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Abstract

We introduce a notion of k-convexity and explore polygons in the plane that have
this property. Polygons which are k-convex can be triangulated with fast yet simple
algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a
characterization of 2-convex polygons, a particularly interesting class, and show how to
recognize them in O(n log n) time. A description of their shape is given as well, which
leads to Erdős-Szekeres type results regarding subconfigurations of their vertex sets.
Finally, we introduce the concept of generalized geometric permutations, and show
that their number can be exponential in the number of 2-convex objects considered.

1 Introduction

The notion of convexity is central in geometry. As such, it has been generalized in many
ways and for different reasons. In this paper we consider a simple and intuitive general-
ization of convexity, which to the best of our knowledge has not been worked on. It leads
to an appealing class of polygons in the plane with interesting structural and algorithmic
properties.

A set in Rd is convex if its intersection with every straight line is connected. This def-
inition may be relaxed to directional convexity or D-convexity [16, 24], by considering only
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Figure 1: Different cases for the counting of crossings.

lines parallel to one out of a (possibly infinite) set D of vectors. A special case is ortho-
convexity [29], where only horizontal and vertical lines are allowed. For any fixed D, the
family of D-convex sets is closed under intersection, and thus can be treated in a systematic
way using the notion of semi-convex spaces [31], which is sometimes appropriate for inves-
tigating visibility issues. The D-convex hull of a set M is the intersection of all D-convex
sets that contain M . If D is a finite set, this definition of a convex hull may lead to an un-
desirably sparse structure—an effect which can be remedied by using a stronger, functional
(rather than set-theoretic) concept of D-convexity [24].

k-Convex Sets We consider a different generalization of convexity for 2-dimensional sets:
We say that a set M is 2-dimensional if for every p ∈ M there exists a set M ′ homeomorph
to a closed disk and such that p ∈ M ′ ⊂ M . All sets we will consider in this paper regarding
k-convexity are 2-dimensional compact sets in the Euclidean plane and therefore don’t have
isolated points or 1-dimensional components. We say that M is k-convex (with respect to
transversal lines) if there exists no straight line that intersects the interior of M , this is,
M \∂M , in more than k connected components. Throughout the paper we will use the term
k-convex , for short1. Note that 1-convexity refers to convexity in its standard meaning.

It is also often said that a set is convex if every two of its points see each other. To refor-
mulate k-convexity in terms of visibility let us introduce the concept of counting crossings.
Let s be a line or an open line segment. We count the number of crossings of s with ∂M in
the following way: Let t be a connected component of s ∩ ∂M ; then t is either a point or a
segment. The component t is counted as one crossing if and only if in every neighborhood of
t in s there are points from both the interior and the exterior of M . The first case accounts
for the simplest case of crossing, as happens with two segments that share exactly one point
interior to the two of them (Figure 1.a,b), while the second case occurs when s supports ∂M
along a segment that behaves as an inflection (Figure 1.c). Using the concept of crossing we
see that (compact and 2-dimensional) k-convex sets are precisely those whose boundary can
be crossed by a line at most 2k times.

Now, we can express k-convexity in terms of visibility: call two points x, y ∈ M k-visible

1We face notational ambiguity. The term ‘k-convex’ has, maybe not surprisingly, been used in different
settings, namely, for functions [27], for graphs [5], and for discrete point sets [21, 35]. Also, the concept of
k-point convexity [34] has later been called k-convexity in [7].
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Figure 2: Intersecting two 2-convex sets

if the number of crossings between the open segment xy and ∂M is at most 2(k−1). Thus a
set is k-convex if and only if any two of its points are mutually k-visible. We find interesting
this way of articulating the notion, as applications of this concept may arise from placement
problems for modems that have the capacity of transmitting through a fixed number of
walls [2, 14].

Unlike directional convexity, k-convexity fails to show the intersection property: The
intersection of k-convex sets is not k-convex in general (for fixed k). Figure 2 gives an
example. For k ≥ 2, a k-convex set M may be disconnected, or if connected, its boundary
may be disconnected. In this paper, we will restrict attention (with an exception in Section 4)
to simply connected sets in two dimensions, namely, simple polygons in the plane.

There are two notions of planar convexity that appear to be close to ours. One is
k-point convexity [7, 34]: A closed connected set M ⊂ R2 is k-convex if for any k points
in M , at least one of the line segments they span is contained in M . Thus 2-point convex
sets are precisely the convex sets. The other is k-link convexity [23]: A simple polygon P is
k-link convex if, for any two points in P , the geodesic path connecting them inside P consists
of at most k edges. The 1-link convex polygons are just the convex polygons. While there
is a relation between k-convexity and the former concept (as we will show in Section 2), the
latter concept is totally unrelated.

We will study basic properties of k-convex polygons, in comparison to existing polygon
classes and convexity concepts in Section 2. This offers an alternative to the approach in [4]
to define ‘realistic’ polygons as those being guardable (visible) by at most k guards. We
prove that given a simple polygon P , the problem of finding the smallest k such that P
is k-convex (equivalently, to find the stabbing number of P ) is 3SUM-hard. On the other
hand, a recognition algorithm that runs in O(n2) time for a polygon with n vertices is easy
to obtain. Interestingly, k-convex polygons can be triangulated, by a quite simple method,
in O(n log k) time. An O(nk) time complexity is achieved in [4] for k-guardable polygons.

