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Abstract

We extend the (recently introduced) notion of k-convexity of a two-dimen-
sional subset of the Euclidean plane to finite point sets. A set of n points is
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considered k-convex if there exists a spanning (simple) polygonization such
that the intersection of any straight line with its interior consists of at most k
disjoint intervals. As the main combinatorial result, we show that every n-
point set contains a subset of Ω(log2 n) points that are in 2-convex position.
This bound is asymptotically tight. From an algorithmic point of view, we
show that 2-convexity of a finite point set can be decided in polynomial time,
whereas the corresponding problem on k-convexity becomes NP-complete for
any fixed k ≥ 3.

Keywords: convexity, polygonization, Erdős-Szekeres problem
2010 MSC: 52C10, 68U05

1. Introduction

One of the most important concepts in geometry is convexity. Convex
objects enjoy many interesting, elegant, and useful properties and are usu-
ally much ‘easier’ to deal with combinatorially and computationally. Vari-
ous generalizations and relaxations of convexity have been considered in the
literature. In particular, and relevant for the present paper, the notion of k-
convexity was recently introduced in [1] for what are called the 2-dimensional
subsets of the (Euclidean) plane. This family encompasses simple polygons
in particular, which is sufficient for this work; in this case we say that a
simple polygon is k-convex if the intersection of any straight line with the
polygon consists of no more than k disjoint intervals. Clearly 1-convexity
refers to the usual convexity. Among other results, several properties of k-
convex planar polygons are presented in [1]. Here, we generalize this work
by extending k-convexity to finite point sets in the plane. A point set S
is said to be k-convex if there exists a k-convex polygon whose vertex set
is S. In other words, we are interested in point sets which admit a k-convex
polygonization.

The introduction of k-convexity of polygons [1] follows the common ap-
proach to generalize the notion of convexity under various aspects. The con-
cept of convexity of 2-dimensional domains (such as convex polygons) has
been translated to point sets in convex position in the field of combinatorial
geometry. One major and ubiquitous result on the size of convex point sets is
the combination of an upper and lower bound by Erdős and Szekeres [9, 10],
which we will refer to as the Erdős-Szekeres Theorem.
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Theorem 1 (Erdős-Szekeres). Any point set of n points in general position
contains a subset of points of size Ω(log n) that is in convex position, and
there are sets where this bound is tight.

As for point sets in convex position, our work extends the concept of
k-convexity of polygons to k-convexity of point sets, motivated by the im-
portance of Erdős-Szekeres-type results in combinatorial and computational
geometry. A comparable line of research is taken by Arkin et al. [3], who
consider the minimum number of reflex vertices among all simple polygoniza-
tions of a point set.

We devote Section 2 to a precise definition of our generalization. The
closely related concepts of stabbing number and j-stabber (of a polygon
or a geometric graph) are also discussed. In Section 3, we present basic
properties of point sets regarding k-convexity, giving lemmas that are used
throughout the paper. For example, it is shown that every set of n points
is O(

√
n)-convex, and that every subset of a k-convex point set is k-convex

itself. Moreover, the union of a k-convex set and a j-convex set is (k+ j+1)-
convex. We then state our main combinatorial result, which can be seen
as a variant of the Erdős-Szekeres Theorem for 2-convexity: every point set
of cardinality n contains a subset of Ω(log2 n) points that are in 2-convex
position (Theorem 5). This result is best possible, in the asymptotic sense,
as there exist sets of n points such that the largest 2-convex subset has
size O(log2 n). We also provide two algorithmic results. In Section 5, a
polynomial-time algorithm is given for deciding whether a point set is 2-
convex. By contrast, in Section 6 the problem of deciding k-convexity is
proved to be NP-complete, for all k ≥ 3. A list of open problems related to
k-convexity of point sets is given in Section 7.

2. Preliminaries

Throughout this paper, let S denote a finite set of points in the plane.
Finite point sets are assumed to be in general position; i.e., they do not
contain collinear triples. A geometric graph is a graph where each vertex is
represented by a point, and each edge by a straight line segment between the
points representing its end vertices. Only geometric graphs will be considered
in this paper. A graph G is a spanning graph of a point set S if S is the
union of the endpoints of the edges of G. We omit stating the point set if it is
clear from the context. Given any sequence 〈s1, . . . , sn〉 of n distinct points,
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let si be connected to si+1 by an edge, for 1 ≤ i < n. The resulting graph is
called a polygonal chain. If we add an edge between sn and s1, we obtain a
polygonal cycle. A polygonal chain or cycle is simple if no two edges share a
point in their relative interiors. A simple polygon is the closed finite region
bounded by a simple polygonal cycle. The cycle forming the boundary of a
simple polygon P is denoted by ∂P . The vertices and edges of P are the
vertices and edges of ∂P , respectively. We call a vertex of P convex if the
angle greater than π between its incident edges of ∂P is in the exterior, and
reflex otherwise (recall that we assume general position of the vertices).

In the following, all lines are straight lines. We follow the definitions
of [1]. Suppose a line ` has non-empty intersection with ∂P . At each com-
ponent of the intersection, ` either crosses ∂P , or locally supports P along
the component (which is either an edge or a single vertex of P ). A line is
a j-stabber of P if it crosses ∂P at least j times. The stabbing number of
P is the largest number of crossings between ∂P and a line. Let ` be a line
that intersects the interior of P in exactly k connected components. Since
all vertices are in general position, there exists a perturbation of ` that is a
2k-stabber of P . Therefore a polygon is k-convex but not (k − 1)-convex if
and only if its stabbing number is 2k.

Given a point set S, let P be the set of all polygonizations of S, i.e., the
set of all simple polygons whose vertex set is exactly S. If P contains at least
one polygon that is k-convex, then we call S a k-convex point set.

Several of our proofs transform non-simple polygonal cycles to simple
ones. Let G be a (possibly self-intersecting) geometric graph. A line ` is a
j-stabber of G if it crosses at least j edges of G. Note that the degenerate
cases where a line passes through a vertex of G can be disregarded due to
the same perturbation arguments as for the stabbing number of a simple
polygon, resulting in a consistent definition of the stabbing number of geo-
metric graphs. We can therefore define that G is a k-convex graph if G has
stabbing number at most 2k. Now any simple k-convex polygonal cycle C
is the boundary of a k-convex polygon, and for every k-convex polygon P ,
∂P is a k-convex polygonal cycle. For the sake of brevity, we will sometimes
refer to a line ` as a local j-stabber if ` is a j-stabber of a subgraph that is
clear from the context.

4



3. Basic Properties of k-Convex Sets

In this section, we establish several basic properties of point sets regarding
their k-convexity. A first and quite useful result shows that also any non-
simple polygonal cycle can be taken to determine the degree of convexity of
a set of points.

Lemma 1. Let C be a spanning (non-simple) k-convex polygonal cycle of a
set S of points. Then S is k-convex.

Proof. We show that C can be transformed into a simple polygonal cycle
without increasing its stabbing number. Let ei and ej be two crossing edges
of C. Remove ei and ej from C and replace them by two different edges el and
em spanned by the end points of ei and ej such that we obtain a spanning
polygonal cycle C ′. Note that el and em do not cross, as they lie on the
boundary of the convex quadrilateral formed by the end points of ei and ej.
Moreover, every line intersecting one (or both) of el or em also intersects one
of ei or ej (or both, respectively). Thus C ′ is also k-convex. In addition, the
sum of lengths of el and em is strictly smaller than the sum of lengths of ei
and ej, which implies that C ′ is shorter than C.

As long as the polygonal cycle is non-simple, we repeat the described
process. In every step cycles get shorter, and there is only a finite number
of cycles for S. Therefore we finally obtain one that is simple and defines a
spanning k-convex polygon. Thus, by definition, S is k-convex.

Theorem 2. Any set S of n points is O(
√
n)-convex, and this bound is tight.

Proof. It is known that for any set S of n points there exists a crossing-free
spanning tree T which has stabbing number O(

√
n) [6]. We obtain a (non-

simple) spanning polygonal cycle C of S by traversing T in preorder and
connecting the points accordingly. (Whenever we pass by a vertex which has
already been used, we ignore it, except the starting vertex, where we close
the polygon.) In this way we pass all edges of T twice (there and back again)
and take several shortcuts. Thus any line intersects C at most twice as often
as T . As for any shortcut which is stabbed by a line, the same line also stabs
one branch of the tree at the shortcut. By Lemma 1, S is O(

√
n)-convex.

To see that the bound is tight, we show that there are point sets where the
best polygonization is not k-convex for any k in o(

√
n). To this end, let S be

the n points of a
√
n×√n grid, slightly perturbed to be in general position.

Let L be a set of
√
n− 1 horizontal and

√
n− 1 vertical lines which can be

5



drawn between the different rows and columns to separate the grid points.
Then any edge of an arbitrary polygonization P of S intersects at least one
line of L. Assign each edge of P to one of the lines in L which it intersects.
This way on average each line in L gets assigned n

2
√
n−2 edges of P . Thus,

by the pigeonhole principle, there is at least one line in L which intersects
Ω(
√
n) edges of P ; that is, P is not k-convex for any k in o(

√
n).

Lemma 2. Every subset of a k-convex point set is k-convex.

Proof. Consider a k-convex polygonization of the given set. Whenever we
remove a vertex p of this polygonal cycle to obtain the required subset,
we replace the two edges incident to p by the direct connection of the two
neighbors of p, transforming the initially simple cycle into a (possibly) non-
simple cycle. As any line that intersects the newly introduced edge also has
to intersect one of the two removed edges, this guarantees that the obtained
polygonal cycle also has an at most 2k-stabber. By Lemma 1, the result
follows.

Note that Lemma 2 implies that adding points can never transform a
point set that is not k-convex into a k-convex set.

Lemma 3. Let S be a k-convex point set and let T be a j-convex point set.
Then the union S∪T is (k+j+1)-convex. Let PS be a k-convex polygonization
of S, and PT be a j-convex polygonization of T . If PS and PT intersect, then
S ∪ T is (k + j)-convex.

