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Convexifying Polygons Without Losing Visibilities
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Abstract

We show that any simple n-vertex polygon can be made
convex, without losing internal visibilities between ver-
tices, using n moves. Each move translates a vertex of
the current polygon along an edge to a neighbouring
vertex. In general, a vertex of the current polygon rep-
resents a set of vertices of the original polygon that have
become co-incident.

We also show how to modify the method so that ver-
tices become very close but not co-incident.

The proof involves a new visibility property of poly-
gons, namely that every simple polygon has a visibility-
increasing edge where, as a point travels from one end-
point of the edge to the other, the visibility region of
the point increases.

1 Introduction

There are many interesting problems about reconfigur-
ing geometric structures while maintaining some proper-
ties. Examples include: flips in triangulations [4], push-
ing and sliding block puzzles [15], morphing of poly-
gons and planar graphs [17, 20], and linkage reconfig-
uration [6, 22]. Reconfiguration has also been studied
outside the geometric domain [18].
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¶Departament de Matemàtica Aplicada II, Universitat
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This paper is about convexifying a simple polygon,
i.e., making the polygon convex while maintaining sim-
plicity. If no other structure must be maintained, this
can be done in a trivial way, moving only one vertex at
a time. When edge lengths must be maintained, this
is a major result, namely the Carpenter’s Rule The-
orem [6, 22], and the reconfiguration process involves
moving all vertices simultaneously.

In the Open Problem session at CCCG 2008 [10],
Satyan Devadoss asked whether a polygon can be con-
vexified without losing internal visibility between any
pair of vertices, and in particular, whether this can be
done by moving only one vertex at a time [11]. We give
a positive answer, with the caveat that vertices become
co-incident during the transformation, so one vertex of
the polygon in general represents a set of vertices of the
original polygon. We show that any polygon can be
convexified by a sequence of moves, where each move
strictly increases the set of pairs of vertices that are
internally visible, and each move translates one vertex
along an edge of the polygon to a neighbour. In terms
of the original polygon, each move translates a set of
vertices along a straight line to join another set of ver-
tices.

In Section 3 we show that it is possible to modify
our method so that vertices become very close but not
coincident. In this case, a move operates on a “cluster”
of nearby vertices. Internal vertex visibilities are never
lost, but a single move does not necessarily add any
internal vertex visibilities.

Our main tool, which may be of independent interest,
is to show that every polygon has a visibility-increasing
edge where, as a point travels from one endpoint of the
edge to the other, the visibility region of the point in-
creases.

Previous Work

In the original model where coincident vertices are not
allowed, Aichholzer et al. [1] showed that any monotone
polygon can be convexified without losing vertex vis-
ibilities. Their transformation moves one vertex at a
time, but the number of vertex moves is not polynomi-
ally bounded. If all vertices may move simultaneously,
they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
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tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [5] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i + 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [12, 7, 14, 24] and flipturns [2, 3].

Many properties of visibility graphs of polygons
have been studied—see the books by Ghosh [13] and
O’Rourke [21].

Definitions

Two points inside a polygon P are visible if the line
segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b′ on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-
ing through b′, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v 6= a exterior to the pocket is convex.
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Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and
not exterior to Pocket(c, b). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(c, b) such that v is reflex
and u does not see into Pocket(c, b). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma.

We are left with the case where b is a convex vertex
but (b, a) is not a visibility-increasing edge. Note that
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Figure 2: Visibility-increasing edges in the general case,
where we apply induction on (y, x).

because a is a reflex vertex, V (a) contains a vertex not
in V (b). Therefore, the only way that (b, a) can fail to
be visibility-increasing is that there is a point p on (b, a)
and a point t on the boundary of P such that t sees p,
but t does not see a. See Figure 2. Now we rotate
the line through t and p about t until it hits the poly-
gon boundary. More precisely, consider the first point
q along the line segment pa such that the line segment
qt does not lie in the interior of P . Then some vertex x
lies on the line segment qt. Note that x must be a reflex
vertex. There are two paths on the polygon boundary
from x to t. Take the path that does not contain a, and
let y be the neighbour of x on this path. (It may happen
that y = t.) We will apply induction on the edge (y, x).
Observe that Pocket(y, x) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and
not exterior to Pocket(y, x). Therefore we can apply in-
duction to conclude that there is a visibility-increasing
edge (u, v) exterior to Pocket(y, x) such that v is reflex
and u does not see into Pocket(y, x). Then u cannot see
into Pocket(b, a), so (u, v) satisfies the lemma. �

Proof. [of Theorem 1] The proof is by induction on
the number of vertices. If the polygon is convex, there
is nothing to prove, so suppose there is a reflex vertex.
Then by Lemma 2, there is a visibility-increasing edge
(u, v). The plan is to move vertex u to vertex v. See Fig-
ure 4. Let w be the other neighbour of u on the polygon
boundary. We have V (u) ⊆ V (v) and w ∈ V (u), so w
must be visible to v. In particular, u is a convex vertex
and the line segment wv does not intersect the polygon
boundary except at its endpoints. Therefore moving u
to v results in a simple polygon. Observe that no vertex
visibilities are affected by the move, except that u gains
visibilities once it reaches v (if not before). Note that
u may become collinear with two other vertices of the
polygon at an intermediate point of the move, but this
causes no problems. �

3 Avoiding coincident vertices

The convexification process described in the previous
section allows vertices to become coincident, so each
vertex actually represents a set of original vertices. In
this section we show how to replace each such set of co-
incident vertices by a cluster of vertices that are close
together but not coincident. A single move will move
[part of] a cluster of vertices. We will preserve the prop-
erty that vertex visibilities are never lost. However, this
modification comes at the cost that a single move might
not increase vertex visibilities.