The first nontrivial value, k = 2, deserves particular attention. Already in this case, a
novel class of polygons is obtained. A characterization of 2-convex polygons is given in
Section 3. It leads to an O(n log n) time algorithm for recognizing such polygons. Note that
2-convex polygons add to the list of special classes of polygons [4, 12] that allow for simple
O(n) time triangulation methods. We also provide a qualitative description of their shape,
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which implies an Erdős-Szekeres type result, namely, that every 2-convex polygon with n
vertices contains a subset of at least

√
n vertices in convex position, and that its vertex set

can be decomposed into at most 2
√
2n subsets in convex position.

In Section 4, we turn our attention to general k-convex sets. We give observations on
the union and intersection properties of such sets, and elaborate on an attempt to generalize
the notion of geometric permutations from convex sets to k-convex sets. In contrast to the
O(m) bound in [11] on the number of geometric permutations of m convex sets, it turns out
that the number of generalized geometric permutations can be exponential in m, already
for 2-convex sets. For 2-convex polygons, the maximum number of generalized geometric
permutations is Θ(n2), if n denotes the total number of their vertices.

Various open questions are raised by the proposed concept of k-convexity. We list those
which seem most interesting to us, along with a brief discussion of our results, in Section 5.

2 k-Convex Polygons

2.1 Basic properties

We start with exploring some basic properties of k-convex polygons, and compare them to
existing polygon classes and related concepts.

Let P be a simple polygon, and denote by n the number of vertices of P . Here and
hereafter we assume that P does not have two consecutive edges that are collinear. We
define the stabbing number of a polygon as the largest possible number of crossings between
the boundary of the polygon and a straight line2. Therefore, a polygon is k-convex if and only
if its stabbing number is at most 2k, and our observations on k-convexity can be formulated
for polygons in terms of their stabbing numbers.

The kernel of a simple polygon P is the set of points that see all the polygon. Its
generalization to k-convexity shows that 2-convexity is already significantly more complex
than standard convexity. The k-kernel of P , denoted as Mk(P ), is the set of points from
which the entire polygon P is k-visible. Note that P is k-convex if and only if P = Mk.
While M1 is known to be a convex set which is computable in O(n) time [22], M2 may have
Ω(n2) complexity: If we consider the ‘spike’ in Figure 3(a), the wedge between the lines pq
and pr is not part of M2. If we arrange such spikes along the boundary of a rectangle, as in
Figure 3(b), we get a quadratic number of disconnected areas which are part of the 2-kernel.
Therefore, any algorithm computing M2, or trying to check 2-convexity via the comparison
of P and M2 would have Ω(n2) complexity in the worst case.

There is also no immediate relation to star-shaped polygons, i.e., polygons P withM1 ̸= ∅.
Figure 4 shows a polygon on the left hand side which is star-shaped but only n

2
-convex. On

the right hand side, we see a polygon which is 2-convex but not star-shaped. Visually,
2-convexity seems to be closer to convexity than is star-shapedness. Note that cutting a
2-convex polygon with any straight line leaves (at most) three parts, each being 2-convex
itself. This is not true in general for star-shaped polygons.

2This definition is very close to the concepts of crossing number and stabbing number of a set of segments
defined in [15,36], but slightly different from. We ellaborate more on this difference at the end of Section 2.2.
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Figure 3: (a) Points in the gray region are not in the 2-kernel. (b) 2-kernel with a quadratic
number of connected components.

Figure 4: Star-shaped versus 2-convex

There is no relation between 2-convexity and link distance [23]: The link distance in
a 2-convex polygon may well be Θ(n) and, conversely, a polygon which is 2-link convex
(such that any two of its points are at link distance 2 or less) may fail to be k-convex for
sublinear k. The star-shaped polygon in Figure 4 (left) is an example.

There is, interestingly, a relation to k-point convexity as defined in [34]. A polygon P is
called k-point convex if for any k points p1, . . . , pk in P , at least one of the closed segments
pipj belongs to P . Every k-point convex polygon P is (k − 1)-convex. To verify this, we
prove that if P is not (k − 1)-convex, then P is not k-point convex: Because P is not
(k − 1)-convex, there exists a line L which intersects P \ ∂P in at least k components. If
we select a point in each component, it is clear that none of the segments defined by them
is inside P , and therefore P is not k-point convex. However, no implication exists in the
other direction. For example, the 2-convex polygon in Figure 5 fails to be k-point convex
for k < n

3
. Also, any k-point convex polygon can be expressed as the union of m convex

polygons, where m depends (exponentially) on k but is independent of the polygon size n;
see [7]. Such a property is not shared by k-convex polygons, as can be seen from the 2-convex
polygon in Figure 5.

The class of k-convex polygons also differs from the class of k-guardable polygons defined
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Figure 5: Every white dot requires a different guard

in [4]. It is known that any simple polygon with n vertices can be guarded with at most ⌊n
3
⌋

guards [26, 33]. The example in Figure 5 shows that this number of guards can be already
necessary for 2-convex polygons. This is one of the reasons why most tools developed to
study guarding problems of polygons are not very useful in the study of modem illumination
problems [2].

