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Abstract. We propose a novel approach for the medial axis approxima-
tion of triangulated solids by using a polyhedral unit ball B instead of
the standard Euclidean unit ball. By this means we compute the exact
medial axis MA(Ω) of a triangulated solid Ω with respect to a piecewise
linear (quasi-) metric dB . The obtained representation of Ω by the me-
dial axis transform MAT(Ω) allows for a convenient computation of the
trimmed offset of Ω with respect to dB . All calculations are performed
within the field of rational numbers, resulting in a robust and efficient
implementation of our approach. Adapting the properties of B provides
an easy way to control the level of details captured by the medial axis,
making use of the implicit pruning at flat boundary features.
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1 Introduction

The medial axis is a skeleton-like structure, capturing the features of a shape in
a lower-dimensional configuration. It has originally been introduced by Blum [7]
for matters of shape representation, and has proved to be useful for various
applications such as shape recognition, robot motion, finite element mesh gen-
eration [17], and offset computation. The computation of the exact medial axis
– or of an approximation thereof – is a popular task in computational geometry
and geometric computing. The huge variety of publications addressing differ-
ent boundary representations [13, 14, 20], pruning techniques [9, 22] and applica-
tions [8, 12] is remarkable. See also [5] for a state of the art survey in this area.
In the case of polyhedral objects, there exist numerical tracing techniques [24]
(which have recently been extended to objects with curved boundaries [23]) and
methods based on spatial decompositions [16, 21].

For boundaries represented by dense point sets, it is a common approach
to derive a medial axis approximation by isolating a subset of its Voronoi di-
agram [14]. The algorithm relies on heavy pruning and has (depending on the
denseness of the point set) problems with capturing sharp features. Another ap-
proximating structure, that also allows to deal with non-exact boundaries, is the
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scale axis [22], based on a ball-representation of the shape. Pruning is achieved
by careful scaling of the balls, which, on the downside, can lead to the introduc-
tion of topologically incorrect fragments. Both of these methods work in 2D and
3D, but they do not constitute an exact representation of a shape. They are thus
suited for shape recognition and comparison but not for offset computation.

Exact medial axis computation relies on an exact boundary representation,
and is well examined for piecewise smooth boundaries in 2-space. For straight-
line polygons Lee [20] introduced an intuitive O(n log n) algorithm, which was
later improved to an optimal (yet unimplemented) linear-time algorithm [11].
For circular arc boundaries a full implementation of a randomized algorithm
(with expected O(n log n) computing time) is provided in [2]. To the contrary, it
has turned out that in the three dimensional space the exact medial axis compu-
tation, even for shapes with piecewise linear boundaries, is a rather challenging
problem. Here difficulties arise from the combinatorial complexity of the medial
axis, as well as the high algebraic degree of its components. Especially the lat-
ter leads, due to the necessity of an algebraic kernel, to computing time and
representation issues. So far, the only work in this context that provides a full
implementation and some computing times is by Culver et al. [13], introducing
complex algebraic algorithms to deal with the above-mentioned problems.

In this work we provide an approach that computes the exact medial axis of
a triangulated solid (i.e., a solid object whose boundary surface is a triangular
mesh) with respect to a piecewise linear quasi-metric dB [26] induced by a convex
polyhedral unit ball B (see also Minkowski functionals [19]). While the use of
more general convex distance functions for bisector and Voronoi computation
is no novelty [10, 18], these generalized distances, however, have not been used
for medial axis computations so far. This is quite surprising, considering that
for given rational data (rational coordinates of mesh and unit ball vertices)
the resulting linearity of the structure allows all computations to be performed
within the field of rational numbers. We took advantage of this, providing a
robust and stable implementation of the algorithm.

The quasi-metric dB induces a piecewise linear medial axis transform MAT(Ω),
which describes the shape Ω fully and exactly, see Fig. 1a for an example. In or-
der to deal with the structural complexity of the medial axis in 3D, we introduce
planar contact arrangements, one for each possible contact between the compo-
nents of the unit ball B and the boundary, respectively (see Sections 3 and 4).
After computing these arrangements, we are able to calculate the components
of the medial axis with respect to the quasi-metric dB . In this way we reduce
the problem of medial axis construction in 3D to a number of two dimensional
problems.

The use of polyhedral unit balls permits interesting operations such as im-
plicit pruning, resulting in pseudo-seams which will be introduced in Section 2.
This allows us to influence the structure and complexity of the medial axis by
varying combinatorial and geometrical properties of the unit ball. Furthermore,
we will show that our representation via MAT(Ω) is very convenient to compute
trimmed offsets with respect to dB , see Fig. 1b (see Section 5.2 for details). In
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(a) Medial axis (b) Trimmed offset

Fig. 1: Piecewise linear medial axis approximation and trimmed offset for a dragon
mesh with 12, 000 faces, using a quasi-metric defined by a tetrahedral unit ball.