Proof. Consider PS and PT . Obviously, we can remove one edge from each,
and connect the end points of the resulting paths with two “new” edges,
in such a way that we obtain a (possibly non-simple) polygonal cycle with
vertex set S ∪ T . As we add only two edges, any line gets at most two more
intersections, and thus the polygonization is (k+j+1)-convex. By Lemma 1,
the first statement follows.

If PS and PT intersect, then we take a crossing pair of edges to be removed.
Similar to the proof of Lemma 1, replacing this pair of edges by two non-
crossing edges to obtain the polygonization of S ∪ T does not increase the
stabbing number. The second statement follows.

It is possible to construct two convex sets such that their union is not
2-convex. One way is to take two concentric regular n-gons—the smallest
such example consists of two concentric regular 5-gons, resulting in a set of
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Figure 1: Two concentric regular 5-gons. The resulting set of 10 points is not 2-convex.

10 points which is 3-convex, but not 2-convex (see Figure 1). So far we do
not have tight examples for higher degrees of convexity.

Proposition 1. Every set of n points contains a b3k
2
c-convex set of cardi-

nality Θ(k log n) for any k ∈ o( n
logn

).

Proof. By the Erdős-Szekeres Theorem [9, 10] we know that any set of n
points contains convex chains of size Ω(log n). If we repeatedly remove k
convex chains of logarithmic size from a point set, we end up with a set of
size

n−Θ(log n+ log(n− log n) + log(n− log(n− log n)) + . . . )
= n−Θ(log(n · (n− log n) · (n− log(n− log n)) · . . . ))

This implies that we have n−O(log(nk)) = n−O(k log n) points left. When
choosing k ∈ o( n

logn
), there is still a linear number of points left, and therefore

all our k vertex-disjoint chains are of size Θ(log n). We connect them with
k additional edges to form a (possibly non-simple) polygonal cycle. Any line
intersects each chain at most twice and, in addition, possibly all connecting
edges. So the stabbing number of the constructed polygon is bounded by 3k.
By Lemma 1, we obtain a set of Θ(k log n) points which is b3k

2
c-convex.

Note that this can be seen as a warm-up result since, for k > log n,
Theorem 2 provides a stronger result, and we will show that we always have
a 2-convex subset of size Ω(log2 n) (Theorem 5).

Lemma 4. If all point sets of cardinality n are k-convex, then all point sets
of cardinality n+ i are (k + d i

2
e)-convex.
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Proof. Take a k-convex polygonization P of the n points. Connect the i
points to a chain and replace some edge of P with the chain to obtain a
(non-simple) cycle on n+ i points. Consider the added chain, which contains
i+ 1 edges. A 2k-stabber of P intersects, in the worst case, all edges of that
chain. If i is odd, then i+1 is even and the resulting cycle is (k+d i

2
e)-convex.

If i is even, then i+ 1 is odd and therefore the added chain is intersected an
odd number of times. Since the resulting cycle has to be intersected an even
number of times, this means that the former 2k-stabber crosses 2k− 1 edges
of P , i.e., it crossed the removed edge. Thus the cycle is (k + d i

2
e)-convex,

and by Lemma 1 the result follows.

Define s(k) to be the cardinality of the smallest point set which is not
k-convex. The following result shows the asymptotic behavior of s(k).

Proposition 2. s(k) = Θ(k2), more specifically s(k) ≤ (b2k+1+2
√
k2 − kc)2.

Proof. That s(k) = Θ(k2) follows directly from Theorem 2. The specific
upper bound follows from the Ω(

√
n)-convex example used in the proof of

Theorem 2. Let n = m2 be the number of points. Then on one hand,
s(k) ≤ m2, and on the other hand, 2k ≥ m2

2(m−1) . Solving the resulting
quadratic equation for m gives the claimed bound.

For small, constant k we obviously have s(1) = 4, and from the order
type database [2] we can observe that every point set with at most 9 points
is 2-convex. Moreover there exist sets of 10 points which are not 2-convex,
but 3-convex. Thus s(2) = 10. From Lemma 4 and the fact that every set of
9 points is 2-convex, it follows that every set of at most 11 points is 3-convex;
i.e., s(3) ≥ 12.

4. On the Size of 2-Convex Subsets

In this section we present Erdős-Szekeres–type results on the size of
2-convex subsets, and on empty 2-convex polygons, which all point sets of a
given cardinality must contain.

Let us first recall basic definitions and facts about 2-convex polygons
given in [1]. An edge of a simple polygon P is called an inflection edge if it
joins a convex and a reflex vertex of P . An inflection line is the supporting
line of an inflection edge. A line ` is an inner tangent if it supports the
boundary of the polygon at two nonconsecutive reflex vertices such that
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`′

`

`′
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Figure 2: Lines stabbing a polygon. An inflection edge (left) is contained in `; its pertur-
bation `′ is a 6-stabber. An edge with two convex vertices (middle) is contained in `; `′ is
a 4-stabber. An inner tangent and its perturbation is shown to the right.

there are points interior to the polygon in each of the three intervals in
which these two vertices split the line. See Figure 2. The following result
shows the interrelation between 2-convexity, inner tangents, and stabbers.

Lemma 5 ([1, Lemma 10]). A simple polygon P is 2-convex if and only if
P has no inner tangent, and no inflection line that can be infinitesimally
perturbed to a 6-stabber.

4.1. The Erdős-Szekeres Theorem Revisited

The Erdős-Szekeres Theorem [9] states that there exists a least integer
ES(k), for any k ≥ 3, such that any set of at least ES(k) points in the plane
in general position contains k points in convex position. In their seminal
paper [9], Erdős and Szekeres proved that ES(k) = O(4k/

√
k). Although a

lot of work has been done on this problem over the last 75 years, and ES(k)
is conjectured to be Θ(2k), Erdős and Szekeres’s original result has not been
improved asymptotically. A variation of the Erdős-Szekeres Theorem that
was later suggested by Erdős in 1974 [8] is to look for convex holes in point
sets; i.e., convex subsets whose convex hull contains no point from the set in
its interior. The existence of convex k-holes in large enough point sets was
soon established for k = 4 (Erdős [8]) and k = 5 (Harborth [14]), but only
recently has a proof been obtained for empty convex hexagons [13, 17]. In
the opposite direction, Horton proved that there are sets of any size that do
not contain an empty convex heptagon [16].

It is natural to ask similar questions for 2-convex subsets and empty
2-convex polygons. The following theorem shows that the situation becomes
quite different once we go beyond 1-convexity. Let CH(S) denote the convex
hull of a point set S.

Theorem 3. Every set S of n points in general position contains a subset
of size Ω(log n) that is the vertex set of a 2-convex polygon which does not
contain points from S in its interior.
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Proof. Take any convex subset C of S of size Ω(log n) [9, 10, 20]. Let S ′ =
S ∩ (CH(C)\∂CH(C)) be the set of points of S in the interior of CH(C).
Select an edge pq of ∂CH(C). Then CH(S ′∪{p, q}) is the convex hull of p, q,
and the points in the interior of CH(C). Concatenating the polygonization
∂CH(C) \ pq at the point p (by adding p) with ∂CH(S ′ ∪ {p, q}) \ pq, and
closing the chain at the point q (by adding q) results in a crescent-shaped
polygonization which is 2-convex and empty of points of S.

Let us recall a result from [1] about convex subsets of vertices in 2-convex
polygons.

Theorem 4 ([1]). Every 2-convex polygon with n vertices has a subset of at
least

√
n/2 points in convex position.

Since the Erdős-Szekeres Theorem states that there are point sets with
only O(log n) points in convex position, Theorem 4 implies the following
result:

Corollary 1. There are sets of n points such that the largest 2-convex subset
consists of at most O(log2 n) points.

Note that for this upper bound we do not require the 2-convex polygon
to be empty. In fact, the following theorem, which is proved in Section 4.2,
tightens the lower bound in that case.

Theorem 5. Every set S of n points in general position contains a 2-convex
subset of size Ω(log2 n).

The remaining open question is to close the gap between Ω(log n) and
O(log2 n) for the size of empty 2-convex polygons.

4.2. Proof of Theorem 5

We will now prove Theorem 5 using Erdős-Szekeres-type results, such
as the Monotone Subsequence Theorem, the Cap/Cup Theorem, and the
Erdős-Szekeres Theorem. Throughout the proof, all polygons are simple.

Several variants of the Erdős-Szekeres Theorem have been considered.
One of them, the Convex Clustering problem, will be the basis of our next
result.

Definition 1. Let C be a set of k subsets Ci of S, 1 ≤ i ≤ k, such that for
each Ci there exists a straight line li (“linear separator”) separating Ci from
C \ Ci. We call C a convex clustering of S with k clusters Ci.
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Note that in the literature (e.g. [4, 18]) there exists the term “convex
k-clustering” which refers to a convex clustering into k clusters such that the
clusters have equal size. In this section however, the clusters of a convex
clustering may have different sizes.

Bárány and Valtr [4] have shown that every set of n points (n large
enough) in general position contains a convex k-clustering of size at least
εk · n. The constant εk, which shrinks doubly exponential with k in the
original proof, was later improved by Pór and Valtr [18]. Although the
theorem is stated in [18] for the total size of the clusters, they really prove
a bound for the size of each cluster, which is better suited for our purposes.
The following theorem summarizes these results.

Theorem 6 ([4, 18]). For any k ≥ 3, every finite set S of n ≥ ES(k) points
in the plane in general position contains a convex k-clustering C1, . . . , Ck for
which |Ci| ≥ 2−32k ·n, for every i = 1, . . . , k. (ES(k) is the function from the
Erdős-Szekeres Theorem [9].)

In Section 4.2.1, we present a construction of a 2-convex polygon P ∗ of
size at least ld2 n

128
, for sufficiently large n. To this end, we need the so-called

Cap/Cap Theorem.

Definition 2 (Cap/Cup). A (finite) set X is a cap with respect to some
point r if X ∪ {r} is in convex position. X is a cup with respect to r if no
triple of X forms a convex 4-set together with r.

