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Perfect k-colored matchings and k+2-gonal tilings
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Abstract

We derive a simple bijection between geometric plane
perfect matchings on 2n points in convex position and
triangulations on n+ 2 points in convex position. We
then extend this bijection to monochromatic plane
perfect matchings on periodically k-colored vertices
and (k + 2)-gonal tilings of convex point sets. These
structures are related to Temperley-Lieb algebras and
our bijections provide explicit one-to-one relations be-
tween matchings and tilings. Moreover, for a given el-
ement of one class, the corresponding element of the
other class can be computed in linear time.

1 Introduction

The Fuss-Catalan numbers f(k,m) = 1
m

(
km+m
m−1

)
are

known to count the number of k+2-gonal tilings of a
convex polygon of size km + 2, they go back to Fuss-
Euler (cf. [4]). Bisch and Jones introduced k-colored
Temperley-Lieb algebras in [1] as a natural generalisa-
tion of Temperley-Lieb algebras. These algebras have
representations by certain planar k-colored diagrams
with m(k+1) vertices on top and bottom. The dimen-
sion of such an algebra is f(k,m), with a basis indexed
by these diagrams. We call these diagrams plane per-
fect k-colored matchings or just k-colored matchings,
assuming from now on that they are plane and per-
fect. Since the number of k+2-gonal tilings coincides
with the number of k-colored matchings, these sets
are in bijection. Przytycki and Sikora [4] prove this
through an inductive implicit construction but do not
give an explicit bijection of the structures.

Furthermore, from work of Marsh and Martin [3],
one can derive an implicit correspondence between tri-
angulations and diagrams for k= 1. However, to our
knowledge, no explicit bijection is known.

In this paper, we will give bijections between these
two sets of plane graphs on sets of points in convex
position. We will first address the case k = 1 (Sec-
tion 2) and then treat the general case. Our main
theorems are the explicit bijections between the set
of k-colored matchings and the (k + 2)-gonal tilings
(Theorems 1 and 8). A key ingredient is the charac-
terization of valid k-colored matchings in Theorem 3.
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Due to lack of space, most proofs are deferred to the
full version of this paper.

2 Matchings and triangulations

We will draw the matchings with two parallel rows
of n vertices each, labeled v1 to vn and vn+1 to v2n
in clockwise order, and with non-straight edges; see
Figure 1(left). We will draw the triangulations (and
tilings) on n+2 points in convex position, labeled p1 to
pn+2 in clockwise order; see Figure 1(right). For the
sake of distinguishability, throughout this paper we
will refer to p1, . . . , pn+2 as points and to v1, . . . , v2n
as vertices.
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1,1,0,0,1,1,0,1,0,0,1,0
2,0,2,1,0,1

Figure 1: A perfect matching (left) and the corre-
sponding triangulation for n = 6 (right).

The above defined structures are undirected graphs.
We next give an implicit direction to the edges of these
graphs: an edge vivj (pipj) is directed from vi to vj
(pi to pj) for i < j, that is, each edge is directed from
the vertex / point with lower index to the vertex /
point with higher index. This also defines the outde-
gree of every vertex / point, which we denote as bi for
each vertex vi and as di for each point pi. For techni-
cal reasons, we do not count the edges of the convex
hull of a triangulation when computing the outdegree
of a point pi, with the exception of the edge p1pn+2.
We call the sequence (b1, . . . , b2n) of the outdegrees of
a matching (or the sequence (d1, . . . , dn) of the first n
outdegrees of a triangulation) its outdegree sequence;
see again Figure 1. We first show that for both struc-
tures, this sequence is sufficient to encode the graph.

