, planes, or polygons. On the one hand, thisis certainly due to the fact that many interesting
and deep computational and combinatorial questions do arise already for inputs of this simple form. Again,
the pragmatic reason is that algorithms for linear objects are usually both easier to develop and simpler
to implement. To make things work for nonlinear objects, which arise frequently in practical settings,
such objects are usually approximated in a piecewise-linear manner and up to a tolerable error. Existing
approaches [15] to directly extending polygonal algorithms to curved objects are rare and, due to their
generality, of limited practical use.

In its simplest form, the input object is a single planar shape, A, with curved and connected bound-
ary∂A. Frequent tasks to be performed onA – each being prior to a variety of more involved computations
– include constructing the convex hull ofA, decomposingA into primitives, and calculating the medial
axis ofA. These tasks are well investigated in the case of polygonal shapes. In certain situations, however,
the number of line segments required for approximating∂A with high accuracy may be prohibitively large.
Even more seriously, making a piecewise-linear approximation of ∂A and invoking a polygonal-shape al-
gorithm may generate results that are topologically incorrect; the medial axis is a well-known example.
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The intention of the present paper is to highlight the use of circular arcs for boundary representation. It
is well known that for nonlinear curve segments the approximation order increases in comparison to using
straight-line segments. For instance, it has been conjectured by Höllig and Koch [26], and proved ford = 2,
that polynomial curves of degreed in the plane have approximation order2d. Many related results exist in
the rich literature on geometric interpolation, includingresults on circular arcs [32].

In particular, if a given accuracyε is achieved by usingN line segments, then as few asn = Θ(N2/3)
circular arcs can accomplish the same. This has been an issuein approximation theory, but in computational
geometry this gain seems to have been less valued than eliminating small factors in the complexity of
the subsequently applied algorithm. Boundary approximation by circular arcs may be of advantage also
in a qualitative respect. For instance, it avoids the mentioned topological inconsistencies in medial axis
computations, and it supports the computation of shape offsets, as the class of shapes bounded by circular
arcs is closed under offset operations.

We will show that for the three basic problems mentioned above – convex hull, decomposition, and
medial axis – simple and practical, though still efficient, algorithms exist that work for circular arc inputs.
The first two problems are less demanding; we treat them mainly to point out the respective favorable (in
our opinion) approach, whose practicality shall encouragethe use of circular arc boundary representation.
Nevertheless, substantial differences to the polygonal case occur; see below. For computing the medial
axis, we propose a novel and extremely simple algorithm thatis based on a known (though less recognized)
decomposition lemma. After having computed a purely combinatorial description of the medial axis using
tailored shape splitting, its individual parts (conics andline segments, like in the polygonal case) are re-
assembled in trivial merge steps.

Suitable circular arc approximations of shapes can be foundin linear time. In summary, the obtained
shape processing algorithms are superior in runtime to their line segment based counterparts, retain much
(if not all) of their simplicity, and are even more natural insome cases.

2 OUTLINE AND BACKGROUND

We briefly describe the contributions of this paper and relate them to existing literature.

Section 3 deals with approximating general curves by suitable primitives. This is a topic of importance
in geometric modeling and in CAD and NC applications, and many quite recent results are available [16,
24, 33, 34, 36, 39, 41]. Our aim is to approximate a parametriccurvec(t) by circular arcs. We assume
thatc(t) is piecewise-polynomial of constant degree, and we use biarcs (pairs of smoothly joined circular
arcs) [34, 38, 39] as primitives. A straight-forward bisection algorithm for biarc generation already fits
our purposes. It uniquely assigns biarcs to parameter intervals, which facilitates the error evaluation. An
approximating spline curveb of sizen is computed inO(n) time. It fits the input curvec(t) in slope at
biarc endpoints, and can be tuned to matchc(t) in curvature at certain points (a fact being important in
subsequent medial axis computations). Though not being optimal in the number of arcs, the approximation
order ofb is still three [33, 39]. In contrast, with line segments one cannot exceed order two, and a polyline
of sizeN = Θ(n3/2) is needed to arrive at the same precision.

The remaining sections propose algorithms forcircular arc shapesA, where the boundary∂A of A
is given as a connected curve composed ofn circular arcs. Choice is guided by efficiency as well as by
reducibility to basic operations that have robust implementations [18].

Section 4 outlines an algorithm for computing the convex hull of A. This task is one of the most basic to
be performed for a given shape, and has a variety of applications including shape fitting, motion planning,
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shape separation, and many others. At least four linear-time algorithms have been developed for polygonal
shapes [6, 23, 31, 35]. The incremental method by Melkman [35] stands out by its simplicity, and it is
this candidate we generalize for circular arc shapes. Compared to the original setting, two difficulties arise.
Deciding inclusion for a currently inserted arc in the convex hull constructed so far is no trivial test, and the
convex hull cannot be described by a sequence of input vertices of the shape. We show that a runtime of
O(n) is still possible. The basic subroutine of the algorithm computes the convex hull of only two circular
arcs.

Section 5 deals with shape triangulation, a fundamental building block in algorithms for decomposition,
shortest path finding, and visibility – to name a few. Most existing algorithms are meant for polygonal
shapes. They partition a given (simple)N -vertex polygon into triangles without introducing Steiner points.
Efficient candidates are [5, 9, 21, 25, 30] which all show anO(N log N) runtime. Theoretically more
efficient methods do exist, but when aiming at simplicity, choice should be made from the list above.

When trying to generalize to shapesA bounded by circular arcs, we face two problems. First of all,if
the use of Steiner points is disallowed, then a partition ofA into primitives bounded by a constant number
of circular arcs need not exist. (In certain cases, however,such a partition ofA will exist, but a partition
with straight line segments will not.) Also, not all triangulation methods are suited to generalization. This
applies, for instance, to the extremely simple ear cutting method in [28] which runs in timeO(r ·N), where
r is the number of reflex vertices ofA. The triangulation algorithm we propose is closest to Chazelle’s [9].
It manages with an (almost) worst-case minimal number of Steiner points on∂A, runs inO(n log n) time,
and uses a dictionary as its only nontrivial data structure.The produced primitives are arc triangles with at
least one straight edge. The most complex geometric operation is intersecting a circle with a line.