In their seminal paper [9], Erdős and Szekeres studied the following prob-
lem: How many points (in general position) are necessary to guarantee that
at least k of them form either a k-cup or a k-cap (with respect to a given
point)? They proved a lower bound of

(
2k−4
k−2

)
+ 1 on the number of necessary

points. For details, see also [20].

4.2.1. Construction of P ∗

In this section we give an overview of our construction of the 2-convex
polygon P ∗. Note that we will slightly refine the construction in Section 4.2.3
to obtain our bound.

Let C be a convex clustering of S with k clusters. Note that the linear sep-
arability condition imposes a cyclic order on the clusters, and let C1, . . . , Ck
be the corresponding counterclockwise (ccw.) order. Without loss of gener-
ality, let Ck be the smallest cluster. Choose an arbitrary point r of Ck (we
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do not consider the other points of Ck). Let li be a line that separates the
cluster Ci from the other clusters. For 1 ≤ i < k, order the points of Ci ccw.
around r. Let Mi be a monotone (sub-)sequence of the ordered points in Ci,
decreasing with respect to the distance to li. Let Pi ⊆ Mi be a cap or cup
with respect to r, and let Pi be the polyline resulting from connecting the
points of Pi in ccw. order around r.

C1

Ci

Cκ

r e0,1

l1

lκ
eκ−1,κ

ei,i+1
ei−1,i

li

Figure 3: Overview of the construction of polygon P ∗.

Consider the edges ei,i+1, 0 ≤ i < k, that connect the last point of Pi
with the first point of Pi+1, with P0 = Pk = {r}. We call these edges cluster-
connecting edges and direct them from Pi to Pi+1. The polylines Pi together
with the cluster-connecting edges form a simple polygon P ∗. See Figure 3
for a schematic overview of the construction.

4.2.2. P ∗ is 2-Convex

As all points of P ∗ are ordered ccw. around r, P ∗ also has this orientation.
Additionally, we let any line l which does not contain r be directed with
respect to the same order around r. That is, r always lies to the left of l;
see Figure 4 (left). Using this orientation of lines, we say that the line l+

intersects li in a positive angle and the line l− intersects li in a negative angle
with the lines li, l

+, and l− as shown in Figure 4 (right).
Before proving the 2-convexity of P ∗, we show a structural property of

the constructed polygon.

Lemma 6. For every Pi, 0 < i < k, let P i be the part of ∂(P ∗) from the
first vertex of Pi+1 up to r (in ccw. order around r). Then the points of P i

are sorted in ccw. order around each point of Pi.
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Figure 4: Left: Line l is directed such that it intersects ray a before ray b with respect to
the order around r. Right: Line l+ intersects the line li in a positive angle; l− intersects
li in a negative angle with respect to the orientation of the lines.

Proof. Consider Figure 5. If i = k − 1, then P i consists only of the point r
and the lemma is trivially true. Let Pj be some cap/cup “after” Pi, i < j < k,
and let q be the first point of Pj+1. For each vertex v of Pj, the next vertex w
(possibly w = q) has to be next in ccw. order around r and “below” the line
parallel to lj and going through v. (Recall that Pj is a decreasing sequence
with respect to lj.) It is easy to see that w will also be after v in a cyclic
(ccw.) order around any vertex in Pi (in fact, around any vertex in the
gray area depicted in Figure 5). Since this line of argument holds for any j,
i < j < k, regardless of whether w ∈ Pj or w ∈ Pj+1, the lemma follows.

To prove that P ∗ is 2-convex, we use Lemma 5. First we prove that P ∗ has
no inner tangents. Inner tangents cannot exist within a single cap/cup (the
end points of a cap cannot be used for an inner tangent, as by construction
the first point of a cap is always convex in P ∗). Thus assume that there
exists an inner tangent t between Pi and Pj. Without loss of generality, let
i < j. Observe that t has a negative angle to lj (as each line from Pi to
Pj has a negative angle to lj). Recall that Pj is a decreasing sequence with
respect to lj, and that both ej−1,j and ej,j+1 have to intersect lj. Thus each
inner tangent to Pj has a positive angle to lj. This is a contradiction to the
negative angle of t.

It remains to show that P ∗ has no 4-stabber containing an inflection edge.
Because of the construction of P ∗, the first point of every cap/cup is always
convex. The same is true for r. Consider some cap/cup Pi. Only the first
and last edge of Pi and the edge ei,i+1 can be inflection edges; see Figure 6.
(The edge ei−1,i will be considered with Pi−1.) Let le be the supporting line
of such an inflection edge e.
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Figure 5: Consistent ccw. orientation in the proof of Lemma 6.

This leads to 4 cases: (1) e = ei,i+1, (2) e is the last edge of a cup, (3)
e is the last edge of a cap, and (4) e is the first edge of a cup. Again see
Figure 6. Note that the first edge of a cap cannot be an inflection edge.

For cases (1) and (2) observe that the only points of P ∗ on the right side
of the supporting line of ei,i+1 are points of Pi. Further, if Pi is a cup, then
all points of Pi that are not points of e lie to the right of le. Thus, apart
from e, le can only intersect ei−1,i. Therefore, le is a 2-stabber. If Pi is a cap,
then Pi and ei−1,i lie in convex position. Thus, le is a 2-stabber as it can
intersect either ei−1,i or one edge of Pi.

For cases (3) and (4) observe that the edge ei,i+1 is to the right of le, and
r is to the left of le. Thus we only have to consider the part of ∂(P ∗) that
starts with the first point of Pi+1 and ends with r. By Lemma 6, this part
of ∂(P ∗) is in ccw. order around any point of Pi and thus le intersects there
only once. Therefore, le is also a 2-stabber for cases (3) and (4).

As the supporting lines of all inflection edges are 2-stabbers and no inner
tangent exists, we can conclude the following theorem:

Theorem 7. Any polygon P ∗ constructed as described in Section 4.2.1 is
2-convex.
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Figure 6: The different cases for inflection edges at a cap/cup Pi.

4.2.3. Concerning the size of P ∗

For a first simple proof of the asymptotic bound in Theorem 5 let S be
a set of n = 236k points. By Theorem 6, S contains a convex k-clustering
C1, . . . , Ck with |Ci| ≥ n

232k
= 24k for 1 ≤ i ≤ k. We fix a point r in Ck and

remove the remaining points of Ck.
For each i = 1, . . . , k − 1 we apply the Erdős-Szekeres Monotone-Sub-

sequence Theorem [9] on Ci and obtain a subset Mi of Ci of size (at least)√
|Ci| = 4k such that the points of Mi (listed in ccw. order as seen from r)

have either increasing or decreasing distances to a line li separating the clus-
ter Ci from the other clusters. At least k

2
of these sets Mi have, say, decreas-

ing distances. (If there are more increasing sequences we change the order
around r from counterclockwise to clockwise. Then the formerly increas-
ing sequences become decreasing and the rest of the construction remains
unchanged.)

For each of these k
2

sets, we apply the Erdős-Szekeres Cap/Cup Theo-
rem [9], obtaining always a cap or cup (with respect to r) of size at least
k = ldn

36
. For the other sets Mi, we fix Pi ⊂Mi of size 1. The union of these

caps/cups (and the sets of size 1) is a 2-convex subset of S of size at least
k2

2
= ld2 n

2·362 . Theorem 5 follows.
Using more sophisticated arguments, we can improve the constants in the

construction to 8k2−4k = ld2 n
128
− ldn

8
. To this end, we let S be of size n = 232k

for the next two lemmas, with k ≥ 3. Further, we need a result implicitly
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contained in the proof of Theorem 4 in [18]. We state the needed result in
the next lemma and reproduce the relevant parts of the proof from [18].

Lemma 7 (Implicit result from [18]). Let S be any set of n points in general
position, with n = 232k and k ≥ 3. There exists a convex clustering C of S

with 2k clusters such that
∏2k

i=1 (|Ci|) ≥
(

n
216k

)2k
.

Proof. Let S ′ be a subset of 44k randomly and uniformly chosen points of S,
and let S4k be a subset of 4k randomly and uniformly chosen points of S ′.
From the best known upper bounds [9, 20] for the Erdős-Szekeres Theorem,
it follows that for any set of 44k points in general position there exists a
subset of 4k points in convex position. Thus S4k is in convex position with

probability at least 1/
(
44k

4k

)
. Clearly, every subset of 4k points of S is chosen

for S4k with equal probability. Therefore, the number of (4k)-subsets in

convex position contained in S is at least
( n
4k)

(44k

4k )
.

For any subset S4k in convex position, let S2k ⊂ S4k be a subset of 2k
points in convex position. If the points of S4k, sorted in ccw. order, alter-
nately belong to S2k and S4k \S2k, we say that S2k supports S4k. Clearly, S4k

is supported by two different subsets.
Since S has

(
n
2k

)
subsets of size 2k there exists a subset S∗2k that supports

at least

2 ·
(
n
4k

)(
44k

4k

)
·
(
n
2k

) > (n− 4k)2k · (2k)!
(4k)!(

44k

4k

) >
(n− 4k)2k · (2k)!

(44k)4k
>

(n− 4k)2k · (k + 1)k

(216k)2k
=

(
(n− 4k) ·

√
k + 1

216k

)2k k≥3
≥(

(n− 4k) · 2
216k

)2k
=

(
n

216k
+

(232k − 8k)

216k

)2k
>
( n

216k

)2k
subsets of S of 4k points in convex position.

Let p1, . . . , p2k be the points of such a subset S∗2k, listed in ccw. order.
Then for all 1 ≤ i ≤ 2k, the three lines spanned by pi−1pi, pipi+1, and
pi+1pi+2, respectively (where pα is actually p((α−1) mod 2k)+1), define a (possi-
bly infinite) region Ti; see Figure 7. Let the cluster Ci be the subset of points
of S that lie inside Ti. Since each cluster Ci lies completely inside the region
Ti, it is easy to see that there exists a linear separator li for each of these
clusters.
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Figure 7: The subset S∗2k with points p1, . . . , p2k listed in ccw. order, with the correspond-
ing regions Ti.