For matchings, the outdegree sequence is a 0/1-
sequence with 2n digits, where n digits are 1 and n
digits are 0. Moreover, the directions of the edges
imply that an incoming edge at a vertex vj must be
outgoing for a vertex vi with i < j. Thus, we have
the condition

∑k
i=1 bi ≥ k/2 for any 1 ≤ k ≤ 2n,

that is, in any subsequence starting at v1, we have
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at least as many 1s as 0s. Such sequences are called
ballot sequences, see [2, p.69]. Obviously, the outde-
gree sequence of a matching can be computed from a
given matching in O(n) time. But also the reverse is
true: We consider the outdegrees from b1 to b2n. We
use a stack (with the usual push and pop operations)
to store the indices of considered vertices that still
need to be processed. Initially, the stack is empty. If
bi = 1, we push the index i on the stack. If bi = 0, we
pop the topmost index k from the stack and output
the edge vkvi. In this way, always the last vertex with
‘open’ outgoing edge is connected to the next vertex
with incoming edge, implying that the subgraph with
vertices vk to vi is a valid plane perfect matching. A
simple induction argument shows that the whole re-
sulting graph is plane and can be reconstructed from
the outdegree sequence in O(n) time.

For triangulations, first note that the outdegrees
of pn+1 and pn+2 are 0. Thus we do not lose infor-
mation when restricting the outdegree sequence of a
triangulation to (d1, . . . , dn). Similar as before, the
directions of edges imply that for any valid outdegree
sequence, it holds that

∑k
i=1 dn+1−i ≤

∑k
i=1 1 = k for

any 1 ≤ k ≤ n. This sum is precisely the maximum
number of edges which can be outgoing from the ‘last’
k points pn+1−k to pn. Recall that we do not con-
sider the edges of the convex hull, except for p1pn+2,
and thus the number of edges which contribute to the
outdegree sequence is exactly n − 2. As before, it
is straightforward to compute the outdegree sequence
from a given triangulation in O(n) time. For the re-
verse process, we again use a stack to store the in-
dices of considered points that still need to be pro-
cessed. We initialize the stack with push(n + 2) and
push(n + 1) and output all the (non-counted) edges
pipi+1 for 1 ≤ i ≤ n + 1. Then we consider the out-
degrees in reversed order, that is, from dn to d1. For
each degree di we perform two steps. (1) di times, we
pop the topmost index from the stack and after each
pop we output the edge pipk, where k is the (new)
topmost index on the stack. (2) We push i on the
stack. This process constructs the triangulation from
back to front. When processing pi, all points from
pi+1 to pn+2 that are still ‘visible’ from pi are in this
order on the stack. Thus, drawing the edges in the
described way generates a planar triangulation. At
the end of the process, the stack contains exactly the
two indices n + 2 and 1, which can be ignored.

So far we have shown that there exist one-to-one
relations between outdegree sequences on the one
side and matchings respectively triangulations on the
other side. We now present a bijective transform be-
tween outdegree sequences of matchings and those of
triangulations.

For a given outdegree sequence B = (b1, . . . , b2n)
of a perfect matching, we compute the outdegree di
for the corresponding point of the triangulation as the

number of 1s between the (i − 1)-st 0 and the i-th 0
in B for i > 1, and set d1 to the number of 1s before
the first 0 in B.

For the reverse transformation, we process the out-
degree sequence (d1, . . . , dn) of a triangulation from
d1 to dn and set the entries of B in order from b1 to
bn in the following way: For each entry di we first set
the next di consecutive elements (possibly none) of B
to 1; then we set the next element of B to 0.

It is an easy excercise to see that the two trans-
formations are inverse to each other, and that they
form a bijection between valid outdegree sequences of
triangulations and outdegree sequences of matchings.
Moreover, each transformation can be performed in
O(n) time. Figure 2 shows all corresponding perfect
matchings, triangulations, and outdegree sequences
for n = 3.

1,1,0,0,1,0 2,0,1

1,1,0,1,0,0 2,1,01,1,1,0,0,0 3,0,0

1,0,1,1,0,0 1,2,0

1,0,1,0,1,0 1,1,1

Figure 2: All perfect matchings, triangulations, and
outdegree sequences for n = 3.

Theorem 1 There exists a bijection between geo-
metric plane perfect matchings on 2n points in con-
vex position and geometric triangulations on n + 2
points in convex position. Further, for an element of
one structure, the corresponding element of the other
structure can be computed in linear time.

3 k-colored matchings

In this section we add colors to the vertices of
the perfect matchings and require the matching
edges to be monochromatic. For k ≥ 2, let
c1, . . . , ck be the k colors. We color the ver-
tices in a bitonic way, that is, in the order
c1, c2, . . . , ck−1, ck, ck, ck−1, . . . , c2, c1, c1, c2, . . . and so
on. In a perfect k-colored matching, all matching
edges connect vertices of the same color, and hence
n is a multiple of k; see Figure 3 for an example of a
k-colored matching with k = 3 colors and n = 9.