Section 6 is devoted to the medial axis, a frequently used structure associated with a given input shape.
Its main applications include shape recognition, solid modeling, pocket machining, and others. Interest in
mathematical properties of the medial axis for general shapes found renewal in recent years [3, 7, 8, 11, 37].
In our case, where the shapeA is simply connected and∂A consists ofn circular arcs, its medial axisM(A)
is known to be a tree composed ofO(n) conic edges. Algorithmic work on the (exact) medial axis either
concentrated on the case whereA is a polygon [9, 10, 29], or on general sets of curved arcs [2, 12, 27,
37] (and their Voronoi diagram) without, however, exploiting the fact that the input arcs define a simple
curve. Though theoretically efficient asO(n log n) or better, these algorithms suffer from involved merge
or insertion steps which, even for straight arcs as input, are difficult to implement. In addition, numerical
stability issues arise heavily; intersections of conics have to be determined repeatedly which, when not
calculated exactly, are bound to accumulate the error. If the vertices of the medial axis are assumed to
be known, the in-between edges can be traced numerically [12, 17]. This approach, however, requires an
expensive a-priori analysis of the global connectivity structure of the medial axis.

We present a simple randomized divide-and-conquer algorithm for computingM(A) that overcomes
these drawbacks. In contrast to comparable algorithms, thecostly part is delegated to the divide step. The
geometrically most complex operations in this step are computing the intersection of two circles. The merge
step is trivial: it concatenates two medial axes. The expected runtime is bounded byO(n3/2) = O(N), but
is provably better for most types of shape. For example,O(n log n) expected time suffices if the diameter
of M(A) is Θ(n). No nontrivial data structures are used.

To guarantee applicability of our methods to approximatingthe medial axes of general shapesA, a
convergence result is needed. We prove in Section 7 that, fora suitable approximation of∂A by circular
arcs,M(A) is the limit ofM(B) when the approximating arc shapeB converges toA. Related results exist,
but either presupposeC2 conditions on∂B not attainable by circular arcs [8], or concern only subsetsof
the medial axis [7] that survive after pruning the Voronoi diagram of point samples from∂A. It is well
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known [3] that medial axis convergence isnot given for polygonal approximations ofA. While certain
conditions on the approximation with circular arcs guarantee convergence, there is no way to guarantee
convergence for point samples or line segments without pruning. If we do restrict ourselves to the pruned
part in the case of a point sample (theλ-medial axis [7]), a data volume ofΘ(n3) = Θ(N2) arises, compared
to n circular arcs orN line segments, for the same approximation quality. In conclusion, circular arcs are
the simplest possible tool for boundary conversion that guarantees a stable medial axis approximation.

We mention that there exist several point-based methods to approximate the medial axis in 3D. Using a
proper subset of the Voronoi facets, chosen via the edges of the dual Delaunay triangulation, a convergence
guarantee when taking anε-sampling can be shown, see [13, 14]. However, these approaches are not needed
for 2D, as the Voronoi diagram vertices of a sample already converge to the medial axis in this case.

3 APPROXIMATION BY CIRCULAR ARCS

In order to represent a general shapeA in a form suitable for geometric computations, we discuss methods
for approximating∂A by circular arcs. We assume that∂A is given as a polynomial spline curve. While
particular attention is paid to the cubic case, being the most popular one in applications [19], the methods
can be applied to spline curves of any degree.

Several approaches to generating circular arc splines exist; see e.g. [33] for a review. We consider a
simple bisection algorithm consisting of two steps, approximation and error measurement. A geometric
primitive b (an arc or a biarc) is fitted to a segments of the given curvec(t), and the distance fromb to s is
numerically computed. The algorithm is relatively easy to implement and still adapts the degrees of freedom
to the input data. As a slight disadvantage, the number of primitives (the resulting data volume) is optimal
only in the asymptotic sense.

Define the one-sided Hausdorff distance from a primitiveb to a segments ⊆ c(t) as

δ(b, s) = max
p∈b

min
q∈s

||p − q||.

(We considerb ands as closed sets.) Letε denote the error tolerance to be met by the algorithm.

Algorithm BISECT(t0, t1)

Constructb
Computeδ = δ(b, c[t0, t1])

If δ ≤ ε then return{b}
Else return BISECT(t0,

t0+t1
2 ) ∪ BISECT( t0+t1

2 , t1)

Depending on the primitiveb used, Algorithm BISECT produces splines of different quality: merely
continuous (C0) circular arc splines, or tangent continuous (C1) arc splines. When being content with the
former type, we simply can choose forb the unique circular arc passing through the three pointsc(t0),
c( (t0+t1)

2 ), andc(t1). To obtainC1 arc splines, so-called biarcs [38] are utilized.

A biarc b consists of two circular arcs with common unit tangent vector at their joint. Usually,b is
described by its sourcex with associated unit tangent vectorvx, and its targety with unit tangent vectorvy.
Given these data, there exists a one-parameter family of interpolating biarcs. All possible joints are located
on the circleσ passing throughx andy and having the same oriented angles withvx andvy. Several ways for
choosing the jointm have been proposed; see e.g. [34, 39]. For many applications, takingm = σ ∩ c[t0, t1]
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n = 4, z = 10 n = 12, z = 100

Figure 1:z-magnified error forn biarcs

is appropriate. To calculatem in the cubic case, a polynomial of degree4 has to be solved (where a closed-
form solution is still available). The output is aC1 arc spline with all arc endpoints sitting onc(t).