If S4k is a subset supported by S∗2k, then S4k = S∗2k ∪{x1, . . . , x2k}, where

xi ∈ Ci. Thus, S∗2k supports at most
∏2k

i=1 (|Ci|) subsets of S of 4k points in
convex position. This proves

2k∏
i=1

(|Ci|) ≥ #(subsets supported by S∗2k) ≥
( n

216k

)2k
.

Lemma 8. The size of the polygon P ∗ is at least ld2 n
128
− ldn

8
.

Proof. Recall the construction of P ∗ described in Section 4.2.1 and that n =
232k. From Lemma 7 we know that for each S there exists a convex clustering

C with 2k clusters Ci, such that
∏2k

i=1 (|Ci|) ≥
(

n
216k

)2k
. For the construction

of P ∗ we lose the smallest cluster C2k as we pick only point r from it. We
get

2k−1∏
i=1

(|Ci|) ≥
( n

216k

)2k−1
.

From the Erdős-Szekeres Monotone Subsequence Theorem [9], we know
that for each Ci there exist increasing (ISi) and decreasing (DSi) sequences
(with respect to li and in ccw. order around r) such that |ISi| · |DSi| ≥ |Ci|.
We get

2k−1∏
i=1

(|ISi|) ·
2k−1∏
i=1

(|DSi|) =
2k−1∏
i=1

(|ISi| · |DSi|) ≥
2k−1∏
i=1

(|Ci|)
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≥
( n

216k

)2k−1
, and thus

max

{
2k−1∏
i=1

(|ISi|) ,
2k−1∏
i=1

(|DSi|)
}
≥
( n

216k

)2k−1
2
.

In every cluster Ci, we take the biggest increasing sequence and the
biggest cap or cup therein. These caps/cups form the polygon PI as described
for P ∗ in Section 4.2.1. Similarly, taking the biggest decreasing sequence and
the biggest cap or cup therein from every Ci results in a polygon PD. For P ∗

we take the larger of PI or PD.
Thus P ∗ is of size at least

max

{
2k−1∑
i=1

(
ld |ISi|

2

)
,
2k−1∑
i=1

(
ld |DSi|

2

)}
=

1

2
·max

{
ld

(
2k−1∏
i=1

(|ISi|)
)
, ld

(
2k−1∏
i=1

(|DSi|)
)}

=

1

2
· ld
(

max

{
2k−1∏
i=1

(|ISi|) ,
2k−1∏
i=1

(|DSi|)
})
≥ 1

2
· ld
(( n

216k

)2k−1
2

)
=

2k − 1

4
· ld
(

232k

216k

)
>

2k − 1

4
· 16k =

8k2 − 4k =
ld2 n

128
− ldn

8
.

From this argumentation, Theorem 5 again follows, this time with im-
proved constants.

5. Deciding 2-Convexity of Point Sets

In this section we turn our attention to algorithmic aspects of 2-convexity.
We study the problem of deciding whether a point set is 2-convex and show
that if a 2-convex polygonization of a point set exists, it can be constructed
in polynomial time.

5.1. Preliminaries

We give some preliminary definitions; see Figure 8 for an accompanying
illustration. Unless stated otherwise, the edges of a polygon are considered
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Figure 8: A pocket of a 2-convex polygon. The interior of the polygon is gray. The dotted
edge illustrates the lid. The two dashed lines illustrate the two inflection lines of the
pocket, consisting of the inner ray, the inflection edge, and the outer ray.

to be directed counterclockwise around the polygon, and all polygonal chains
are simple.

Definition 3. A lid of a polygonization of S is an edge of CH(S) (not nec-
essarily part of the polygonization).

Definition 4. A pocket of a polygon is the polygonal chain between the first
and second end-vertex of a lid. A pocket consisting solely of the lid is called
a trivial pocket.

Definition 5. The kernel of a simple polygon P is the set of points p such
that any ray starting at p crosses ∂P exactly once. If the kernel is not empty,
then P is star-shaped.

Definition 6. For an inflection edge ei, let ci and ri denote the convex
and reflex vertex of ei respectively. We partition an inflection line into the
inflection edge and two rays; the inner ray, starting at ri and the outer ray,
starting at ci.

Lemma 9 ([1, Lemma 12]). Given a 2-convex polygonization P of S, let
C = 〈p1, p2, . . . , pt〉 be the chain of vertices that connects (counterclockwise)
two consecutive vertices p1, pt on CH(S) (i.e., C defines a pocket). Then the
vertices of the chain can be partitioned into three chains C1 = 〈p1, . . . , pu〉,
C2 = 〈pu+1, . . . , ps〉, C3 = 〈ps+1, . . . , pt〉, such that all the elements in C1

and C3 are convex vertices of P , while all the elements in C2 are reflex.
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Hence, each non-trivial pocket in a 2-convex polygonization has exactly
one pair of inflection edges. The chain of reflex vertices in a pocket of a
2-convex polygon is called the reflex chain.

Finally, note that when we say that a point is to the left of a directed
edge, we mean that it is to the left of the directed supporting line of that
edge.

5.2. Outline of the Algorithm

Recognizing 2-convexity of a point set S can be done in polynomial time if
it has a star-shaped 2-convex polygonization. A brute-force approach would
be to consider all Θ(n4) cells of the arrangement of lines spanned by two
points of S as part of the potential kernel. For each choice, the resulting star-
shaped polygon can be constructed and checked for 2-convexity in O(n log n)
time [1], resulting in an O(n5 log n) algorithm. Hence, for the remainder
of this section, we assume that the point set S does not have a 2-convex
star-shaped polygonization.

Suppose we have fixed a non-trivial pocket that is part of the 2-convex
polygonization. Consider any line ` that crosses the pocket exactly twice in
such a way that ` intersects the pocket in exactly two points (i.e., ` does
not contain an edge of the pocket). The two crossing points partition ` into
a segment and two rays. Each of these rays crosses ∂P exactly once, since
otherwise ` would be a 6-stabber. The key observation for the algorithm,
which will be proven formally in Lemma 10, is that if we rotate ` in such a way
that it always crosses the pocket twice, the order in which ` traverses points
not in the pocket is the same as the order of these points along ∂P . We look
for a triple of pockets that give us the order for all points and show that if the
point set has a 2-convex polygonization, but no star-shaped polygonization,
such a triple must exist. The polygonization is found by iterating over all
triples. Instead of choosing a polygonization of a pocket, we only consider
the O(n4) possible inflection edges for each lid. We show that the choice of
the inflection edges suffices to find a 2-convex polygonization, if one exists.

5.3. Observations and Lemmas

Since no inflection line can be a 4-stabber (see Lemma 5), we make the
following observations for 2-convex polygons.

Observation 1. Consider the pair of inflection lines of a pocket. The lines
must not cross any other part of this pocket.
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Figure 9: The order of the vertices defined by the inflection edges of a pocket. The gray
wedge is the kernel region.

This immediately implies the next observation.

Observation 2. For the pair of inflection lines of any pocket, an intersection
between them occurs either at both the inner or both the outer rays.

Consider the 2-convex polygon drawn in Figure 9. Any line that passes
through a pocket twice can only pass through ∂P two more times. In par-
ticular, if such a line also passes through a point of the point set not in the
pocket, it separates the neighbors of that point along ∂P . Therefore, the
order in which the points appear along the polygonization is constrained by
the pocket. We formalize this in the following lemma; see Figure 9 for an
accompanying illustration.

Lemma 10. Let P be a 2-convex polygon and let e1 and e2 be the inflection
edges of a pocket K directed from the convex to the reflex vertex. Without
loss of generality, c1 is left of e2. Let C be the part of ∂P defined by the
vertices that are to the left of e2 and not part of the pocket (starting at v1,
the left endpoint of the lid of K). Then the order of the points in C is the
same as the radial order around any point p on e2. This also holds for any
point on e1 and the points of ∂P to the right of e1.

Proof. We claim that a ray r starting at p ∈ e2 and contained in the left
halfplane of e2 cannot cross C more than once. Otherwise, consider the
supporting line ` of r. If p is an extreme point, slightly perturb ` such that it
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crosses ∂P twice in a neighborhood of p. In any case, ` (or its perturbation)
crosses the pocket twice, once through e2 and once to the left of e2. There
is another crossing with ∂P to the right of e2. Crossing C more than once
would make ` a 6-stabber, contradicting 2-convexity. Therefore the order
around p is the same as the order in C.

Again let e1 = c1r1 and e2 = c2r2 be the two inflection edges of a pocket
in counterclockwise order. Further, let H-(ab) and H+(ab) be the closed half-
planes to the left and to the right, respectively, of the directed line through
the points a and b. We associate two regions to each pocket; see again
Figure 9. The kernel region of the pocket is the intersection of H-(c1r1),
H+(c2r2), and, if r1 6= r2, H-(r1r2). For a trivial pocket (i.e., only a convex
hull edge), the kernel region is the closed half-plane to the left of it. Anal-
ogously, the pocket region is the intersection of the half-planes H+(c1r1),
H-(c2r2), and H-(r1r2) if r1 6= r2; if r1 = r2, then the pocket region is the
empty set. Lemma 10 tells us that once we know one pocket, the remaining
polygonization is fixed except for the points of S in the kernel region. The
most sophisticated part of our proof will be concerned with determining the
pocket (which is, as we will see, relevant when there are no points of S in
the kernel region but in the interior of the pocket region).

5.3.1. Pocket Triples

For the next lemma, we need a strong result by Helly.

Theorem 8 (Helly’s Theorem [15], [21, p. 70]). Let F be a finite family
of convex sets in Rn containing at least n + 1 members. A necessary and
sufficient condition that all the members of F have a point in common is
that every n+ 1 members of F have a point in common.

Lemma 11. If a point set S admits a 2-convex polygonization P that is not
star-shaped, then there exist three pockets of P that completely determine P .