Pseudo-triangles are polygons with exactly three convex vertices, joined by three reflex
side chains. Any pseudo-triangle is 2-convex: If a straight line crosses a side chain twice, then
it can cross each of the remaining two side chains at most once (Figure 6, left). That is, the
stabbing number of a pseudo-triangle is four or less. In the same way as a triangulation de-
fines a partition of the underlying domain into convex polygons, any pseudo-triangulation [30]
or any pseudo-convex decomposition [3] gives a partition into 2-convex polygons. It is an
open problem (see Problem 5 in the final section) whether it is possible to subdivide a poly-
gon with n vertices into a sublinear number of 2-convex polygons. If Steiner points are
disallowed, then a 2-convex partition may have to consist of Θ(n) parts; see Figure 6 (right).

Figure 6: Pseudo-triangle and 2-convex partition

Let us mention that the following natural questions for k-convex polygons are easy to
answer: (i) decompose a k-convex polygon into few convex pieces (in terms of k), (ii) give
a bound on the number of pieces of the convex hull minus the polygon. In both cases the
answer is unrelated to k: for the first one, observe the polygon in Figure 7 (left). It is
2-convex yet requires n − 2 convex pieces, which is obviously tight because every polygon
can be triangulated. For the second one, the polygon in Figure 7 (right) is also 2-convex
and has n

2
“pockets”, which is tight because two consecutive points on the convex hull are

at least two edges apart if they are not adjacent on the polygon boundary.
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Figure 7: A polygon with many convex pieces (left) and many pockets (right).

2.2 Recognition complexity

Let us start our considerations by observing that the stabbing number of a polygon with
n vertices can be easily found in O(n2) time, as follows. The standard duality transform
maps each edge of the polygon to a double wedge consisting of lines through a common
point, not including the vertical; the two lines that bound this dual wedge correspond to
the endpoints of the primal segment. In the primal, any point inside a wedge is a line that
stabs the segment. Therefore, the primal line that would stab most segments is in the dual a
point that belongs to as many double wedges as possible—a maximum depth problem that
can easily be solved by constructing the arrangement and then traversing its cells.

The obtained O(n2) time bound is essentially tight, as in this section we prove that
finding the stabbing number of a polygon, or, equivalently, finding the smallest k for which
the polygon is k-convex, is a 3SUM-hard problem. This family of problems is widely believed
to have an Ω(n2) lower bound for the worst case runtime [18, 20]. We start by giving the
following result, which follows directly from Theorem 4.1 in [18].

Lemma 1. For every integer a, let us consider the point pa = (a, a3) on the cubic y = x3.
Then if a, b, c are distinct integers, pa, pb, pc are collinear if and only if a+ b+ c = 0.

Proof. The points pa, pb, pc are collinear if and only if the determinant∣∣∣∣∣∣
a a3 1
b b3 1
c c3 1

∣∣∣∣∣∣ = (b− a)(c− a)(c− b)(a+ b+ c)

vanishes, which, the numbers being different, happens exactly when a+ b+ c = 0.

We next show that the points px with x ∈ Z on the cubic y = x3 can be replaced by
infinitesimally small vertical segments Sx with upper endpoint px, such that three of them
can be stabbed by a single line if and only if their three upper endpoints are collinear.

Lemma 2. Let m, a, b, c,M be five integers such that m < a < b < c < M . Let ε = 1
6(M−m)

and let st be the (vertical) segment with endpoints pt = (t, t3) and p′t = (t, t3−ε). Then sa, sb
and sc can be stabbed by a single line if and only if pa, pb, and pc are collinear.
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Proof. Assume that the points pa, pb, pc are not collinear, and let us take three points qa =
(a, a3 − ε1), qb = (b, b3 − ε2), qc = (c, c3 − ε3), with 0 ≤ ε1, ε2, ε3 ≤ ε, i.e., three points on the
segments sa, sb and sc. The points qa, qb, qc would be collinear if and only if the determinant∣∣∣∣∣∣

a a3 − ε1 1
b b3 − ε2 1
c c3 − ε3 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a a3 1
b b3 1
c c3 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
a −ε1 1
b −ε2 1
c −ε3 1

∣∣∣∣∣∣ =
= (b− a)(c− a)(c− b)(a+ b+ c)︸ ︷︷ ︸

z

+ ε1(b− c)− ε2(a− c) + ε3(a− b)︸ ︷︷ ︸
δ

is 0, but this is impossible because by Lemma 1, z is an integer different from 0, which
cannot become 0 by the addition of δ, because

|ε1(b− c)− ε2(a− c) + ε1(a− b)| ≤ |ε1(b− c)|+ |ε2(a− c)|+ |ε3(a− b)| ≤ ε · 3(M −m) =
1

2
.

Theorem 1. The problem of finding the stabbing number of a polygon is 3SUM-hard.

Proof. The 3SUM problem is defined as follows: Given a set S of n integers, do there exist
three elements a, b, c ∈ S such that a + b + c = 0? We will prove below that this problem
can be reduced in O(n log n) time to the problem of computing the stabbing number of an
n-gon. In other words, using the notation in [18],

3SUM ≪O(n logn) stabbing number of a polygon.

Let x1, . . . , xn be the input integers. We proceed to the reduction by steps.

pa1

P1

pm q

pa2

pat
pM

Figure 8: Polygon P1 with vertices on the cubic y = x3 (dashed). The scale of the axis is
not 1 : 1, to make the figure visible.