In view of subsequent stable medial axis computations, the choice ofm has to be made more care-
fully. Define anapexof c(t) as a local curvature maximum. The apices split the curvec(t) into pieces of
monotonic signed curvature, so-calledspirals. Following [34], we aim at approximating spirals ofc(t) by
circular arc spirals. To this end, we splitc(t) at its apices. In the cubic case, these points can be found by
solving polynomials of degree5. Now, we exploit that spiral biarcs can be constructed that connect two
given pointsx andy, match unit tangents there, and assume a predefined curvature in one of them. Letkx

andky be the curvature ofc(t) atx andy, respectively, and supposekx < ky. To match curvature atx, we
choose the radius of the first arc,b1, equal torx = 1/kx. The jointm is obtained by intersecting the circle
supportingb1 with the joint circleσ. According to [34], the radii and curvatures satisfyrx > ry > 1/ky.
When starting the next biarc fromy with ry = 1/ky (unlessy is an apex), monotonicity of signed curvature
will be preserved.

Each arc is found inO(1) time, where the constant depends on the degree of the polynomial to be
solved. Fig. 1 shows an example of a biarc conversion. The scaled curve normals visualize the magnified
error distribution.

Concerning the error measurement, each produced circular arc bi has to be matched to its corresponding
segments = c[t′0, t

′
1]. This is, of course, trivial when the biarc jointm has been chosen to lie onc(t). In

the case of biarc spirals, we intersectc(t) with the normal ofbi at m. In the case of degree 3 input curves,
this leads to a cubic equation. If multiple solutions withinthe total biarc interval[t0, t1] exist, then the error
is set to∞. Otherwise, we compute the one-sided Hausdorff distanceδ(bi, s) by substituting the parametric
representation ofs into the implicit equationK (with leading coefficients1) of the circle supportingbi. If r
is the radius ofK, andd andD are the minimum and maximum values of(K ◦ c)(t) for t ∈ [t′0, t

′
1], we get

δ(bi, s) ≤ max{|
√

r2 − d − r|, |
√

r2 + D − r|}

and this bound is sharp. Consequently, in the cubic case,δ(bi, s) can be evaluated by solving a quintic
polynomial equation on the interval[t′0, t

′
1]. Alternatively, a simpler upper bound can be calculated (without

polynomial solving) by replacingd andD with the minimum and maximum coefficient of the Bernstein-
Bézier representation [20] of(K ◦ c) with respect to[t′0, t

′
1]. As the length ofs decreases, this bound
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converges toδ(bi, s). As another simple but important observation, thetwo-sidedHausdorff distance be-
tweenbi ands, max{δ(bi, s), δ(s, bi)}, vanishes withδ(bi, s) becausebi ands are of constant degree. Thus
controlling the latter distance already ensures thatbi ands areε-close with respect to the former one.

In summary, when algorithm BISECT spans a binary recursion tree withn leaves (the returnedn prim-
itives), any of the described types of arc splines can be constructed inO(n) time.

Let us discuss the asymptotic behaviour of the numbern for decreasing toleranceε. For a given curve
c(t) with domain[t0, t1], which is assumed to contain neither inflections nor apices,we consider primi-
tives having approximation orderk. Adapting the analysis in [33, 39] (as done in the Appendix),we get
δ = Θ(hk) for the one-sided Hausdorff distanceδ, provided thatc(t) is approximated with (small) para-
meter step sizeh, and thatk is considered a constant.

This relation implies a general lower bound. Foranyapproximation ofc(t) obtained by BISECT(t0, t1)
usingn primitives with approximation orderk, the largest step size satisfies∆t ≥ t1−t0

n . Moreover, we
haveδ ≤ ε by the terminating condition of the approximation algorithm. From δ = Θ((∆t)k), we get
n = Ω(1/ε1/k). On the other hand, the minimum step size∆′t taken by any algorithm for an intervalI
satisfies∆′t ≤ t1−t0

n . Assume we stop BISECT(t0, t1) with doubled step size2∆′t. Then there exists at
least one interval, for example the one containingI, for whichδ > ε. As we haveδ = Θ((2∆′t)k) it follows
thatn = O(1/ε1/k). We obtain:

Lemma 1 For sufficiently small toleranceε, the numbern of primitives constructed by algorithm BISECT
is asymptotically optimal.

Lemma 1 also holds in the general case wherec(t) contains inflections and apices, because the resulting
number of spirals ofc(t) is independent ofn. In conclusion, to arrive at toleranceε, Algorithm BISECT
needsn = Θ(1/ 3

√
ε) circular arcs (order3), whereasN = Θ(1/

√
ε) line segments (order2) have to be

invested by any polygonal approximation method.

Corollary 1 Compared to approximating the curvec(t) with a polyline, the data volume drops fromN to
n = Θ(N2/3) when circular arc splines are used.

It should be observed that, the other way round, when approximating c(t) with a point sample (as
commonly done for medial axis computations [3]), the data volume increases toΘ(n3) compared ton
circular arcs.

4 CONVEX HULL

Let A be some shape given in arc boundary representation. More specifically, ∂A is approximated by a
simple (i.e., not self-crossing) and connected curveb composed ofn circular arcs. Clearly, ifb converges
to ∂A then the convex hull ofb converges to the convex hull ofA. Moreover, the Hausdorff distance of the
two convex hulls is bounded by the Hausdorff distance ofb and∂A. We show that the convex hull algorithm
for polylines in Melkman [35] can be generalized to simple circular arc curvesb while retaining itsO(n)
runtime.

In a nutshell, this algorithm processes each of the verticesof the given polyline in order and maintains
their convex hull. If the currently processed vertexvi falls into the convex hull,CHi−1, constructed so far
thenvi is deleted and we putCHi = CHi−1. Otherwise, tangents are placed fromvi to CHi−1, and the
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Figure 2: Cases 2.1 (left) and 2.4 (right)

sequence of vertices (if any) between the corresponding twovertices of tangency is deleted fromCHi−1 in
order to constructCHi.

The linear runtime of this strategy hinges on two propositions: (1) A constant-time inclusion test
vi ∈ CHi−1, and (2) deletion of vertices ofCHi−1 which are non-extreme inCHi in time proportional
to their number. While (2) is achieved by a standard Graham scan [22], proposition (1) is met by exploiting
simplicity of the given polyline:vi ∈ CHi−1 is equivalent to the fact thatvi lies in the wedge spanned by
the interior angle atv, wherev was the last vertex added toCHi−1.