Clearly, any k-colored matching fulfills all condi-
tions of the previous section. But not every match-
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1, 1, 1|0, 1, 1|0, 0, 1|0, 0, 0|1, 1, 1|0, 0, 0

Figure 3: Perfect k-colored matching for k = 3 colors
and n = 9 and its outdegree sequence.

ing obtained in the previous section is a k-colored
matching and hence not every outdegree sequence of a
matching is an outdegree sequence of a valid k-colored
matching. Thus we now derive additional properties
to determine which outdegree sequences of matchings
correspond to k-colored matchings.

We denote k consecutive vertices vi, . . . , vi+k−1 that
are colored with either c1, . . . , ck or ck, . . . , c1 as a
block. In total we have 2n/k such blocks and they
form a partition of 2n vertices. Observe that within
a block, there cannot be a vertex with an incoming
edge after a vertex with an outgoing edge, as this
would cause a bichromatic edge. Hence, in a k-colored
matching, the outdegree sequence of any block has to
be of the form |0, . . . , 0, 1, . . . , 1| (where it can consist
entirely of 0 or 1 entries). For better readability, we
sometimes mark block boundaries in an outdegree se-
quence with vertical lines. We say that an outdegree
sequence (and the matching) fulfilling this property
has a valid block structure.

Lemma 2 Let M be a perfect matching with valid
block structure that is not a k-colored matching.
Then there exists an edge vsve in M with the fol-
lowing properties:

(i) The vertices vs and ve lie in different blocks, say
vs ∈ S and ve ∈ E.

(ii) The subsequence from vs+1 to ve−1 contains no
bichromatic matching edge.

(iii) The number of blocks between S and E is odd.

(iv) Let vs be the i-th vertex in S. Then ve is the
(i + 1)-st vertex in E.

Together with the previous observations, Lemma 2
implies the following theorem.

Theorem 3 A matching is a k-colored matching if
and only if it has a valid block structure and does not
contain an edge as described in Lemma 2.

Remark: For a given outdegree sequence we can
check in linear time if it is an outdegree sequence of
a k-colored matching by using the reconstruction al-
gorithm described in Section 2.

4 t-gonal tilings

For any t ≥ 3, a t-gonal tiling T on n + 2 points
in convex position, labeled p1 to pn+2 in clockwise
order, is a plane graph where every bounded face is
a t-gon and the vertices along the unbounded face
are p1, p2, . . . , pn+2 in this order; see Figure 4 for an
example. For the special case of t = 3, T is a tri-
angulation. In the next section, we will show that
the k-colored matchings on 2n vertices of the previ-
ous section correspond to k+2-gonal tilings of n + 2
points in convex position, where n = km for some in-
teger m > 0. This is a generalization of the fact that
matchings (i.e., k = 1) correspond to triangulations.
To this end we first derive several properties of t-gonal
tilings of convex sets.
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3,2,0,1,0,0,3,0,0

Figure 4: 5-gonal tiling corresponding to the 3-colored
matching of Figure 3 and the outdegree sequence of
its k-color valid triangulation.

The dual graph of a t-gonal tiling T has a vertex for
each bounded face T and two vertices are connected
by an edge if the corresponding faces share a common
edge in T (every pair of bounded faces shares at most
one edge). An ear of T is a t-gon which shares all but
one edge with the unbounded face and can thus be
cut off of T (along this edge) so that the remaining
part is a valid t-gonal tiling of n+2−(t−2) = n+4−t
points.

As the dual graph of any t-gonal tiling T is a tree, as
every tree has at least two leaves (where the minimal
case is obtained by a path), and as a leaf in the dual
graph of T corresponds to an ear in T , we have the
following observation.

Observation 1 Every t-gonal tiling with at least 2t−
2 points has at least two ears. At least one of these
ears is not incident to the edge p1pn+2.

Lemma 4 Any triangulation T on n + 2 points in
convex position contains at most one t-gonal tiling as
a subgraph.