Step 1. Sort the input numbers; let y1 ≤ y2 ≤ · · · ≤ yn be the resulting list, L. This step is
done in O(n log n) time.
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Step 2. If 0 appears thrice in L, exit with a sum of three numbers in the input being 0,
otherwise continue. The step is completed in linear time.

Step 3. If a ̸= 0 appears at least twice in L, check whether −2a ∈ L. If so, exit with a
sum of three numbers in the input being 0, otherwise continue. The step is completed in
O(n log n) time, as binary search can be used in the sorted list (in fact, O(n) time is sufficient
by scanning the list from left to right and from right to left, in a coordinated simultaneous
advance).

Step 4. Remove multiples from the list L so that each number appears exactly once. This
requires linear time. Let a1 < a2 < · · · < at (where t ≤ n) be these numbers.

Step 5. Define m = a1 − 1, M = at + 1, and q = (M,m3). Now let us consider the polygon
P1 whose vertices, described clockwise, are pmpa1pa2 . . . patpMq, where px = (x, x3), as in the
preceding lemma (Figure 8). Observe that the stabbing number of P1 is 4, and that the
polygon can be constructed in O(n) time.

pa = (a, a
3)

p
′

a
= (a, a

3
− ε)

va = (a + ε
2
, (a + ε

2)3)

ua = (a − ε
2
, (a − ε

2)3)

Figure 9: Polygon P2 with vertices on the cubic y = x3 replaced by infinitesimal vertical
slots.

Step 6. Next we modify the polygon P1 to become the polygon P2 whose vertices, described
clockwise, are pmua1p

′
a1
va1ua2p

′
a2
va2 . . . uatp

′
atvatpMq, where p′x = (x, x3−ε), ux = (x−ε2, (x−

ε2)3), vx = (x+ ε2, (x+ ε2)3)); see Figure 9. This polygon can be constructed in O(n) time,
and in the vicinity of the point pai its stabbing number changes locally from 1 to 3; see
Figure 10. Let sai be the segment joining uai to p′ai . Therefore, the stabbing number of P2 is
10 if and only if three of the segments sai can be simultaneously stabbed, and 8 otherwise,
as two of those segments can always be stabbed.

+1 +3

Figure 10: From P1 to P2 the stabbing number locally increases from 1 to 3.

Step 7. Compute the stabbing number of polygon P2 using the best possible algorithm.

Step 8. If the stabbing number of polygon P2 is 10, conclude that there were three numbers
in the initial input such that their sum is 0; if the stabbing number of P2 is 8, conclude that
there are no such three numbers.
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The correctness of Step 8 is a direct consequence of Lemma 1 and Lemma 2. As all steps
but Step 7 have overall complexity O(n log n), we conclude that Step 7, the computation of
the stabbing number of a polygon, is a 3SUM-hard problem, as claimed.

As an immediate consequence we obtain:

Corollary 1. The problem of computing the smallest k such that a given polygon is k-convex
is 3SUM-hard.

Also, if we replace Step 7 in the proof of Theorem 1 by checking whether or not polygon
P2 is 4-convex, we get:

Corollary 2. The problem of deciding whether a given polygon is 4-convex is 3SUM-hard.

Although the stabbing number of a set of segments and the stabbing number of a polygon
are related, and can be even taken as the same at first glance, the exact relation depends on
the definitions, and in the literature a variety of them can be found. The stabbing number
of a set of (closed) segments is defined in [15] as the maximum number of segments that
can be intersected by a line, and can be computed for n given segments in O(n2) time using
the algorithm described at the beginning of Section 2.2. Notice that with this definition
the boundary of a convex polygon with more than three vertices is a set of segments having
stabbing number 4, given by any line joining a pair of nonadjacent vertices, while the stabbing
number of the polygon itself, as defined in this paper, would be 2. In fact, by considering
simple polygons that have many collinear vertices that are not adjacent it is possible to
make these two numbers quite apart, therefore the two concepts should not be confused.
However, for the polygon constructed in the proof of Theorem 1 both numbers coincide,
because an intersection of a line with the cubic y = x3 yields 3 intersections that can be
made 3 crossings, and reversely, when the point is replaced by the gadget for input points
with integer coordinates used in the proof, and the cubic line by the polygon boundary.
Therefore, we also get the following consequence:

Corollary 3. The problem of finding the stabbing number of a set of segments is 3SUM-hard.

2.3 Fast triangulation

Triangulating a simple polygon in o(n log n) time with a simple method is a challenging open
problem. For k-convex polygons, this can be achieved, because we can sort the vertices of
a k-convex polygon P in any given direction (say, x-direction) in O(kn) time: Simply scan
around ∂P and use insertion sort, starting each time from the place where the abscissa of
the previous vertex has been inserted. After insertion, any xj takes part in at most 2k − 1
comparisons, because otherwise the vertical line x = xj would intersect P in more than k
components. After sorting the vertices, a simplified plane sweep method can be used to
build a vertical trapezoidation [10, 17] (and then a triangulation) of P . Only trivial data
structures are needed, because each vertex can be processed, with a brute-force approach,
in time O(k) (by the k-convexity of P ). We conclude:

Proposition 1. Any k-convex polygon can be triangulated in O(kn) time and O(n) space.
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Using suitable data structures, a faster yet still implementable algorithm is possible, as
we show next. Call a polygon k-monotone if every vertical line intersects the interior of the
polygon in at most k intervals. (This property is implied by k-convexity, and is equivalent
to x-monotonicity for k = 1.) Actually, we do not even need the polygon to be simple, we
just need a sequence of x-coordinates such that every other x-coordinate comes between at
most 2k consecutive pairs of x-coordinates.