Staying with vertices works correctly with polygonal curves because the convex hull of two points equals
the convex hull of their connecting line segment. This is, ofcourse, not true for a connecting circular arc.
As a consequence, the set of vertices of the convex hull to be constructed is, in general, no subset of the
input vertices. Also, the inclusion test for a circular arc to be inserted is a more complicated operation, The
following variant of Melkman’s algorithm is able to cope with circular (and more general) arcs and still runs
in O(n) time. Its main subroutine computes the convex hull of only two arcs.

Let b1 . . . bn be the given simple circular arc curve. The second endpoint of each arcbi (in this order)
is called thetarget of bi. Some of the arcs may be line segments, and the curve may be cyclic. Assume
first that the curve isC1. Let CH denote the convex hull operator, and abbreviateCH(b1 . . . bi) asCHi.
Consult Figure 2.

Algorithm HULL

ConstructCH2 = CH(b1b2). Let v be the last point along the chainb1b2 that lies onCH2.

For i = 3, . . . , n, process the arcbi as follows:

Search for the first arc,a, of CHi−1 clockwise fromv that contributes with non-zero length toCH(a, bi)
and such that this hull andCHi−1 are on the same side ofa. Similarly, search for the first arc,c, counter-
clockwise fromv with analogous properties. (a = c is possible.) Arcsa andc already provide the informa-
tion needed to constructCHi correctly.

Case 1 Arc a (and equivalently, arcc) does not exist. This meansCHi−1 ⊂ CH(bi). PutCHi = CH(bi),
and assign tov the target ofbi.

Case 2 Arcsa andc do exist. Check for some tangent,ta, which appears onCH(a, bi) and is clockwise
tangent toCHi−1, c.f. Figure 2 (right). Also, check for some tangent,tc, which appears onCH(c, bi) and
is counter-clockwise tangent toCHi−1.
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Case 2.1 Tangentsta andtc both do not exist. This meansbi ∈ CHi−1. PutCHi = CHi−1.
Case 2.2 ta exists (uniquely) buttc does not. Letta = xaya, wherexa is its point of tangency on

CHi−1. To obtainCHi, delete fromCHi−1 the clockwise part betweenv andxa, and addta and the piece
of the arcbi betweenya andv. Updatev as the last point alongbi onCHi (eitherya or bi’s target).

Case 2.3 tc exists (uniquely) butta does not. Lettc = xcyc, with xc being its point of tangency on
CHi−1. To getCHi, delete fromCHi−1 the counter-clockwise part betweenv andxc, and addtc and the
piece of the arcbi betweenyc andv. Updatev as in Case 2.2 (eitheryc or bi’s target).

Case 2.4 ta andtc both do exist. Here we getCHi by deleting arcs fromCHi−1 as in Cases 2.2 and 2.3,
and then addingta, tc, and the piece ofbi betweenya andyc. We updatev as the point amongya andyc that
is closer to the target ofbi.

Correctness of algorithm HULL is verified by observing thatta and tc are indeed tangents from the
currently inserted arcbi to the convex hullCHi−1 constructed so far. Thereby, as the algorithm stands now,
it is of importance that the input curve isC1. This guarantees that the boundary ofCHi−1 is C1 as well
(except possibly at the target ofbi−1), such that the arcsa andc are found correctly. Minor modifications in
the selection criteria for these arcs will make the algorithm work without this restriction.

The runtime is dominated by the search fora andc, where the necessary number of calls of the two-arc
hull subroutine is proportional to the total number of arcs constructed or deleted. This number isO(n)
because onlyO(1) arcs are constructed peri-loop. The rest can be accomplished inO(1) time per arcbi if
CHi is stored as a doubly linked list, or inO(n) total time if CHi is represented in a (more space-saving)
dequeue.

5 TRIANGULATION

We next propose a triangulation algorithm for circular arc shapes. Define anarc triangle as a (simply
connected) face bounded by at most three circular arcs or line segments.

A partition of a circular arc shapeA into arc triangles need not always exist when the use of Steiner
points is disallowed. (Observe, however, that such a partition may exist, although a partition ofA with
straight line segments may not.) The situation does not change if then arcs describing∂A arex-monotone
pieces (and hence span semi-circles at most), which we will assume below. In fact, there are examples
where at least2n − 7 Steiner points are necessary. See Figure 3. For no pair of vertices of the depicted
shapeA does there exist a connecting circular arc insideA. Thus no part ofA can be split off using a
circular arc between two vertices. The interested reader may convince her/himself that placingn−4 Steiner
points as shown is no waste. The asserted lower bound then follows, because each of the resulting faces
needs additional Steiner points. Note that a single point per face suffices only if circular arcs rather than line
segments are used to split the face.

Figure 3: Many Steiner points
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The triangulation algorithm we are going to describe introduces at most2n − 5 Steiner points (on the
boundary ofA, rather than in its interior), runs inO(n log n) time, and uses a dictionary as its most involved
data structure. The produced primitives are arc triangles where at least one edge is a line segment. Standard
plane sweep is used to compute the vertical visibilities inside A for each pair (vertex, arc) of∂A. Each
such pair defines a vertical line segment that splitsA and ends at a Steiner point on∂A. A decomposition
of A into arc triangles and arc trapezoids results. No priority queue is needed, as all events guiding the
plane sweep (namely, the vertices of∂A) are known in advance and thus can bex-sorted beforehand. For
simplicity, suppose that theirx-coordinates are pairwise different.

Lemma 2 The decomposition above contains exactlyn − 2 Steiner points.