Proof. The kernel of a polygon is determined by the intersection of all half-
planes to the left of the edges. For each pocket, the kernel region defines
this intersection for all the edges of that pocket. Therefore the kernel of P is
determined by the intersection of all the kernel regions. Since P is not star-
shaped, its kernel is empty. Thus, due to Helly’s Theorem, there must exist
a triple of pockets such that the intersection of their kernel regions is empty.
Since the order in the polygonization is now determined for all vertices due
to Lemma 10, the result follows.

22



Checking all triples of possible pockets and the consistency of the implied
orders clearly gives us a 2-convex polygonization if one exists. There may,
however, exist an exponential number of pocket candidates for any lid. But
there are only O(n4) possible inflection edges per lid. For every pair of
inflection edges we distinguish two cases:

• If the kernel region contains points of S, we show that the inflection
edges completely determine the pocket; we can then check every pocket
triple according to Lemma 11.

• If the kernel region does not contain any point of S, the pocket is not
defined for the part in the pocket region; however, any valid pocket
with these two inflection edges determines the whole remaining poly-
gonization, and we show how to find such a pocket in polynomial time,
if one exists.

We first prove the case with a non-empty kernel. The second case is more
involved and is handled in Section 5.3.2.

Lemma 12. Given only the lid and the inflection edges of an unknown pocket
in a 2-convex polygonization, the convex vertices of that pocket are deter-
mined.

Proof. Let v1, e1, c1, and r1 be defined as in the proof of Lemma 10. If
v1 6= c1, then there is a triangular region t defined by H-(c1r1), H+(v1c1),
and the closed half-plane to the left of the lid. Due to the characterization
of 2-convex polygons in Lemma 9, the convex chain between v1 and c1 is
defined by the convex hull of the points in t (after removing the edge v1c1).
The second convex chain can be determined symmetrically.

Lemma 13. Suppose a pair of inflection lines of a polygonization P of a point
set S defines a kernel region containing points of S. Then the corresponding
pocket is determined by the inflection edges.

Proof. What is left after Lemma 12 is to determine the vertices of the reflex
chain. Obviously, all vertices of the reflex chain must be in the pocket region.
We claim that all points in the pocket region are in the reflex chain. Suppose
there is a point p inside the pocket region that does not belong to the reflex
chain. Then the part of the polygonization other than the pocket must
pass through p. If it enters and leaves the pocket region through the same
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Figure 10: A mighty pocket. The empty dots depict points of T , of which s dominates v.

inflection line, the inflection line is a local 3-stabber, which means that there
would exist a 6-stabbing perturbation of the inflection line. Otherwise, each
inflection line is traversed once. Since there are still points of S in the kernel
region, the polygonization crosses at least one inflection line again, and thus
one of the inflection lines could be perturbed to a 6-stabber. Therefore, all
points in the pocket region belong to the reflex chain.

5.3.2. Mighty Pockets

The more complicated case arises if there are no points of S in the kernel
region, but some points in the pocket region. Note that this case may occur
when either the inner or outer rays cross, but we do not need to distinguish
between these two possibilities. Let T ⊂ S be the subset of points in the
pocket region. Recall that the points in T are the ones for which we do not
know the position in a 2-convex polygonization of S. We now have to split
T into the vertices of the reflex chain of the pocket and the rest, which then
define the part of the 2-convex polygonization that passes through the pocket
region but is not part of the pocket. We call the latter the opposite chain.
It follows from Lemma 10 that after we have correctly split T , the whole
2-convex polygonization is determined. We call such a pocket mighty.

Consider two points s ∈ S, v ∈ T ⊂ S and the inflection edges e1 = c1r1
and e2 = c2r2. Suppose the triangle r1r2s contains v. We then say that s
dominates v. See Figure 10 for an illustration. Note that s might not be an
element of T . Nevertheless, we have to check the dominance in order to get
a subset of T that contains only non-dominated vertices; as soon as we have
decided which of these points should be part of the opposite chain, we know
the order in which all points appear along ∂P .
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Figure 11: Possible conflicts: an inner tangent ` (a) between two vertices on the opposite
chain; (b) between a vertex on the reflex chain and a vertex of the opposite chain; and
(c) a 4-stabbing inflection line `.

Lemma 14. If s dominates v, then v has to belong to the reflex chain, and s
cannot be part of the reflex chain.

Proof. Having s in the reflex chain would contradict the chain’s reflexivity.
The points s and v have a different radial order around r1 and r2; if none
of them were in the reflex chain, these different orders would contradict
Lemma 10.

Note that the polygonization is already determined for all points not in T .
From an algorithmic point of view, this polygonization needs to be checked
for 2-convexity, and its pockets may also determine some points that have to
belong to the reflex chain and that must go to the opposite chain. A conflict
implies that such a polygonization does not exist.

So far, we might not have decided the position of all points of T in
the polygonization. There exist configurations with |T | ∈ Θ(n) in which
any point can be put either to the opposite or the reflex chain, resulting
in an exponential number of 2-convex polygonizations. On the other hand,
there exist configurations that do not allow a 2-convex polygonization at
all. Also note that the two chains might not be linearly separable. In the
following lemmas we develop a constructive approach for finding a 2-convex
polygonization, if one exists, in polynomial time. More precisely, we try
to find a polygonization with the given inflection edges having the smallest
possible number of vertices on the reflex chain. See Figure 11 for some
illustrations of possible conflicts.

Let an intermediate polygonization be a polygonization that fulfills the
following two properties:

• The radial order of the points not on the mighty pocket around any
point on an inflection edge of the mighty pocket is the same as on the
polygonization (in conformance with Lemma 10).
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• All points contained in the reflex chain of the mighty pocket have to be
in the reflex chain in every 2-convex polygonization of the underlying
point set with the chosen inflection edges of the mighty pocket.

In particular, the first property implies that the sub-chains consisting of
points not in T are the same in any intermediate polygonization.

The basic idea of the algorithm is to apply a greedy approach. We build
an intermediate polygonization with as few points on the reflex chain of the
mighty pocket as possible. If it is not a 2-convex polygonization, we find
further points that have to be on the reflex chain of the mighty pocket in
every 2-convex polygonization of the underlying point set with the chosen
inflection edges of the mighty pocket. Then we iterate on the new interme-
diate polygonization until a 2-convex polygonization is found or there is an
unresolvable conflict. We start by showing some properties of intermediate
polygonizations.

Let us first consider possible inner tangents in an intermediate polygo-
nization. In the following, let ` be an inner tangent defined by the vertices t
and t′ in an intermediate polygonization (we call t and t′ the contact points
of `). We will see later that the point set only allows a 2-convex polygoniza-
tion using the two inflection edges of the mighty pocket if both t and t′ are
points in T . However, to obtain this result, we make no assumptions on t
and t′. Lemma 14 gives us the following property.

Corollary 2. In an intermediate polygonization, the two inflection edges of
the mighty pocket are on the same side of an inner tangent `.

Obviously, we have two different types of inner tangents, one where both
t and t′ are not part of the mighty pocket in the intermediate polygonization,
and one where one point is on the mighty pocket and the other is not. For
both types, the following result holds.

Lemma 15. Let p be any point on an inflection edge of the mighty pocket
and, without loss of generality, let the inflection edges of the mighty pocket be
below the inner tangent `. Suppose, without loss of generality, that t is not
part of the mighty pocket. Then the two neighbors of t are above ` and the
line through p and t crosses ∂P at t.

Proof. Recall that there are no points of S in the kernel region of the mighty
pocket. The result immediately follows from the fact that the order of all
points with respect to any point p on the inflection edges is determined (as
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Figure 12: The inflection edges of the mighty pocket are on the other side of ` from
the neighbors of the contact points (left). The contrary case would disrespect the order
induced by the inflection edges (middle and right). The gray regions depict parts of the
polygon’s interior.

stated in Lemma 10). If the neighbors of t (a contact point not at the mighty
pocket) would also be below `, the ray starting at p passing through t would
not leave the polygon at t, which contradicts the order determined by the
mighty pocket (see Figure 12). As shown in Lemma 10, the supporting line
of the ray would be at least a 6-stabber, as it would have to leave the polygon
at another point. Similarly, if the neighbors of t are above ` but the ray does
not leave the polygon at t, there is as well a contradiction with the order of
the polygon.

We will use the previous lemma to show that both t and t′ have to be
in the mighty pocket in the final 2-convex polygonization, if there is one. If
we do not have an inner tangent but the intermediate polygonization is not
2-convex, then there has to be a 4-stabbing inflection line. The next lemma
will allow us to assume a certain structure of the pockets when there is no
inner tangent.

Lemma 16. Consider an intermediate polygonization that contains a pocket
with more than two inflection edges. Let e1 and e2 be the first and the last
inflection edge, respectively, when traversing the pocket. Then either it is the
case that one of the two corresponding inflection lines crosses that pocket at
least two more times, or there also exists an inner tangent with both tangency
points contained in that pocket.

Proof. The proof is similar to that of Lemma 12 in [1]. Without loss of
generality, we assume that the lid of the pocket is horizontal, and the polygon
is below it. Let e1 be the first inflection edge encountered when traversing
the pocket counterclockwise. Let pk be the point of the pocket with lowest
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Figure 13: A conflict induced by the inflection line `. The vertices in C are separated from
the rest of their pocket by `. If the mighty pocket is involved in the conflict (b), there also
exists an inner tangent (dotted).

y-coordinate; pk is obviously reflex. Let the line ` be the supporting line
of e1. If ` crosses the pocket another time we are done. Otherwise, rotate `
clockwise keeping it supporting the chain between e1 and pk. If there is a
convex vertex between e1 and pk, then we will find an inner tangent having
a contact point at the pocket. The same argument holds for the other side
with e2.

We consider now the situation where there is no inner tangent. Since the
radial order of all points not in the mighty pocket is fixed for any intermediate
polygonization, the relative position of an inflection edge ei = ciri and the
mighty pocket is determined. We formalize this in the following two lemmas.

Lemma 17. Consider an intermediate polygonization without inner tangents
but containing an inflection edge ei supported by a 4-stabbing inflection line `.
Then ` cannot intersect the mighty pocket.