Lemma 3. The vertices of any k-monotone polygon can be x-sorted in O(n log(2+k)) time.

Proof. We use a binary insertion sort, in which we add the points in order along the polygon
into a balanced binary search tree. The binary search tree has the dynamic finger property :
inserting an element that has rank r different from the previously inserted element costs only
O(log(2 + r)) time. (For example, splay trees [32] and Brown & Tarjan finger trees [8] both
have this property.) Once the elements are inserted into the binary search tree, we simply
perform a linear-time in-order traversal to extract them in sorted order.

Now we find the bound on the total cost of the insertions. When we insert an element of
rank difference r from the previously inserted element, we can charge this cost to r points
formed from projecting (vertically) all vertices onto all edges of the polygon. There are at
most O(nk) such points of projection, so the total number of charges is at most O(nk).
Thus the total insertion cost is O(

∑n
i=1 log(2 + ri)) where

∑n
i=1 ri = O(nk). Such a sum is

maximized when the ri are all roughly equal, which means that they are all Θ((nk)/n) =
Θ(k). Therefore the total cost is at most O(n log(2 + k)).

To see that this bound is optimal in the comparison model, consider the case in which
the polygon is a comb with k tines. Then sorting the x-coordinates is equivalent to merging
k sorted sequences of length n/k, which is known to take Θ(n log k) time in the worst case.

Lemma 3 yields a fast triangulation method for general k-convex polygons. We first sort
the vertices of the k-convex polygon P in a fixed direction, in O(n log k) time. Again, a
plane sweep is used to compute a triangulation of P . As the intersection of P with the
sweep line is of complexity O(k) only, by the k-convexity of P , each of the n vertices of P
can be processed in O(log k) time during the sweep.

Theorem 2. Any k-convex polygon can be triangulated in O(n log k) time and O(n) space.

3 Two-Convex Polygons

3.1 Characterization

In this section we give a characterization of 2-convex polygons that allows their recognition
in time O(n log n), and a description of their structure that will be used later in several of
our results.

We observe that k-convexity is a property that may be lost by small perturbations on
the positions of the vertices of a polygon. For example, small changes in the positions
of some vertices in the polygon of Figure 4 (right), could yield a 2- or 3-convex polygon.

11



L1

L2

L3

L

b)a)

Figure 11: a) L is a 4-stabber. b) L1 and L2 are inner tangents, but L3 is not.

As a consequence, stabbing a polygon along its edges will not, in most cases, give enough
information for deciding its k-convexity.

We will use the following terminology to describe different relative positions between a
line L and a polygon P :

– L is called a j-stabber of P if it crosses ∂P at least j times (see Figure 11.a for an
example of a 4-stabber).

– L is an inflection line if it contains an inflection edge of P .

– L is tangent to P at vertex v if it passes through v without crossing ∂P .

– L is an inner tangent if it is tangent to two nonconsecutive reflex vertices of the polygon,
and there are points interior to the polygon in each of the three intervals in which these
two points split the line (see Figure 11.b).

Lemma 4. A simple polygon P is 2-convex if and only if P has no inner tangent, and no
inflection line that can be infinitesimally perturbed to a 6-stabber.

Proof. The ‘only if’ implication is obvious, because an inner tangent can also be infinitesi-
mally perturbed to a 6-stabber.

To prove the ‘if’ implication, assume that P is not 2-convex. Then there exists a 6-stabber
L of P . Assuming that L is not vertical, let c1, . . . , c6 be the six left-most crossings of L
with ∂P , ordered left to right. Two types of crossing pattern arise, according to whether
polygonal chains between c2 and c3 and between c4 and c5 are on the same side of L or
not (see Figure 12). If the chains are on different sides, then the geodesic path between c2
and c5 contains a portion of an inner tangent. If the chains are on the same side, consider
the vertices of chains c2 · · · ce and c4 · · · c5 and let α be the furthest one to L. Without
loss of generality, we can assume that α ∈ c4 · · · c5, as in Figure 12 (right). Let ab be the
first inflection edge that we find when moving from c2 clockwise (in the figure, a = c2). If
the corresponding inflection line intersects the chain c4 · · · c5 then it can be infinitesimally
perturbed to a 6-stabber. Otherwise, the geodesic path between a and c5 contains a portion
of an inner tangent.

12



c1 c2 c3

c4 c5

c6
c2

c3 c4 c5 c6

L L

c1
b

Figure 12: Patterns for a 6-stabber (the interior of the polygon is shaded).

3.2 Recognition

Suppose that we want to decide if a polygon P is 2-convex. (Assume that P is not convex;
the problem is trivial, otherwise.) Our recognition algorithm is based on Lemma 4 and
proceeds in two steps. In the first one, for each reflex vertex u we consider the four rays
defined by the adjacent edges. If any of these rays intersects ∂P more than once, then a
6-stabber exists. This can be checked in O(n log n) time using the result in [9] to process the
interior of the polygon and its pockets (because we compute two intersections for at most
one ray). In this step we can also take care of degenerate situations, when one of these rays
contains another vertex of the polygon: it can be easily checked in constant time whether
the ray can be perturbed to a 6-stabber, or not.