Proof. Let us call a vertextypek if it vertically sees exactlyk arcs, i.e., definesk Steiner points. We have
vertices of types0, 1, and2. At each type-2 vertexv, the shapeA is vertically split into three parts, each part
having a type-0 vertex as anx-extremum. Two such parts lie on the same side of the splitting segment, and
among their extreme type-0 vertices, we mapv to the one which isx-closer tov. This mapping is injective,
and does not address the twox-extrema of∂A. The lemma follows. 2

The obtained faces are exactlyn − 1 in number, at least two being arc triangles. Each faceF that is
an arc trapezoid can be easily split into arc triangles. IfF is convex then a line segment will do. Also, if
at least one of the two arcs on∂F is avoided by the central lineg of their supporting circles, then a single
splitting arc or line segment forF exists (because there is a normal tog that touches that arc at an endpoint).
Otherwise, we use an intersection ofg with a reflex arc on∂F as a Steiner point and splitF with two arcs.
Figure 4 illustrates two typical cases. In total, at most2n − 5 Steiner points are used for an arc triangulation.

We stress the fact that generalizing the classical plane sweep for polygon triangulation [25] – though
well possible inO(n log n) time – results in a more complicated algorithm for arc triangulation. Large parts
already swept across have to be remembered for later processing, and the produced primitives are more
complex than arc trapezoids. Also, line segments being simultaneously tangent to two given circles have to
be calculated, whereas in our algorithm the most complex operation is intersecting a circle with a straight
line. As an open question we pose finding an algorithm thatalwaysmanages with a (nearly) optimal number
of Steiner points, not only in the worst case.

g

g

Figure 4: Splitting arc trapezoids
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6 MEDIAL AXIS

LetA be the circular arc shape under consideration. (In the sequel, all objects are considered to be topologi-
cally closed sets.) Call a diskD ⊆ A maximalif there exists no diskD′ different fromD such thatD′ ⊃ D
andD′ ⊆ A holds. The medial axis,M(A), of A is defined as the set of all centers of maximal disks.

As the boundary ofA is a connected and simple curve withn circular arcs,M(A) is finite, connected,
and cycle-free [11] and thus forms a tree.M(A) can be decomposed intoO(n) edges, which are maximal
pieces of straight lines and (possibly all four types of) conics. Endpoints of edges will be calledvertices
of M(A). Compared to polygonal shapes, the medial axis for circulararc shapes is not more complicated,
as both structures contain edges of degree2 in general.

The contribution of this section is a simple and practical randomized algorithm for computingM(A).
It works by divide-and-conquer and accepts as input any description of ∂A by circular arcs and/or line
segments. The costly part is delegated to the divide step, which basically consists of inclusion tests for
arcs in circles. In particular, no conics take part in these calculations. The merge step is trivial; it just
concatenates two partial medial axes. The expected runtimeis bounded byO(n3/2), and will be proved to
be O(n polylog n) for several types of shape. A qualitative difference to existing medial axis algorithms
is that acombinatorialdescription ofM(A) is extracted first, which can then be directly (and robustly)
converted into a geometric representation. We base our algorithm on the following simple though elegant
decomposition lemma [11].

Lemma 3 Consider any maximal diskD for A. Let A1, . . . , At be the connected components ofA \ D,
and denote withp the center ofD.

(1) M(A) =
t

⋃

i=1

M(Ai ∪ D)

(2) {p} =
t

⋂

i=1

M(Ai ∪ D)

In plain words, having at hands some maximal disk one can compute the medial axes for the resulting
components recursively, and then glue them together at a single point. However, the desired efficiency of
this strategy calls for a balanced decomposition. Its existence is given below.

Lemma 4 There exists a maximal diskD for A such that at mostn2 arcs from∂A are (completely) contained
in each component ofA \ D.

Proof. Each pointp ∈ M(A) corresponds to a unique maximal diskDp for A. Let f(Dp) be the number of
arcs from∂A in the largest component induced byDp. As long asf(Dp) > n

2 , the component that realizes
f(Dp) is unique, and we can decreasef(Dp) by continuously movingp onM(A) such thatDp enters into
this component. This process terminates at some pointp∗ wheref(Dp∗) ≤ n

2 . We never move back the way
we came, as the component we move out never exceeds a size ofn

2 . 2

We are left with the algorithmic problem of finding some maximal disk that yields a well-balanced
partition. Observe that the optimal pointp∗ above may be not unique, because the numberf(Dp) is invariant
under motion ofp within the relative interior of any fixed edgee ⊂ M(A). Let us defineWalk(e) as the path
length inM(A) from e to p∗. Further, defineCut(e) as the size of the smaller one among the two subtrees
which constituteM(A) \ {e}. See Figure 5. Any tree with small ’cuts’ tends to have short ’walks’, in the
following respect.
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e

Figure 5: Walk (dashed) and cut (dotted)

Lemma 5 Lete be an edge ofM(A), chosen uniformly at random. ThenE[Walk(e)] = Θ(E[Cut(e)]).

Proof. Orient all the paths inM(A) away from the pointp∗. This defines a partial order≺ on the edges
of M(A). That is, for any two edgese ande′ on the same path top∗, we write e′ ≺ e if e′ is at closer
distance top∗. We have the set equality

⋃

e∈M(A)

{(a, e) | a ≺ e} =
⋃

e∈M(A)

{(e, b) | b ≻ e}

because either set contains each pair of the relation exactly once. The (disjoint) subsets united in the left
set,L, represent all the paths inM(A) between its edgese andp∗. Thus we haveE[Walk(e)] = 1

m · |L|,
wherem is the number of edges ofM(A). Each subset united in the right set,R, represents that one among
the two subtrees inM(A) \ {e} which avoidsp∗. So we get1m · |R| > E[Cut(e)], because forCut(e) we
always consider the smaller subtree. Moreover, if we neglect in R all the subtrees of sizes larger thanm

2 ,
then the cardinality of the set drops by a constant factor (ofat most4, if ≺ would be a total order, hence
less). This impliesE[Cut(e)] > 1

m · |R|
4 . The lemma now follows from|R| = |L|. 2

Lemma 5 motivates the following disk finding algorithm whichcombines random cutting with local
walking. Its main subroutine, MAX(b), selects for an arcb ⊂ ∂A its midpointx and returns the unique
maximal disk forA with x on its boundary. For the ease of description, we assume that this disk splits
A into exactly two components. The algorithm can be easily adapted, otherwise, and its runtime even
decreases. Letc ≥ 3 be a (small) integer constant.