Figure 3: A single edge (top), a reflex cluster (left) and
a convex cluster (right). Shaded areas indicate the in-
terior of the polygon.

The basic idea is to replace an edge uv by a slightly
outward-bent convex chain, with some points on a shal-
low circular arc close to u, and other points on a shallow
circular arc close to v, see Figure 3 (top). In general, a
cluster will consist of a representative vertex v, together
with the vertices that have been moved to join v, and
now lie on two circular arcs incident to v. The repre-
sentative vertex v will be at the same point in the plane
as it was in the original polygon. If C is a cluster with
representative vertex v, we will say that C is the clus-
ter of v. Figure 3 depicts a reflex and a convex cluster.
All vertices of a cluster lie in the ε-neighbourhood of the
representative vertex for some sufficiently small ε. In a
convex cluster all vertices see each other, while in a re-
flex cluster only vertices in the same arc see each other,
and the representative vertex sees the whole cluster.

We now consider the move operation from the previ-
ous section as it operates on clusters. The move oper-
ation always moves a convex vertex u to join a reflex
vertex v. See Figure 4. Vertex v may remain reflex
(the case shown on the left) or it may become convex
(the case shown on the right). Apart from u and v, the
only other vertex affected by the move is w, the other
neighbour of u. The angle at w decreases, and w may
become convex.

When vertices are replaced by clusters, we must give
the details of how clusters are transformed and we must
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Figure 4: Moving vertex u along the visibility-increasing
edge (u, v) affects vertices u, v, and w. Vertex v may
remain reflex (left) or become convex (right).

show that vertex visibilities are never lost during a
move. The vertices affected by the move are: all of
u’s cluster; the part of v’s cluster on the uv chain; and
the part of w’s cluster on the uw chain.

Because each cluster is within some ε-neighbourhood
of the representative vertex of the cluster, global visibil-
ity is taken care of by our original approach (provided
the input set does not have collinear points). Thus,
we only have to argue about the local vertex visibilities
within a cluster and when joining clusters.

We first consider the situation at w. In the move
from Section 2, the edge (w, u) rotates around w. Let
Cw be the vertices of w’s cluster that lie on the chain
uw. As u’s cluster moves towards v, the set Cw will
rotate around w along with the long edge. See Figure 5.
Observe that w’s cluster may become convex during this
process.

w

Figure 5: Changes to w’s cluster as one chain rotates
about w.

It remains to consider how the convex cluster of u
joins the reflex cluster of v, taking into account that the
resulting cluster may be reflex or convex. See Figure 6.
Let Cv be the vertices of v’s cluster that lie on the chain
uv. First we translate u’s cluster in the direction of the
line through u and v. When the two circular arcs at the
ends of the uv chain meet, we transform so that all the
vertices of u’s cluster and all the vertices of Cv lie on
a single circular arc. We claim that this can be done
without losing visibilities.

From the above discussion we claim that we can prove
the following result.

Theorem 3 An n-vertex polygon can be convexified in
O(n) moves, so that visibilities between vertices are
never lost, and vertices never become coincident.

u
v

u
v u

v

Figure 6: Joining a convex cluster and a reflex cluster.

4 Discussion and Open Problems

We have shown that any simple polygon can be effi-
ciently convexified without ever decreasing the visibil-
ity graph, answering a question posed by Devadoss et
al. [11]. If coincident vertices are allowed, we move one
vertex at a time; if not, we move multiple vertices at
once. We believe that our result can be extended to
move only one vertex at a time without allowing coin-
cident vertices. The idea is to move the vertices of u’s
cluster over to v’s cluster one at a time.

In the same paper, Devados et al. ask about trans-
forming a polygon to decrease the visibility graph: can
any simple polygon be transformed to a polygon whose
visibility graph is a triangulation without ever increas-
ing the visibility graph? This question remains open.

For orthogonal polygons, it would be desirable to
maintain orthogonality. We conjecture than every sim-
ple orthogonal polygon can be convexified (i.e., trans-
formed to a rectangle) without losing visibilities, while
maintaining orthogonality. A minimal motion that
maintains orthogonality is to move one edge orthogo-
nal to itself (i.e., a horizontal edge moves vertically, and
vice versa). However, Figure 7 shows an example where
no edge can be moved orthogonally to gain visibilities.

It is possible that the current result can be generalized
to straight line drawings of planar graphs: Given a pla-
nar graph embedded in the plane as a straight-line draw-
ing, is it possible to transform the drawing so that every
internal face becomes convex, while remaining straight-
line planar, and without losing internal visibilities? Our
result is the special case where the drawing has only
one internal face. The fact that such a transformation
is possible, ignoring visibility constraints, is not at all
obvious, but follows from the result by Thomassen [23],
who showed (based on a result of Cairns [5]) that there is
a transformation between any two straight-line planar
drawings of the same embedded graph that preserves
straight-line planarity. Vertices become coincident dur-
ing this transformation, although that can be avoided by
keeping them close but distinct. The number of vertex
movements is not polynomially bounded. For further
discussion on morphing of graph drawings, see [19, 20].

Finally, we make two remarks about our result on
the existence of a visibility-increasing edge in any sim-
ple polygon. Since good things (like ears of polygons)
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come in pairs, it is natural to ask whether every simple
polygon has two visibility-increasing edges.

Visibility-increasing edges may have other uses in the
study of visibility graphs. A major open question is
whether visibility graphs of polygons can be recognized
in polynomial time (with or without the information
about which edges form the polygon boundary). This
is Problem 17 in the Open Problems Project [8].

Figure 7: An orthogonal polygon where no single edge
can be moved orthogonally to gain visibilities.
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