For the second step, we observe that the set of lines tangent to the reflex vertex v (and
not containing the edges adjacent to v) is mapped under the standard duality transform to
an open segment (if the vertical line is not tangent to v) or to the complement of a segment
in a line (if the vertical line is tangent to v). Therefore, the existence of an inner tangent
(not found in step 1), reduces to the problem of checking if there exists an intersection in a
set of lines segments, which can be solved in O(n log n) time and O(n) space (see Theorem
7.9 in [28]).

We have then the following result:

Theorem 3. Deciding if a simple polygon P with n vertices is 2-convex can be done in
O(n log n) time and O(n) space.

3.3 Shape structure

We have given a geometric characterization of 2-convex polygons, in Subsection 3.1. The
present subsection aims at giving a qualitative description of their shape. Recall that the
polygons we consider do not have two consecutive collinear edges. Therefore, the inner angle
at vertex u is either smaller or bigger than π. In the first case, the vertex is convex, while
in the second case it is reflex.

Lemma 5. Let P be a 2-convex polygon. Let C = p0p1 . . . pt be the chain of vertices along
P that connects (counterclockwise) two consecutive vertices p0, pt on the convex hull CH(P ).
Then C can be partitioned into three chains C1 = p0p1 . . . pr, C2 = pr+1 . . . ps, and C3 =
ps+1 . . . pt, for 0 ≤ r ≤ s < t, such that all vertices in C1 and C3 are convex (in P ), while
all vertices in C2 are reflex.
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Proof. If C2 is empty, the lemma is obviously true, so we assume that the chain C contains
at least one reflex vertex. Suppose that the line L defined by p0 and pt is horizontal, and
that P lies below it. Let pk be the last point of C to be hit when we move L down, in a
parallel sweep. Observe that pk is necessarily a reflex vertex. Let us recall that an inflection
edge is adjacent to a reflex vertex and to a convex vertex and that, according to Lemma 4,
2-convex polygons do not have 4-stabbers containing an inflection edge. We are going to see
that there is at most one inflection edge in the chain p0 . . . pk. Of course, the same applies
to the chain pk . . . pt. Let pipi+1 be the first inflection edge starting from p0 (see Figure 13.a)
and assume that there exists a convex vertex pj in the chain pi+1 · · · pk. Then we have that
pj−1pj is an inflection edge supporting a 4-stabber: the ray pjpj−1 intersects the polygon
at least once, while the ray pj−1pj intersects the chain pk . . . pt and therefore intersects the
polygon at least twice.

Observe that the chains C1 and C3 might be singletons in some cases, and that C2 might
be empty. However, the generic aspect of a pocket and the shape of a 2-convex polygon are
as shown in Figure 13.b). The next result follows directly:

Corollary 4. If the convex hull of a 2-convex polygon P has k vertices, then the boundary
of P can be decomposed into at most k convex chains and k reflex chains.

a) b)

p0pt

pk

pt+1

pn

pi

pi+1

pj−1

pj

Figure 13: Illustration for the proof of Lemma 5.

The Erdős-Szekeres Theorem says that every set of n points in general position contains at
least log n points that are in convex position, and that this value is asymptotically tight [13].
As every point set can be ‘polygonized’, one cannot expect a better value when the points
are chosen from the set of vertices of an arbitrary polygon. However, when a point set is the
set of vertices of a 2-convex polygon, we can improve this bound as follows.

Theorem 4. Every 2-convex polygon with n vertices has a subset of ⌈
√

n/2⌉ vertices in
convex position. This bound is tight.

Proof. By Corollary 4, the boundary of a 2-convex polygon with k vertices on its convex hull
can be decomposed into at most k convex chains and k reflex chains. If k ≥ ⌈

√
n/2⌉, we are
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done, otherwise one of the 2k chains necessarily has size at least ⌈
√
n/2⌉. The amoeba-like

example in Figure 13.b), with k = ⌈
√

n/2⌉ vertices in the convex hull and 2k chains of equal
size shows that this bound is tight.

We conclude this section with a consequence of the preceding theorem.

Corollary 5. If an n-gon is 2-convex, then its vertices can be grouped into at most 2
√
2n

subsets, each in convex position.

Proof. Let S(n) be the number of convex subsets needed to partition the vertex set of a
2-convex polygon with n vertices. We show that S(n) ≤ α

√
n by induction over n. The

induction base for n = 3 is obvious, and valid for any α ≥ 1. By Theorem 4 we find one
convex subset of size at least ⌈

√
n/2⌉ which is either the set of vertices of the convex hull,

or one of the 2k chains mentioned in Corollary 4. In both cases, it is clear that if we delete
the points and consider the new polygonization given by the original order of the points the
remaining points define also a 2-convex polygon and we have S(n) ≤ 1 + S(⌊n−

√
n/2⌋) ≤

1+α
√
⌊n−

√
n/2⌋, where the last inequality comes from the induction hypothesis. To prove

the corollary it is sufficient to show that 1 + α
√

n−
√
n/2 ≤ α

√
n. Standard manipulation

shows that this is true for any α ≥ 2
√
2 and any n ≥ 1.