Procedure CUT(A)

PutA′ = A
Repeat

Choose a random arcb of ∂A′

ComputeD=MAX( b) and letA0 be the larger
component ofA induced byD

AssignA′ = A′ ∩ A0

Until A0 contains less thann − n
c arcs

ReportD
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Procedure WALK(A)

Choose a random arcb of ∂A
ComputeD=MAX( b)
LetA0 be the larger component induced byD

While A0 contains more thann − n
c arcs do

Let b1 (b2) be the first (last) complete arc of∂A in A0

ComputeD1=MAX( b1) andD2=MAX( b2)
Assign toA0 the smaller one of the respective larger

components ofA for D1 andD2

Memorize the corresponding diskD ∈ {D1,D2}
ReportD

The disk finding algorithm now runs CUT(A) and WALK(A) in parallel and terminates as soon as the
first disk is reported. To analyze its runtime, let us first consider the assignment of arcs on∂A to edges
of M(A), as done in subroutine MAX. Namely, if MAX(b)=D then arcb is mapped to the edgee that
contains the center ofD. Observe that either0, 1, or 2 arcs are mapped to a fixed edge. Moreover, no
two unaddressed edges and no two doubly addressed edges are neighbored. This assignment is sufficiently
uniform to convey randomness from arcs to edges. Let nowE[Cut(e)] = Θ(k). The expected number of
loop executions in procedure CUT(A) is O(n

k ), because each time the expected reduction in size ofA′, and
thus ofA0, is Θ(k). On the other hand, by Lemma 5, the expected number of loop executions in procedure
WALK (A) is O(k), because each time a progress of one edge is made on the respective path inM(A). In
the worst case of walk length being balanced with cut number,a bound ofO(

√
n) on the expected number

of loop executions in at least one of CUT(A) and WALK(A) holds.

The costly part in both procedures is their subroutine MAX, whose expected number of calls obeys the
same bound,O(

√
n). ComputingD=MAX (b) has a trivial implementation which runs inO(n) time: We

initialize the diskD as the (appropriately oriented) halfplane that supportsb at its midpointx and, for all
remaining arcsbi ⊂ ∂A that intersectD, we shrinkD so as to touchbi while still being tangent tob at x.
The most complex operation for shrinkingD is computing the intersection of two circles. In particular, and
unlike previous medial axis algorithms, no conics take partin geometric operations.

In summary, the randomized complexity for computing the medial axis is given byT (n) = T (1
cn) +

T ((1 − 1
c )n) + O(n3/2) for c ≥ 3, which evaluates toT (n) = O(n3/2). In many cases, however, will the

algorithm perform substantially better. Letd be the graph diameter ofM(A). Then the loop in WALK(A) is
executed less thand times. So, for example, ifd = Θ(log n) then an overall runtime ofO(n log2 n) is met.
For the other extreme case,d = Θ(n), our strategy is even faster. With constant probability, anedge on the
diameter is chosen, andΘ(n) such edgese haveCut(e) = Θ(n). The expected number of loop executions
in CUT(A) now is onlyO(1), and anO(n log n) algorithm results. We conjecture that the latter situation
is quite relevant in practice. In many applications, for typical shapes their medial axes will not branch
extensively. Even if so, the branching will be independent of n, because each branch will be approximated
by a large number of circular arcs in order to achieve the predefined precision.

The output of the algorithm is a list ofO(n) points onM(A), namely, the centers of the splitting disks,
plus a list ofO(n) edges connecting them. Each edge is given implicitly by its defining two arcs on∂A. To
make sure that the reported point list includes all the vertices ofM(A), base cases that involve constantly
many (pieces of) original arcs from∂A have to be solved directly. (The constant is at most3 if ∂A is C1.)
Note that the algorithm works exclusively on∂A except for a final step, where the conic edges ofM(A)

12



Figure 6: Small point sample (dashed Voronoi diagram) versus few arcs (solid medial axis)

are explicitly calculated and reassembled. This gives riseto increased numeric stability in comparison to
existing approaches.

Opposed to approximating∂A with the same accuracy by a polyline of sizeN , our circular arc algorithm
takesO(n3/2) = O(N) time; see Corollary 1 in Section 3. Thus, even for (probably rare) worst-case
inputs, our simple algorithm competes asymptotically wellwith previous methods. Other advantages over
polygonal (and also point sample) approximations are described in the next section.

7 CONVERGENCE OF MEDIAL AXIS

A well-known unpleasant phenomenon of the medial axis is itsinstability under perturbations of the shape
boundary. Several papers discussing this issue have been published recently. A result in [8] shows that
stability is, in general, not given unless perturbations are C2. In particular, medial axis convergence is not
guaranteed for polygonal approximations. To deal with general shapes, the so-calledλ-medial axis has been
introduced as a tool in [7]. After drawing a point sample fromthe shape boundary, the Voronoi diagram
of these points is constructed and pruned appropriately. The λ-medial axis converges to the original for
vanishing sample distance. Drawbacks are the large sample size for a close (and homotopy-equivalent)
approximation, the lack of itsC1 behavior, and the need of computing a general planar Voronoidiagram.
Figure 6 gives an illustrative example.

We prove in this section that convergence of the medial axis under the Hausdorff distance comes as a
byproduct of the careful (though, of course, stillC1) biarc boundary conversion described in Section 3.

Given some shapeA and a pointp on its medial axisM(A), denote withDp the unique maximal disk
with centerp. Recall thatM(A) is a geometric graph [11], defined as the set of centers of all maximal
disks forA. Define aleaf of M(A) as a vertex with a single incident edge. There are two ways howa
vertex ofM(A) can be a leaf; it is either the center of the osculating circleat an apex (a point of maximal
curvature) of∂A, or it is a ‘sharp’ vertex of∂A. The first type will be called aproper leaf. Our convergence
proof is based on an analysis of the behavior of the medial axis in the vicinity of proper leaves, as well as at
points being sufficiently distant from proper leaves.