A proof by induction, using Observation 1 can be
found in the full version of this paper.
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Obviously, if a triangulation T on n+ 2 points con-
tains a t-gonal tiling T as a subgraph, then n is divis-
ible by t − 2. Further, as T has at least two ears, T
contains at least two edges that cut off a triangulated
t-gon from T . We call such a t-gon that can be split
off from a triangulation T a t-ear of T , and the edge
along which the t-ear can be split off the ear-edge (of
the t-ear). Note that for t > 3, not every triangulation
contains t-ears.

Let T be a triangulation that contains a t-ear with
ear-edge prps for some r ≥ 1 and s = r+t−1 ≤ n+2.
Let B be the outdegree sequence of the corresponding
matching. If s < n + 2, then in B, the t-ear corre-
sponds to a subsequence W of B of length 2t− 3 that
starts with a 1 (for prps), ends with two 0s (as the last
point ps−1 of the ear cannot have outgoing edges), and
has t−1 0s and t−2 1s in total. If s = n+2, then in B,
the last 0 (the one ‘after’ pn+1) is not existing. Then
the according sequence is W = (b2n−2t+5, . . . , b2n),
which must be a ballot sequence.

5 k-colored matchings and k+2-gonal tilings

We say that a triangulation on n+ 2 points in convex
position is k-color valid if it corresponds to a k-colored
matching as defined in Section 3. The outdegree se-
quence of such a triangulation is then also called k-
color valid. A k+ 2-gonal tiling of n + 2 points is
called k-color valid if it can be completed to (i.e., is
a subgraph of) a k-color valid triangulation. In the
following, let t = k + 2.

Observation 2 Let T be a k-color valid triangula-
tion that contains a t-ear with ear-edge prps for some
r ≥ 1 and s = r+t−1 ≤ n+2. Let the first entry of the
subsequence W of B that corresponds to this t-ear be
the i-th entry within its block, for 1≤ i≤k. If s=n+2
then i = 1 and W = (|1, . . . , 1|0, . . . , 0|) = (|1k|0k|).
Otherwise, W = (1, . . . , 1|0, . . . , 0, 1, . . . , 1|0, . . . , 0) =
(1k−i+1|0k−i+1, 1i−1|0i).

The following three lemmas can be derived using
Observation 2. The proof of Lemma 5 also shows
that the extension is uniquely determined.

Lemma 5 Any k-color valid t-gonal tiling T on n+2
points can be extended by an ear at any edge e =
prpr+1, 1 ≤ r ≤ n + 1, so that the resulting t-gonal
tiling on n + k points is k-color valid.

Lemma 6 Let T be a k-color valid triangulation that
contains a t-ear with ear-edge prps for some r ≥ 1 and
s = r + t− 1 ≤ n+ 2. Then the triangulation T ′ that
results from removing the t-ear from T is again k-color
valid.

Lemma 7 Let T be a k-color valid triangulation.
Then T contains a t-ear with ear-edge prps for some
r ≥ 1 and s = r + t− 1 ≤ n + 2.

Combining Lemmas 4 – 7 and Observations 1 – 2,
we obtain our main result.

Theorem 8 There exists a bijection between geo-
metric plane perfect k-colored matchings on 2n points
in convex position and t-gonal tilings on n+2 points in
convex position. Further, for an element of one struc-
ture, the corresponding element of the other structure
can be computed in linear time.

6 Future Work

The Temperley-Lieb algebras arising from matchings
on 2n vertices can be generated by n distinguished
elements: An element I (consisting of n propagating
lines vjv2n−j+1, 1 ≤ j ≤ n, from top to bottom) and
n − 1 elements Ui, 1 ≤ i < n, consisting of a pair of
lines vivi+1 and v2n−iv2n−i+1 plus the remaining n−2
propagating lines.

It is natural to search for a characterization of these
generators in terms of triangulations (and for the gen-
erators for the k-colored Temperley-Lieb algebras in
terms of k+2-gonal tilings). We plan to use our explicit
bijections to study the effect of edge flips in trian-
gulations respectively in tilings on the corresponding
matchings and to find out how the actions of gener-
ators of the (k-colored) Temperley-Lieb algebra can
be interpreted in terms of flips in triangulations re-
spectively in tilings. Preliminary results have already
been obtained.
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