4 General k-Convex Sets

The union or intersection of simple polygons may not be a polygon. In view of this fact,
the issue of how the degree of convexity behaves with respect to these operations is not
meaningful for this class of objects. In this section, we consider larger classes of sets in R2

for which these natural questions may be discussed. We first study some properties of
compact 2-dimensional (not necessary polygonal) subsets of R2.

Lemma 6. Given a k-convex set Q1 and an m-convex set Q2, the union Q1 ∪ Q2 is a
(k +m)-convex set, which is the maximum attainable value.

Proof. The number of crossings of a line with the boundary of Q1 ∪ Q2 can be at most
2k + 2m. On the other hand, if Q1 and Q2 are disjoint and the line that gives k and m
connected components, respectively, is the same, the value is achieved.

Lemma 7. Let Q1 and Q2 be, respectively, k-convex and m-convex sets such that the in-
tersection is a 2-dimensional set. Then, Q1 ∩ Q2 is a (k +m − 1)-convex set, which is the
maximum attainable value.

Proof. An oriented line will cross the boundary of Q1 at most 2k times and the boundary
of Q2 at most 2m times. However, the first intersection point a does not contribute to the
total number of crossings with Q1 ∩Q2 unless a ∈ Q1 ∩Q2, in which case it contributes only
once instead of twice as crossing. The same happens with the last point, which gives the
upper bound. An example proving the tightness appears in Figure 14(a).
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a) b)

Figure 14: Intersecting k-convex sets

Corollary 6. Let Q1, . . . , Qm be a family k-convex sets such that the intersection is a 2-
dimensional set. Then,

∩m
i=1 Qi is a (m(k − 1) + 1)-convex set, which is the maximum

attainable value.

Proof. The upper bound follows from the preceding lemma, and a construction giving its
tightness is shown in Figure 14(b).

Theorem 5. There is no Helly-type theorem for k-convex sets.

Proof. We are constructing a family ofm 2-convex sets such that any subfamily has nonempty
intersection yet there is no point common to all of them. Let Qm be a regular polygon with
m edges e1, . . . , em (refer to Figure 15). Let P ∗

i be the polygonal chain obtained from the
boundary of Qm by removing edge ei and an infinitesimal portion of ei−1 and ei+1. Finally,
let us give some slight thickness to the chain so it becomes a polygon Pi. Notice that the
polygons P1, . . . , Pm are 2-convex, the intersection

∩m
i=1 Pi is clearly empty, while the inter-

section of every proper subfamily F is nonempty because it contains the intervals ej for all
those Pj ̸∈ F .

The preceding lemmas apply to k-convex sets in general, not only to sets with bounded
description complexity. However, a significant difference appears in our next results, that
are possibly the most natural to explore, because they involve transversal lines, which are
precisely the main concept underlying the definition of k-convexity.

Let us recall [37] that given a family of sets Q1, . . . , Qm, a line L is said to be a transversal
of the family if L has a nonempty intersection with each of the sets. When the sets are convex,
the ordering in which they are traversed (disregarding the orientation of the line) is called
a geometric permutation, a topic that has received significant attention [37]. In particular,
it has been proved that m compact disjoint convex sets admit at most 2m − 2 geometric
permutations, which is tight [11].
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ej

Figure 15: No Helly-type theorem for k-convex sets

Let us consider now transversals of 2-convex sets. Notice that every object will appear at
least once, but may appear twice on the transversal, which we consider as combinatorially
different cases of the associated generalized geometric permutation. Formally, let F be a
family of 2-convex sets and let L be a line intersecting all members of F . The generalized
geometric permutation induced by L is a list of labels, one for each connected component of
the intersection of L with the sets of F (see Figure 16 for an illustration). The following is
clearly the first natural question raised by this definition: What is the maximum number of
generalized geometric permutations a family of m disjoint 2-convex sets may have?

Theorem 6. The number of generalized geometric permutations of a set of m disjoint 2-
convex polygons can be exponential in m.

Proof. A nose of a object P is a zig-zag sequence of a reflex and a convex vertex of the
boundary of O as depicted in Figure 17(a). Consider a polygon with noses constructed in a
way that they lie essentially in the direction of the boundary where they have been added
to. The shaded area in Figure 17(a) indicates the region which is not intersected by a line

A

B AB

ABB

ABAB

AAB

Figure 16: While two convex sets define a single geometric permutation, two 2-convex sets
can define several generalized geometric permutations.
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(a) (b)

(c)

ABBC

ABC

AABBCC

AABBC

AABCC

AABC

ABBCC

ABCC

CBA

Figure 17: (a) and (b): 2-convex polygons can have an unbounded number of noses. (c):
The number of generalized geometric permutations for a set of 2-convex polygons can be
exponential.

tangent to one of the vertices of the nose, that is, a line e within this region intersects
the nose only once. Thus we can iteratively construct further noses in this region without
destroying the 2-convexity of O. Figure 17(b) shows an example where the principle shape
of O is part of a disk. Observe that when the radius of the disk is large enough we can
arrange an arbitrary number of flat noses such that O stays 2-convex.