For a pointp ∈ M(A) defineξp ≤ π as the largest angle atp spanned by two points in the setDp ∩ ∂A.
Further, put

kp =
4

1 − cos
ξp

2

which is equivalent to cos
ξp

2 = 1 − 4

kp
. (1)
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Whenp is a proper leaf thenξp = 0 andkp = ∞. The lemma below, which addresses the parts of the
medial axis sufficiently remote from the proper leaves, doesnot assume any regularity condition for the
shape boundaries. A convergence result in a similar spirit is presented in [4].

Lemma 6 Let A and B be two shapes whose (two-sided) Hausdorff distance satisfies H(∂A, ∂B) = ε.
LetDp denote any maximal disk forA whose radiusrp fulfills rp > kp · ε > 0. Then there exists a maximal
diskDq for B such that‖p − q‖ < kp · ε.

Proof. Let x, y ∈ Dp ∩ ∂A be two points realizing the angleξp, that is, 6 xpy = ξp. Let D′
p be the largest

disk centered atp and contained inB, and letz ∈ D′
p ∩ ∂B. DefineDq as the maximal disk with respect

to B and containingD′
p; then clearlyz ∈ ∂Dq. We consider the set of all disksDx containingD′

p and
satisfyingz ∈ ∂Dx. Within this set we defineDs as the disk satisfying‖p − s‖ = kp · ε. See Figure 7 for
an illustration.

Ds Dq

Dp

D′
p

∂B

∂A

Bε(x)

M(A)

M(B) x
s

p

q

z

y

α

ξp

Figure 7: Notions from the proof of Lemma 6.

Without loss of generality we assume that the angleα = 6 xpz ≤ π satisfiesα ≥ ξp/2; otherwise one
may swapx andy. Due to this, and taking (1) into account, we get

kp · rp · cos α ≤ kp · rp · cos ξp

2 = kp · rp · (1 − 4

kp
) = kp · rp − 4rp (2)

As we assumed thatrp > kp · ε, we obtain

kp · rp · cos α < kp · rp − 2rp − 2kp · ε + 2ε. (3)

This inequality implies

r2
p + (kp · ε)2 − 2 · rp · kp · ε · cos(π − α) < (rp − 2ε + kp · ε)2. (4)

Due to‖p − x‖ = rp and‖s − p‖ = kp · ε, we thus have

‖p − x‖2 + ‖s − p‖2 − 2 · ‖p − x‖ · ‖s − p‖ · cos(π − α) < (rp − 2ε + kp · ε)2. (5)
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Finally we apply the law of cosines to get

‖s − x‖ < rp − 2ε + kp · ε or, equivalently, ‖s − x‖ + ε < rp − ε + kp · ε. (6)

On the other hand, the radius‖s − z‖ of Ds is at leastrp − ε + kp · ε, by construction. Consequently,Ds

contains theε-neigborhood ofx, hence at least one point of∂B. This impliesDq ⊂ Ds, hence

‖p − q‖ < ‖p − s‖ = kp · ε. (7)

This completes the proof. 2

Let p ∈ M(A) be a proper leaf, letx ∈ ∂A be the corresponding apex, and consider some pointq lying
on the unique edge incident top. Then the maximal diskDq touches∂A at two points, which are the
endpoints of a segment of∂A throughx of length, say,ℓ. Whenq → p then clearlyℓ → 0. The following
lemma describes the speed of this convergence.

Lemma 7 If ∂A is piecewise analytic andC2 in the neighborhood ofx then there exists a constantw > 0
such that

‖q − p‖ ≤ w · ℓ2.

Proof. For a pointy ∈ ∂A, let ny denote the normal line to∂A throughy. Given an apexx of ∂A, define

Ix = {ny ∩ nz | y 6= z, d(y, x) ≤ ℓ, d(z, x) ≤ ℓ},

with distanced being measured along∂A. Clearly,q ∈ Ix. Using the formal Taylor expansion of∂A at x
it can be proved directly thatδ(p, Ix) ≤ w · ℓ2 for suitablew > 0. 2

We are now prepared to prove the claimed convergence result.

Theorem 1 Let some shapeA with piecewise analytic boundary∂A be approximated by a sequence of
shapesBn, where∂Bn is a spline ofn circular arcs produced by the spiral preserving variant of Algorithm
BISECT. For the one-sided Hausdorff distanceδ we have

δ(M(Bn),M(A)) = O(n−1) and

δ(M(A),M(Bn)) = O(n−3/2).

Proof. We will give the full proof only for the case of globallyC2 boundary∂A which does not contain
circular arcs. The proof generalizes easily to the case where ∂A is an arbitrary concatenation of analytic
pieces, and thus, in particular, may contain sharp vertices.

As ∂A is assumed to be globallyC2, all leaves ofM(A) are proper leaves. For sufficiently largen, each
leaf ofM(A) is also a leaf ofM(Bn), and all leaves ofM(Bn) are contained inM(A). This is because the
circular arc spline∂Bn preserves not only spirals, but also position, normal vector, and curvature at each
apexx of ∂A.

Let us remove from∂Bn the containing circular arcbx for each apexx whose osculating disk is contained
in Bn (and hence is maximal forBn). This decomposes∂Bn into components. We definedn as the minimum
of the lengths of all the removed arcsbx. This minimum length shrinks to zero, as∂A does not contain
circular arcs, and it behaves asΩ(n−1) by construction ofBn. Now define

ξn = 2arcsin(dn/2L), (8)
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Figure 8: Exact medial axis of circular arc boundary representation (IJC) versus polygonal
boundary representation (GA).

whereL denotes an upper bound on the geometric diameters of all the shapesBn. Apart from disks for
leaves, each maximal diskDp for Bn has contact to at least two different components. (Otherwise, there
would be a supplementary leaf ofM(Bn).) For such a diskDp, we have the angle inequalityξp ≥ ξn,
provided thatn is sufficiently large (due to the fact thatn → ∞ impliesdn → 0).