Proof. Let x1, . . . , xk be the sequence of points where the inner ray of ei
crosses ∂P . Now suppose xj and xj+1 are the two crossing points of ` with
the mighty pocket (see Figure 13 (b)). Again, any ray starting at a point p on
an inflection edge of the mighty pocket crossing ei has to leave the polygon
through ei, which follows from the order induced by the inflection edges of
the mighty pocket, as already handled in the proof of Lemma 15. Consider
the shortest path inside the intermediate polygon from the convex vertex
of ei to xj+1, the second intersection point of the inner ray with the mighty
pocket. This path has at least one left turn and one right turn. Therefore one
of the edges of the path would define an inner tangent; a contradiction.

Intuitively, if we want to “repair” a situation in which a 4-stabbing in-
flection line occurs, we move the points that are “cut off” by the inflection
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line to the mighty pocket (if possible). We argue about the position of such
points in the following lemma.

Lemma 18. Consider an intermediate polygonization without inner tangents
but containing an inflection edge ei supported by a 4-stabbing inflection line `.
The first two crossings of the inner ray of ei with ∂P partition it into two
sub-chains. Among these two chains, let C be the one that does not contain ei
(see Figure 13). Then C is on the same side of ` as the inflection edges of
the mighty pocket.

Proof. This again follows directly from Lemma 10, with similar arguments as
in the proof of Lemma 17. Without loss of generality, let the mighty pocket
be to the right of ei = ciri. Let x1 and x2 be the first two crossing points
of the inner ray of ei with ∂P in the order as they occur along the ray. The
inner ray leaves and then enters the polygon at these points. (Intuitively, `
“cuts off” C at x1 and x2.) Suppose the points of C are to the left of ei.
From Lemma 10 we know that ∂P turns left at ri. However, the shortest
path from ci to x2 inside P has to turn right again before reaching x2 (at
some point of C). Hence, there is an inner tangent, a contradiction.

We have now obtained enough insight into the structure of the interme-
diate polygonization to state the main lemmas for assigning the points in T
to a chain. For both of the following lemmas, recall the invariant that, for
a given choice of inflection edges of the mighty pocket, all points that are in
the reflex chain of the mighty pocket in an intermediate polygonization have
to be there in any 2-convex polygonization of the underlying point set.

Lemma 19. Let t and t′ be two tangency points of an inner tangent ` in
an intermediate polygonization. Then both t and t′ have to be in the reflex
chain in any 2-convex polygonization of the underlying point set (with the
given inflection edges of the mighty pocket).

Proof. See Figure 14. We know that any point that is not fixed is either at
the opposite chain or at the reflex chain of the mighty pocket in any 2-convex
polygonization, if one exists.

First, suppose that neither t nor t′ is part of the reflex chain. Then we
know due to Lemma 15 that their neighbors are on the other side of the
inner tangent `, say above it, and that any point p on one of the inflection
edges of the mighty pocket t defines a line that separates the two neighbors
of t. The same holds for p and t′. Let `′ be a perturbation of ` that is a
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Figure 14: Moving a neighbor of t to the reflex chain either preserves the conflict or results
in a non-simple polygonization.

6-stabber. To prevent ` from being an inner tangent and moving neither t
nor t′ to the reflex chain, one would have to get rid of some of the edges
adjacent to them in some way. Suppose we repolygonize the point set with
a neighbor of t now being part of the reflex chain (which is the only way of
getting rid of an edge). Both ` and `′ then would have to cross the reflex
chain twice. However, this can only happen either to the left of pt, between
pt and pt′, or to the right of pt′, and the reflex chain cannot pass through
the rays starting at p more than once. Hence, at most two edges adjacent to
t and t′ can be removed. However, `′ now crosses the reflex chain twice and
therefore remains a 6-stabber. Thus, at least one of t or t′ must be part of
the reflex chain.

Suppose now, without loss of generality, that t′ is part of the reflex chain.
Again, let the two inflection edges of the mighty pocket be below ` and t′

be to the right of t. For any point p on the inflection edges, the supporting
line of p and t separates the neighbors of t. Therefore only the right edge
adjacent to t can be removed by changing the reflex chain while keeping t on
the opposite chain, but since the number of times `′ crosses the boundary of
the polygon is even, `′ remains a 6-stabber. Hence, also t has to be part of
the reflex chain. The lemma follows.

Lemma 20. Consider an intermediate polygonization without inner tangents
but containing an inflection edge ei supported by a 4-stabbing inflection line `.
Let C be a part of a pocket that is separated by ` from the polygonization (as
in Lemma 17). Then the points of C must be part of the reflex chain of the
mighty pocket in any 2-convex polygonization of the point set (with the given
inflection edges of the mighty pocket).

Proof. See Figure 13 (a). Due to Lemma 16 we can assume that the inflec-
tion edge ei that causes the conflict is the first or the last inflection edge
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encountered when traversing its pocket. Due to Lemma 17, we know that
C is not part of the reflex chain. Suppose we do not want all of the points
in C be part of the reflex chain of the mighty pocket. Again, let `′ be a
perturbation of ` that is a 6-stabber. We can now use exactly the same line
of argument as in the proof of Lemma 19; the reflex chain would have to pass
through `′, but we can only remove at most two edges crossed by `′. The
only difference is that the conflict might be resolved after just adding the
points of C to the reflex chain of the mighty pocket, but not when adding
only the reflex vertex of ei (and keeping some points of C on the opposite
chain). The lemma follows.

These lemmas now immediately imply an algorithm for finding a valid
reflex chain for a 2-convex polygonization with a given pair of inflection edges
for a mighty pocket (i.e., the pair of inflection edges defines a kernel region
not containing any point of S). We start with an intermediate polygonization
that includes all dominated points on the reflex chain. If we find an inner
tangent (in O(n log n) time), then we add both vertices involved to the reflex
chain. If there is no inner tangent but a 4-stabbing inflection line, we add
the points of C of Lemma 20 to the reflex chain. During any step we know
that all points in the reflex chain have to be there. Hence, we either arrive at
a 2-convex polygonization after adding O(n) points, or we cannot change the
position of a point, which means that there is no 2-convex polygonization of
the underlying point set with the given pair of inflection edges of the mighty
pocket. This implies the following lemma.

Lemma 21. Whether two inflection edges can be completed to a mighty
pocket in a 2-convex polygonization using the points of T can be decided in
O(n2 log n) time.

5.4. Putting Things Together

The overall algorithm for checking 2-convexity of a point set is the fol-
lowing.

1. Check whether there is a star-shaped 2-convex polygonization by cre-
ating the arrangement of all lines defined by two points of the set S.
Radially sort the points around a pivot in each cell inside CH(S) and
check all the resulting polygonizations for 2-convexity.
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2. For each convex hull edge (i.e., a lid), iterate over all possible inflection
edges that have no points of S in the kernel region. Try to construct a
mighty pocket giving a 2-convex polygon (see Section 5.3.2).

3. If there is no mighty pocket, check all triples of lid/inflection-edge com-
binations having points of S in their kernel regions (see Section 5.3.1).

Theorem 9. 2-convexity of a point set can be decided in time polynomial on
the size of the point set.

While we achieved our goal of showing that the problem is solvable in
polynomial time, the approach we propose is far from being efficient. Clearly,
checking all triples of pocket candidates is the most time-consuming step.
There are O(n12) choices for the inflection edge combinations. For each pair
of inflection edge candidates, there are at most two possible lids, and these
can be stored beforehand for every inflection edge candidate. Since we can
also store the radial order of the point set around each point of the set, we
only need linear time to check whether the orders induced by the inflection
edge candidates are compatible. This approach leads to a running time of
O(n13).

6. Deciding k-Convexity of Point Sets

The algorithm shown in the previous section is quite involved, but has
polynomial running time. A natural next step is to consider algorithmic
properties when the degree of convexity is increased. This section shows
NP-completeness of the problem of deciding whether a point set in the plane
allows a 3-convex polygonization. The proof can easily be adapted for any
higher degree of convexity.

For ease of presentation we first consider the setting where some edges of
the polygonization are fixed and then extend the result to point sets without
any fixed edges.

6.1. Fixed Edges

Our proof of the following proposition can be seen as purely instructional,
as it is not directly used for showing NP-hardness of the problem without
fixed edges. The goal is to give the general idea of the construction, and to
address the parts we have to alter when no edges are fixed later.
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Proposition 3. Let S be a set of points in the plane and let E be a set
of edges with E ⊂ S × S. Suppose there exists a polygonization of S that
contains all edges of E. Then it is NP-complete to decide whether there exists
such a polygonization that is 3-convex.

Note that the problem is in NP as the k-convexity of a polygon can
be decided in quadratic time [1]. Further note that E is required to allow
polygonizations of S, as otherwise the problem would be at least as hard as
the NP-complete problem of deciding the existence of a polygonization of a
set of line segments [19], rendering the result meaningless.

The NP-completeness is shown by reducing 3SAT [12, p. 259] to the
problem. We build gadgets using fixed edges that represent the variables,
literals, and clauses of a 3SAT formula and show that there exists a 3-convex
polygonization if and only if the given formula is satisfiable. We refer to
a literal as the occurrence of a variable within a single clause (negated or
unnegated). Hence, a literal occurs only once in a formula.

For any given 3SAT formula φ, let Vφ be the set of its variables, Lφ the
set of its literals, and Cφ its set of clauses. Further, let T be a temporary
point set in convex position consisting of three disjoint sets TV , TL, and TC
(we will later replace them by other points) in which each point corresponds
to a variable, literal, or clause of φ, respectively. Place the points of T in
convex position such that the points of each group are consecutive on the
convex hull boundary of T . Further, every triple of points in TV × TL × TC
should define a triangle that is “roughly equilateral” (this latter informal
requirement is intended to ease the presentation of the construction). The
literal points are sorted by the variable they represent and unnegated literals
of a variable are encountered before the negated literals when traversing the
points of TL on ∂ CH(T ) counterclockwise. Between each consecutive pair
of the same class, place another temporary point. The set of these points is
called TS. Let T ′ = T ∪ TS.