Let Ri be an object which has the base shape of an axis-aligned rectangle, where the
left side is actually part of a circle with sufficiently large radius and a center point far to
the right of Ri. We place 2i−1 noses along this side, so that Ri stays 2-convex as described
above. Next we arrange m objects R1 to Rm from left to right, as depicted in Figure 17(c)
for m = 3. We position the noses for each Ri in a regular way such that a rotating line (see
the dashed lines in Figure 17(c)) intersects the noses in the same manner as the digit “1”
shows up in the sequence of all 2m binary numbers of length m. Thus, we get 2m different
generalized geometric permutations for this setting, as each object appears twice if the nose
is intersected, but only once otherwise.

Note that the complexity of the polygons in the preceding proof is exponential in m. The
next theorem gives a tight bound for the number of generalized geometric permutations in
terms of the total complexity of the polygons.

Theorem 7. The maximum number of generalized geometric permutations of a set of 2-
convex polygons with a total of n edges is Θ(n2).
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Figure 18: The number of generalized geometric permutations for a set of 2-convex polygons
can be quadratic.

Proof. As the standard duality transform maps each edge to a double wedge, the induced
arrangement of 2n lines in the dual plane yields a quadratic number of cells that bound from
above the number of possible ways of stabbing the set of objects.

To see that the bound is asymptotically tight, we give a construction using n 2-convex
polygons; in fact, the simplest possible ones, namely, nonconvex quadrilaterals. Let Q∗

1 =
a∗1b1c1d1 be the quadrilateral shown in Figure 18. Let h be a horizontal line through a∗1 and
let Q∗

i = a∗i bicidi be translates of Q1 in such a way that all of them are pairwise disjoint and
a∗1, a

∗
2, . . . , a

∗
n appear in this order on h. Finally, let us perturb infinitesimally a∗i to ai in such

a way that

a) points a1, a2, . . . , an are in general position,

b) for all i, j, k, with i ̸= j, the line aiaj leaves above the point ck and below the point dk.

For i = 1, . . . , n, let Qi be the quadrilateral with vertices aibicidi. There are
(
n
2

)
lines of

the type aiaj; each of them leaves above and below a different set of points ak, and is a
transversal because it crosses all the segments bkck for every k. Now, if ak is below the
transversal, Qk is intersected once, while if ak is above the transversal, Qk is intersected
twice. Therefore, we have obtained

(
n
2

)
generalized geometric permutations.

Observe that the two preceding theorems apply mutatis mutandis to k-convex sets, be-
cause 2-convex sets are also k-convex for k ≥ 3.

5 Discussion and Open Problems

In this paper we have considered a new concept of generalized convexity. Moving from
convexity to 2-convexity is seemingly a small change, as we are just accepting lines to intersect
in at most two connected components instead of one. It is remarkable that this modest
departure has strong consequences in the complexity of the new class of objects, as we have
seen in this paper; obviously, even more when the degree of convexity is increased. Several
open problems remain and many interesting questions can be raised. We list some of them
below.

1) Can the recognition of 2-convex polygons be carried out in linear time, improving on
the O(n log n) algorithm we provide?
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2) Finding the smallest k such that a given polygon is k-convex is a 3SUM-hard problem.
In particular, recognizing 4-convexity is already 3SUM-hard. We do not know whether
the situation is the same for 3-convexity or whether a subquadratic time algorithm
exists for this case.

3) Is it possible to generalize Theorem 4? For example, is it true that every k-convex poly-
gon with n vertices has a large subset of vertices that are the vertices of a (k − 1)-convex
polygon?

4) Let us define the k-convex hull of a point set S as the smallest area polygon which
is k-convex, has a subset T ⊂ S as vertex set and every point in S r T is inside the
polygon. Which is the complexity of computing this k-convex hull? Observe that for
k = 1 this notion is the usual convex hull of a point set.

5) Give combinatorial bounds and efficient algorithms for decomposing a polygon into
k-convex subpolygons. This is a classical problem when convex subpolygons are con-
sidered [19]. The decomposition into pseudotriangles, a particular class of 2-convex
polygons, has also been studied [3, 30]. However, the latter result might be improved
by considering more general 2-convex polygons.

6) A k-convex decomposition of a set S of n points in the plane is a decomposition of its
convex hull into k-convex polygons such that every point in S is a vertex of some of
the polygons. For k = 1, a triangulation suffices, though it has been proved that if we
allow arbitrary convex sets the number can be reduced [25]. On the other hand, it has
been shown that there exist always a decomposition into exactly n−2 pseudotriangles,
which are 2-convex polygons [30]. It is an intringuing open problem to decide whether
this number can be reduced to sublinear if we allow arbitrary 2-convex polygons.

7) As mentioned in the introduction of the paper, applications of k-convex polygons arise
in Art Gallery type problems. In this context, instead of illuminating a polygon, we
want to cover the interior of a simple polygon with a set of j-modems, whose signal
can cross the boundary of the polygon j times. Our last open problem is that of
establishing bounds on the number of j-modems needed to cover k-convex polygons
with n vertices. See [2, 6, 14] for some partial results on this problem.

Finally, let us mention that in this paper we have focused on k-convex polygons. It is nat-
ural to define a similar concept for finite point sets, namely, being in k-convex position, where
k is given by the smallest degree of convexity attained when all possible polygonizations of
the point set are considered. This issue is considered in a companion paper [1].
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