Becausedn = Ω(n−1) and sinceL is a constant, we have1 − cos(ξn/2) = Ω(n−2). Moreover,
δ(∂A, ∂Bn) = O(n−3) by construction. That is, the condition in Lemma 6 holds for all maximal disksDp

for Bn (with exception of finitely many proper leavesp), whenn is sufficiently large. Indeed, in Lemma 6
we havekp · ε = O(n−1). By the same lemma, this is also a bound on‖p − q‖ and therefore we get
δ(M(Bn),M(A)) = O(n−1).

The other direction can be proved similarly. For each leafp of M(A), with corresponding apexx of ∂A,
we define a neighborhoodcx on ∂A of lengthn−3/4. Removal of all the segmentscx leads us to two types
of maximal disksDq for A, depending on whetherDq touches a single segmentcx (q is then close top), or
not. For the latter type, the analysis is the same as above, and shows thatq approaches the center of some
maximal disk forBn at speedO(n−3/2). For the former type, due to Lemma 7, the distance betweenq and
leaf p (which is also a leaf ofM(Bn)) behaves asO((n−3/4)2), i.e., the same. The one-sided Hausdorff
distanceδ(M(A),M(Bn)) thus converges at that speed. 2

Note that the global convergence speed of the medial axis with respect to the Hausdorff distance
is O(n−1), whereas the error of the boundary approximation improves as O(n−3). This is due to the
behavior of the medial axis close to its leaves. When we restrict ourselves to theλ-medial axis [7] forany
λ > 0, thendn in formula (8) becomes a constant, and the approximation speed isΘ(n−3) by Lemma 6.
This compares favorably to using a size-m point sample on∂A and pruning its Voronoi diagram, as the
approximation speed is then onlyΘ(m−1).

8 CONCLUSIONS

We have given several examples for the efficient handling of shapes with nonlinear boundaries. In particular,
the use of circular arcs for boundary conversion has been shown to be highly useful. Our results profit
from the confluence of geometric approximation theory and computational geometry. To our knowledge,
this is the first systematic approach in this direction. Compared to conversion into polylines, the gain in
efficiency increases with the complexity of the subsequent algorithm. This makes affordable suboptimal
(hence sometimes less complicated) algorithms.
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Based on the theoretical investigations in the present paper we have developed an efficient and reliable
implementation of the 2D medial axis construction; see [1] for details and empirical evaluations. An exam-
ple of the obtained results is given in Figure 8. It shows the exact medial axis of a circular arc approximation
as opposed to the exact medial axis of a picewise-linear approximation.

Other approximating primitives could be considered (e.g.,cubics), but circular arc splines seem to yield
the best trade-off. The presented algorithms, in principle, work for arbitrary primitives. In particular, in our
medial axis algorithm, the added numerical complexity is not raised further by the algorithm itself. This is
a nontrivial property of this algorithm, which is the first tocombine practicality, efficiency, and stability [1].
Its generalization to shapes with holes is possible, as Lemma 3 has a counterpart for this case.

Finally, we raise the question of whether results of this paper can be extended to three-space.

Acknowledgments Thanks go to Raimund Seidel for discussions on Section 6 and to Wolfgang Aigner
for implementing our algorithms and producing Figure 8. We also thank two anonymous referees for their
helpful comments, which improved the presentation of the paper.
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APPENDIX

Letc(t) be a given analytic curve on the domain[t0, t1] and suppose thatc(t) contains neither inflections
nor apices in[t0, t1]. For given step sizeh, consider geometric primitivesb(t, h) that approximate the curve
segmentsc[t, t + h]. The geometric primitives are either line segments or arcs or biarcs. Assume that the
domain ofc(t) can slightly be enlarged to[t0, t1 + hmax], wherehmax is a suitable constant which specifies
the largest stepsize.

In order to evaluate the one-sided Hausdorff distance fromb(t, h) to c[t, t+h], we analyze the stationary
pointsτ = τi of the function

d(τ, t, h) = min
q∈b(t,h)

‖q − c(τ)‖, τ ∈ [t, t + h],

which are characterized by
∂

∂τ
d(τ, t, h)

∣

∣

∣

∣

τ=τi

= 0, i = 1, . . . , s(t) .

Provided thath is sufficiently small, the numbers(t) of stationary points is independent oft. For instance,
this number is1 for line segments and2 for arcs interpolating three points. For each stationary point τi we
consider the associated distance

di(t, h) = d(τi(t, h), t, h)

where we definedi(t, 0) = 0. The one-sided Hausdorff distanceδ(b(t, h), c[t, t + h]) is the maximum of
all these distances.

For each value oft, consider the Taylor expansion att = 0. The first non-vanishing derivative is used to
define the remainder term,

di(t, h) =
1

k!
d
[k]
i (t, h∗

i (h)) · hk,

where[k] indicates thekth derivative with respect to the step sizeh andh∗
i (h) ∈ [0, h]. The orderk of this

term is called theapproximation orderof the geometric primitive; it equals2 for line segments and3 for
circular arcs.

Since the curvec(t) contains neither inflections nor apices, and due to the compactness of its do-
main[t0, t1], there exist positive constantsC,D such that the functionsdi satisfy

0 < C < d
[k]
i (t, 0) < D.

Moreover, since thekth derivative is continuous, there exists a step sizeg > 0 such that

∀(t, h∗) ∈ [t0, t1] × [0, g] :
C

2
≤ d

[k]
i (t, h∗) ≤ 2D.

Consequently, ifh is sufficiently small, then the one-sided Hausdorff distance δ satisfies

1

k!

C

2
hk ≤ δ ≤ 1

k!
2Dhk .

This provesδ = Θ(hk) for the case wherek is a constant.
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