Section 6 we will describe the close relation between the medial axes MA(Ω) in-
duced by Euclidean and polyhedral unit balls. This also identifies MA(Ω) with
respect to a piecewise linear metric dB as an approximation of the Euclidean
medial axis, where the quality of the approximation depends on the chosen unit
ball B.

2 Preliminaries

Throughout this paper we consider an open set Ω in Rd (d = 2, 3) with a
piecewise linear boundary ∂Ω. We moreover assume that the boundary is tri-
angulated and consists of edges, vertices, and triangular facets (the latter ones
only for d = 3). We shall refer to Ω as a triangulated solid.

2.1 Unit balls and metrics

Let B be a bounded, open and convex set in Rd which contains the origin o. In
particular, we are interested in two cases.

(E) B may be the usual Euclidean unit ball, B = {x : ||x|| < 1} ⊂ Rd.
(L) B may be the interior of a convex polyhedron, i.e., the boundary ∂B is piece-

wise linear. Similar to ∂Ω we assume that ∂B is given by a triangulation.

In the second case (L) we shall assume that no edge or facet of ∂B is parallel
to any edge or facet of ∂Ω, i.e., we assume that Ω is in general position with
respect to B. Later we will specify additional conditions that we assume to be
satisfied.

By these assumptions it is guaranteed that a component of ∂B and a compo-
nent of ∂Ω intersect in at most one point. To achieve this, a slight perturbation of
the boundary of B and/or Ω – e.g. by application of the Simulation-of-Simplicity
(SOS) technique [15] – can be applied. Clearly, by restricting the perturbation
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to the vertices of B we can even keep the original domain unchanged. However,
even if perturbations are applied to the vertices of a triangulated solid, the re-
sulting changes in the medial axis are not dramatic, provided that convex edges
are not made reflex or vice versa.

For any points x and y, let r be the ray from x through y and B∗ the body B
translated by −→ox. There exists a unique intersection point v of ∂B∗ and r. The
distance function

dB(x, y) :=
‖y − x‖
‖v − x‖ (1)

defines a quasi-metric [26], meaning that dB is positive definite and fulfills the
triangle inequality, but is not necessarily symmetric. The given convex body B
is the unit ball with respect to the quasi-metric.

If B is centrally symmetric with respect to the origin o, then dB is a metric.
In particular, the first choice of B as the Euclidean unit ball gives the usual
Euclidean metric.

2.2 Maximal and almost maximal balls

In the remainder of this paper we will use the symbols B′, B′′ etc. to represent
convex polyhedra which are obtained from B by applying restricted Euclidean
similarity transformations consisting of a scaling combined with a translation,
but no rotation. Clearly, these convex sets are balls with respect to the quasi-
metric defined by B, since they consist of all points whose distance dB from the
translated origin does not exceed the scaling factor.

Definition 1 A ball B′ is said to be a maximal ball associated with the trian-
gulated solid Ω if

1. it is contained in Ω, B′ ⊆ Ω, and if
2. any other ball B′′ satisfying B′ ⊂ B′′ is not contained in Ω, i.e., B′′ 6⊂ Ω.

Moreover, the ball B′ is called an almost maximal ball associated with Ω, if it is
contained in Ω and the boundary ∂B′ shares at least two points with ∂Ω.

In the Euclidean case (E), the two notions are equivalent. In the case (L) of
a piecewise linear metric, however, there may exist almost maximal balls which
are not maximal.

2.3 Types of contact

In this section we consider exclusively the case (L) of a piecewise linear metric.
If we consider a two-dimensional domain Ω in the plane, the following types

of contact between ∂Ω and the boundaries ∂B′ of almost maximal balls are
possible:

1. A vertex of ∂Ω is in contact with an edge of ∂B′, and
2. an edge or vertex of ∂Ω is in contact with a vertex of ∂B′.



Exact Medial Axis Computation for Triangulated Solids 5

p

jump
edge

(a) Jump edge

pseudo
branching

branching

(b) Pseudo branching

Fig. 2: (a) 2D example of a jump edge with center of scaling p. (b) A triangular
unit ball induces a pseudo-branching in the medial axis of a square domain.

We will exclude the case where an almost maximal ball possesses two contacts of
the first type that are realized at only one edge of ∂B′, by requiring that no edge
of ∂B is parallel to any line connecting any two vertices of ∂Ω. (It suffices to
assume that this condition is satisfied by all pairs of non-convex vertices of ∂Ω.)
This is subsumed by the fact that we assume B and Ω to be in general position.
We shall see later that almost maximal balls of this type would correspond to
two-dimensional components of the medial axis.

Consider an almost maximal ball B′ that possesses exactly two contacts
which are of the first type and realized in the interior of two neighboring edges
of ∂B′, and let p be the common vertex of the neighboring edges. In this case, any
uniform scaling with a factor f sufficiently close to 1 and center p transforms
B′ into another almost maximal ball which is either a subset (if f < 1) or a
super-set (if f > 1) of B′, see Fig. 2a.

The same phenomenon occurs if an almost maximal ball B′ possesses contacts
of the first and the second type, and the contact vertex of ∂B′ is a segment end
point of the contact edge of ∂B′.