In the final construction each point in T ′ is replaced by a corresponding
gadget. In order to obtain a valid reduction we have to ensure that we
can place the points in polynomial time, in particular, the coordinates of
all points need to have a representation that is polynomial in the size of φ.
One way to do this is to select all the points that are on the convex hull
of the final construction among the dense rational points on the unit circle
(Canny et al. [5] provide appropriate algorithmic tools), and those from inner
points that are adjacent to these points in the final construction on a smaller
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circle (where the difference in the radii of the circle depends on the number
of gadgets needed). The reader can observe throughout the description of
the gadgets that the remaining points can be chosen with respect to the
arrangement of the supporting lines of these points.

6.2. Gadgets

The basic idea is that the information in the construction is transported
by lines that are potential 8-stabbers, between the variable gadgets and the
literal gadgets, and between the literal gadgets and the clause gadgets. We
call sets of such lines common to two gadgets a beam7. More precisely, a
beam is defined by the union of potential 8-stabbers through a gadget pair.
Hence, the beams “transport” the truth assignment of variables.

We introduce the gadgets by describing their intended behavior. We then
show that the gadgets actually have to behave in the intended way. Note
that the graphical representations of the gadgets are sketches.

t

Figure 15: Placement of some gadget (gray), replacing a temporary point t, in order to
prevent a line passing through three gadgets.

Every gadget replaces a point t ∈ T and therefore some of its parts are in
extreme position. The gadgets need to be “small” enough such that there is
a line through the two edges incident to t that separates the gadget from the
remaining domain; see Figure 15. This, in connection with the construction
of the gadgets, will ensure that there exists no 8-stabber through gadgets of
the same class.

6.2.1. Variables

The variable gadget is shown in Figure 16. The dotted lines in Figure 16
are part of beams leading to literals of the variable, one to an unnegated lit-
eral and the other to a negated literal. Note that several beams pass through
a variable in this way, one for each literal of the variable. The intended be-
havior of the variable gadget with assignment “true” is that no line to the

7Culberson and Reckhow [7] use a similar terminology.
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unnegated literals is a local 3-stabber but the lines to the negated ones are
local 3-stabbers, and vice-versa (see Figure 16 (b) and (c), respectively).

v2

v1
v3

v4

(a)

v2

v1
v3

v4

(b)

v2

v1
v3

v4

(c)

Figure 16: A variable gadget: its fixed edges (solid), its intended polygonizations (dashed)
for true (b) and false (c), and two potential 8-stabbers in it (dotted).

6.2.2. Literals

The literal gadgets relate each clause to the variables contained in the
respective clause. The literals of a variable are placed on neighboring points
of T , the unnegated literals below the supporting line of v3v4, and the negated
literals above. Figure 17 shows two literal gadgets xi and ¬xj and their
interaction with their variable x.

In the example in Figure 17, the variable is set to false, as indicated by
the dashed edges v2v4 and v1v3. Literals are defined by the fixed edges l1l3,
l2l4, and l5l6. Their beams are defined by the lines through l1l6 and l3l5, and
the lines through l2l6 and l4l5. Let the former beam be the clause beam and
the latter the variable beam. Note that the edges have to be short enough and
need to be placed appropriately such that the variable beam is narrow enough
to pass through v3v4. (This can, e.g., be done by first choosing l1, l2, l3, and
l4; the arrangement of supporting lines of the points together with v3, v4 and
points at the clause gadgets defines a convex region in which the edge l5l6
can be placed.)
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3-stabber: True

l5

l6

Figure 17: The interaction between literals and their variable.

Consider literal xi. Its variable beam contains local 3-stabbers at the
variable, which is therefore assigned to “false”. Hence, the polygonization
of xi is chosen such that the variable beam does not contain any local 5-
stabbers at xi. The variable beam of literal ¬xj, however, contains no 3-
stabbers at the variable. Therefore it can be polygonized the opposite way
to xi. This makes the clause beam of ¬xj contain no local 5-stabbers at
the literal, whereas the clause beam of xi already contains local 5-stabbers.
We define a literal to be “false” if its clause beam contains local 5-stabbers,
and true otherwise. The intended behavior of the literal construction is that
an unnegated and a negated literal of the same variable cannot both be true
(they may both be false but that obviously does not influence the satisfiability
properties of the formula).
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6.2.3. Clauses

We defined a clause beam to transport an assignment of “false” if it
contains lines that are local 5-stabbers at the literal. This means that its lines
cannot be local 3-stabbers at the clause. The clause gadget is constructed in
a way that it allows a 3-convex polygonization if at least one of the beams
does not contain any lines that are local 5-stabbers at the variable, which
therefore can also be local 3-stabbers at the clause. We will later show that
a 3-convex polygonization exists only if one of the beams of each clause
transports “true”.

T − −(a)

c1

c8

c3

− T −(b)

c1

c8

c3

− − T(c)

c1

c8

c3

F F F(d)

c1

c8

c3

Figure 18: The clause gadget and its expected polygonizations (a–c). If no beam contains
a local 3-stabber at a clause gadget then there has to be an 8-stabber, indicated by the
dotted line and the bold-style segments (d).

The clause gadget is shown in Figure 18. The beams pass through fixed
edges whose end vertices are placed along two flat arc segments (light gray).
If one of the beams is true, a 3-convex polygonization can be done as shown in
(a) to (c). Note that in (a) the point c8 is below the line through c1c3. To have
no local 3-stabber in any of the three beams one could sequentially connect
the edges, as shown in Figure 18 (d). However, this would introduce an 8-
stabber, as depicted by the bold-style segments. The intended behavior of a
clause gadget is that there is no 3-convex polygonization if all its literals are
“false”. Observe that lines that are local 5-stabbers at the gadget (e.g., a line
passing by close to c8 in Figure 18 (b)) leave any polygonalization in a close
neighborhood of the gadget if the two flat arcs on which we place the points
are sufficiently close to each other. Hence, no line passing, say, through two
clause gadgets can become an 8-stabber. (We give a short account on placing
all points such that they have coordinates with a polynomial representation
at the end of this section.)
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6.3. Necessity of Satisfiability

By construction, such a set of edges allows a 3-convex polygonization
whenever the formula is satisfiable. What remains to be shown is that a non-
satisfiable formula prevents a 3-convex polygonization; i.e., that the gadgets
behave in the intended way. The major difficulty in showing this is that the
whole configuration needs to be considered. It is insufficient to inspect the
gadgets only locally. We can, however, restrict our attention to the local
behavior with the help of a construction we call a separator.

A separator gadget is constructed by slightly moving apart the two convex
hull edges incident to a temporary point of Ts. The resulting gap is filled
by edges as shown in Figure 19. A line in the beam is a local 5-stabber at
the separator. Together with the antipodal edge through which the beam
passes, such a line becomes a 6-stabber and therefore there cannot be any
more edges crossing the separator beam. If we place a separator between all
neighboring gadgets (see Figure 20), we may return to our local view.

Figure 19: A separator produces a beam of 6-stabbers between the two dotted lines.

The following simple observations are useful when proving the correct
behavior of the gadgets.

Observation 3. When walking along the boundary of a polygon, any inter-
section of half-planes is entered as many times as it is exited.

Observation 4. A polygonal chain connecting two points separated by a line
crosses that line an odd number of times.

Lemma 22. Given any pair of lines through a variable gadget, one to an
unnegated and one to a negated literal, one of these lines must be (at least)
a local 3-stabber.

Proof. Consider again Figure 16. As the clause is isolated by two separators,
it contains a path from v1 to v2, which means that the dotted stabbers are
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Variables

Literals

Clauses

Figure 20: The whole configuration representing a formula. The dots denote the position
of the gadgets of the formula, and the thick strokes denote the beams of the separators.

crossed locally an odd number of times. The two lines separate the plane
into four regions. Let A be the one that contains v3. A is already entered
(or left) by the edge v3v4. This means that there has to be another edge
leaving A, crossing one of the lines. As that line is crossed twice, it needs to
be crossed at least a third time to result in an odd number of crossings.

Lemma 23. Given two literal gadgets, one representing an unnegated and
the other one a negated literal of the same variable, at least one of their clause
beams contains lines that are local 5-stabbers at the literal.

Proof. Take any pair of lines, of which one is contained in the clause beam and
the other one is contained in the variable beam of the first literal. Arguing
analogously to the proof of Lemma 22, it is obvious that one of the lines is
a local 5-stabber. If it is in the clause beam, we are done. As it otherwise
has to be in the variable beam, we know from Lemma 22 that the variable
beam of the second literal contains local 3-stabbers at the variable. Hence,
the clause beam of the other literal contains local 5-stabbers.

Note that two literals of the same variable might both be set to false, but
this obviously does not impose a problem for the overall argumentation. Fur-
ther note that the proofs of the previous two lemmas are kept quite general,
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as we will use similar techniques when proving the correctness of gadgets for
point sets.

Lemma 24. There is no 3-convex polygonization with a clause gadget having
all its literals set to false.

Proof. Consider again Figure 18(d). As the gadgets are divided by separators
and all beams contain local 5-stabbers when set to false, the beams define
isolated regions. As each region contains only two points, the only choice is
to draw an edge between each of these pairs. This, however, yields exactly
the polygonal path shown in Figure 18(d). As this path creates an 8-stabber,
the proof follows.

Proof of Proposition 3. As already discussed, the problem is in NP. For any
given 3SAT formula φ we can construct a set of edges E in polynomial time
representing φ. By construction, E has a 3-convex polygonization if φ is
satisfiable. Lemma 23 shows that an unnegated and a negated literal of the
same variable cannot both be true in a 3-convex polygonization of E, and
Lemma 24 shows that if all literals of a clause are false, then there cannot
be a 3-convex polygonization of E. This establishes that there is a 3-convex
polygonization of E only if φ is true.

6.4. General Point Sets

The proof of Proposition 3 relies on fixed edges. In fact, we did not make
use of any isolated points. To transfer the previous result to the domain of
point sets, we need a way to force edges to a more or less fixed position.

Figure 21: A chain of at least ten points inside a triangle defined by any three lines implies
an edge between two of the points.

Lemma 25. Let R be any subset of a point set S contained in the triangle
defined by three lines. If |R| > 9, then there has to be at least one edge
between two points in R in any 3-convex polygonization of S.

40



Proof. See Figure 21 for an accompanying illustration. Suppose that there
is no edge between any two points in R. Then every edge incident to a point
in R must cross at least one of the lines defining the triangle region. Every
line may only be crossed six times for the polygonization to be 3-convex. As
every point is incident to two edges, the bound follows by the pigeonhole
principle.

Note that this bound may be tightened when considering that there has
to be a path between the edges entering and leaving the triangular region.
For ease of presentation, at least ten points are chosen.

Let such a subset of ten points along a flat arc segment be called a bunch.
We will need that the supporting lines of the edges of the bunch lie within
a given wedge. For a sufficiently flat arc segment, all the edges spanned by
two points of the bunch will fulfill that property. Thus, we can suppose,
without loss of generality, that the edge in the statement of Lemma 25 is
similar in that sense to an edge which connects two successive points on the
arc segment.

During the construction of the gadgets using fixed edges, the positions
of the beams were fixed. We show that we can still guarantee the existence
of the beams using bunches (but not their exact position). We demonstrate
a construction that, by cascading bunches, allows us to place in a defined
region any number of edges that all cross a common stabber.

(a)
(b)

Figure 22: The first two bunches define the width of the hyperbeam (a). Bunches at the
intersection of each beam with an arc segment increase the stabbing number of the lines
in the part of the beam (b).

The main idea is to replace the fixed edges with flat arc segments on which
the bunches are placed. Let a hyperbeam be the union of potential beams.
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A hyperbeam is defined by these arc segments and is directed in the same
way as the beams in the previous section. Now consider the first two arc
segments of a hyperbeam, as depicted in Figure 22(a). The length of these
two segments defines the width of the hyperbeam, and they should therefore
be sufficiently narrow. Place a bunch on each of these two segments. Any
pair of edges, one on the first segment and the other one on the second,
would define a beam within the hyperbeam defined by the two segments.
Each of these beams intersects a part of the third segment. We now place a
bunch at each of these intersections, which thus guarantees a local 3-stabber
inside the hyperbeam (the intersections might intersect themselves, but it is
only necessary that each intersection contains 10 points). This construction
can be continued in the same way for all further segments. Hence we may
now determine not the exact, but the approximate position of potential 8-
stabbers.

6.5. Point Set Separators

In the previous section, the use of separators allowed the correctness of
the construction to be verified. Using bunches, we can create a similar con-
struction (as in Figure 23) and therefore prevent other edges from crossing
such a separator. However, paths from one side of the domain to the other
could still use the edges of such a separator (as shown in Figure 24), since
we can no longer say for sure which edges are adjacent. In order to prevent
this we apply the following construction, shown in Figure 25. We place two
separators (instead of one) indicated by bunches between every formula gad-
get. The separator beams are directed to the antipodal side of the polygon,
intersecting each other. We then place a separator on the antipodal side be-
tween the beams. Recall that by using bunches we cannot exactly define the
position of a separating line, but can assure its existence somewhere inside
the hyperbeam. Hence, such a separator array again allows us to consider
the formula gadgets only locally.

6.6. Adaption of the Gadgets

With the help of the bunches, the gadgets can be constructed, up to a
certain extent, in a manner similar to the fixed-edges case. When placing the
arc segments for the bunches like the fixed edges, a 3-convex polygonization
is possible if the formula is satisfiable.

A variable and a literal gadget are shown in Figure 26. Instead of fixing
edges, we cascade the bunches as described above. The proof of Lemmas 22
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Figure 23: A separator constructed using points. The bold-style arc segments sketch the
regions where bunches can be placed, and the dashed line sketches a possible sequence in
the polygonization.

Figure 24: An example of an unintended behavior of a separator gadget.

and 23 can be applied directly to these gadgets, since one of the (many) edges
on the innermost arc segment of the variable or the literal takes the role of
v3v4 or l5l6, respectively.

Showing the correctness of the adapted clause gadget is more involved.
The sketch in Figure 27 accompanies the description. There, the gray re-
gions depict the hyperbeams carrying the literal assignment. When points
are placed along the dark arc segments, there obviously exists a 3-convex
polygonization if at least one literal is true. Suppose, without loss of gen-
erality, that h is a horizontal line. Recall that a hyperbeam is a union of
beams. Place at least one point in the interior of each beam on the arc seg-
ments between c2 and c3, c4 and c5, and c6 and c7, respectively. Observe that
all of these points are above h. Then place four points in the vicinity of the
line h on the arc segment between c6 and c7, and three further points in a
similar manner between c8 and c9, such that when sorted along the y-axis no
point has its successor on the same arc segment.

Lemma 26. There is no 3-convex polygonization of the point set with all
literals of a point clause gadget set to false.

Proof. The interesting case is the one where the hyperbeams contain lines
that are local 5-stabbers at the corresponding literals. Since the beams may
now only be crossed once, every region between two such 5-stabbers is entered
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Figure 25: A separator array preventing unintended paths from passing through it.
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v4

(a)

l1 l2
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l5
l6

l′1 l′2

(b)

Figure 26: A point set variable gadget (a) and a literal gadget (b). The gray arc segments
denote the position of the bunches, the dotted lines denote a pair of potential stabbers,
and the solid segments denote edges that have to exist somewhere within the bunches.

and left once. Consider the dashed line h, which should be an 8-stabber if the
clause evaluates to false (as in Figure 27). It is essential for the behavior of the
gadget that in this case h is crossed twice between two beams (Property 1).
Further, it has to be crossed once in the region of c1 (Property 2) and three
times in the region of c7 (Property 3).

Property 1: Observe that if all literals for the clause are set to false, there
exists a beam that contains an infinite number of 5-stabbers at each of the
dark arc segments. Since there is a point placed inside the region of each such
beam, there is an infinite number of 5-stabbers through the neighborhood of
such a point. This means that the path consisting of the two edges incident to
this point has to cross each of these 5-stabbers in that neighborhood. Recall
that all these points are placed above h. Therefore, the region between such
5-stabbers (containing the region between two hyperbeams) is entered and
left above h by the path defining the overall polygonization. Since the path
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Figure 27: A clause gadget. The points to the right ensure the existence of an 8-stabber
if all literals are assigned false.

has to “fetch” the point below h, it has to cross h twice within that region.

Property 2: The line h is obviously crossed within the region of c1 and
c2, since the gadgets are isolated by separator arrays, and c1 and c2 are on
different sides of h.

Property 3: The path enters the region above h (by the same arguments
as used for Property 1) and leaves it below h, hence h is crossed an odd
number of times. Suppose that the path is y-monotone through the points
on the arcs. Then the path zig-zags through these seven points, provoking
an 8-stabber. If the path is not monotone and crosses h only once, there is
a vertex m with both edges leaving it in the same y-direction. Translate h
to another horizontal line h′ past m. The new line h′ crosses the path twice
in the vicinity of m, which means that it crosses the path three times.

Finally, observe that we can choose the points in such a way that all
coordinates are rational and have numerators and denominators that are
polynomial in the size of the input. The points on the convex hull of the
construction can be selected from the (dense) set of rational points on the
unit circle. The additional interior points for the gadgets can be placed inside
convex regions defined by the supporting lines of a constant number of pairs
of initial points. That is, they can be chosen inside the solution space of linear
programs with a constant number of polynomial-sized constraints. Note that
the bunches for the hyperbeams do not necessarily have to lie on an arc as
in the sketches; they simply have to lie inside a triangle, as demanded by
Lemma 25, without increasing the stabbing number in an unintended way.

From these arguments our final theorem follows.

Theorem 10. It is NP-complete to decide whether a point set is 3-convex.
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7. Open Problems

In this paper we have introduced a new measure of convexity of sets of
points in the plane. Due to the novelty of the approach, there are many
related open questions. We present some of them.

1. What is the relation between k-convexity and the reflexivity [3] of point
sets?

2. Are there examples for general k and j such that the union of a k-
convex point set and a j-convex point set is not (k+ j)-convex? So far
we only have examples for k = j = 1.

3. Find f(k, n) such that every k-convex set of n points contains a subset
in convex position of size f(k, n). More generally, find f(k, j, n) such
that every k-convex set contains a j-convex subset of size f(k, j, n).

4. Find h(k, n) such that every set of n points contains a k-convex set of
size h(k, n).

5. Find H(k, n) such that every set of n points contains an empty k-
convex polygon of size H(k, n) with vertices in the set. That is, there
exists a k-convex hole of size H(k, n) in the set. These two questions (4
and 5) are a generalization of the famous Erdős-type problems [9, 10]
and from the Erdős-Szekeres Theorem we can construct a 2-convex hole
of logarithmic size (see Theorem 3); that is, H(2, n) = Ω(log n).

6. Find g(k, n) such that every k-convex set of n points can be partitioned
into g(k, n) convex sets. Analogously, find g(k, j, n) such that every k-
convex set of n points can be partitioned into g(k, j, n) j-convex sets,
j ≤ k.

7. A triangulation is a decomposition of the convex hull of a point set of
size n into 2n − 2 − h triangles (where h is the number of points on
the convex hull boundary). If we ask for a decomposition into convex
polygons, it has been shown that n−3 + b

√
2(n− 3)c convex polygons

are sometimes necessary [11]. What if we use general 2-convex poly-
gons? Is it always possible to decompose a given planar point set with
a sublinear number of 2-convex polygons?
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p. 213.

[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

[13] T. Gerken, Empty convex hexagons in planar point sets, Discrete and
Computational Geometry 39(1–3) (2008) 239–272.

[14] H. Harborth, Konvexe Fünfecke in ebenen Punktmengen, Elemente
Math. 33 (1978) 116–118. In German.
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