In the three–dimensional case, the following types of contact between ∂Ω
and the boundaries ∂B′ of almost maximal balls are possible:

1. A vertex of ∂Ω is in contact with a facet of ∂B′,
2. a vertex or an edge of ∂Ω is in contact with an edge of ∂B′, and
3. a vertex, an edge or a facet of ∂Ω is in contact with a vertex of ∂B′.

Again we exclude the case of almost maximal balls with two contacts of
the first type which are realized in the interior of only one facet of ∂B′, and
the case of almost maximal balls with two contacts of the second type at two
coplanar edges of ∂Ω which are realized in the interior of only one edge of ∂B′,
by assuming that Ω and B are in general position.
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Similar to the discussion in the planar situation one may observe that an al-
most maximal ball B′ with only two contacts that are realized at two neighboring
entities (i.e., facets, edges, or vertices) of ∂B′ is not maximal, since it is possible
to apply a uniform scaling with a center that is located in the intersection of the
two contact entities.

2.4 Medial axis

We define the medial axis MA(Ω) as the union of the centers of all almost max-
imal balls associated with Ω. The medial axis transform MAT(Ω) additionally
contains the information about the scaling of the almost maximal balls which
are centered at the points of MA(Ω).

The medial axis of a planar shape Ω consists of bisector curves (edges) and
trisector points (branching points). In the general (non-degenerate) case, three
edges meet at a branching point.

Consider the case (L) of a piecewise linear metric. Here, some of the bisectors
correspond to nested families of almost maximal balls, which share the same
contacts of type 1 on the boundary. These bisectors will be called jump edges,
since the maximal inscribed balls jump between the two extreme positions, see
Fig. 2a. If we did not consider jump edges, using only truly maximal balls for the
definition, the medial axis of a connected planar domain Ω would possibly consist
of several disconnect components. Moreover, if we relaxed the assumption of the
general position by allowing almost maximal balls with two contacts of type 1 in
the interior of only one edge of ∂B′, these balls would produce two-dimensional
components of the medial axis.

The medial axis of a three-dimensional domain Ω consists of bisector surfaces
(sheets), trisector curves (seams) and junctions. In the generic case – meaning
that there do not exist maximal balls with more than four contacts on the
boundary of Ω – three sheets meet at a seam, and four seams meet at a junction
point [13]. For the case (L), similar to the case of jump edges for planar domains,
some of the sheets correspond to partially nested families of almost maximal
balls. We will refer to them as jump sheets. Once again, these jump sheets – and
consequently the consideration of almost maximal balls – are needed in order
to guarantee that the medial axis of connected domains is again connected. By
relaxing the assumption of general position one would obtain three-dimensional
components of the medial axis, which do not occur in the Euclidean case and
thus are clearly not desirable.

Proposition 1. The medial axis in the case (L) is a piecewise linear structure.

Proof. The bisectors of linear structures with respect to a piecewise linear metric
or quasi-metric are again linear structures. The medial axis of a triangulated
solid with respect to such a metric is composed of these bisectors and their
intersections, which are also linear. ut

Another new phenomenon that occurs when using a piecewise linear metric
(L) instead of the Euclidean one (E) is the implicit pruning of convex features
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(edges or vertices) of the boundary, which are flat with respect to the unit ball, in
the sense that a vertex of the unit ball fits into the wedge defined by the feature.
Such features lead to the appearance of special branching points (see Fig. 2b)
or seams, which we will call pseudo-branchings and -seams, respectively. The
almost maximal balls centered there share only two points with the boundary
of Ω. In the planar case, one of these contacts has to be of type vertex-vertex.
In the 3D case, one of these contacts is of the type edge-vertex or vertex-edge.

We will come back to this issue in the next section.

3 Contacts and contact arrangements

In the next three sections we consider solely the case of piecewise linear metric
(L) in three-dimensional space. All arguments are easily adaptable to the planar
case.

3.1 Contacts

Recall that a ball B′ is a scaled and translated copy of the polyhedral unit ball
B. We shall denote the vertices, edges and facets of ∂B, ∂B′, and Ω uniformly
as components of these boundaries.

For any boundary component x of B, we denote with x′ its image under
the restricted similarity transformation (translation and scaling) that maps B
to B′. Moreover, for each boundary component x of ∂B we choose an arbitrary
but fixed representative vertex v = v(x), which is one of the three vertices of a
triangle, one of the two end points of an edge, or the vertex itself in the case of
a vertex.

Since we assumed that B and Ω are in general position, every boundary
component (vertex, edge or facet) of an almost maximal ball shares at most one
point with a component of ∂Ω.

Definition 2 Consider an almost maximal ball B′ and assume that the com-
ponent y of ∂Ω has a common point with the component x′ of B′. We say that
the pair (x, y) is a contact.

The regular combinations of boundary components – which determine the
structure of the medial axis – are vertex-facet contacts, edge-edge contacts and
facet-vertex contacts. Even for objects and unit balls in general position, vertex-
edge, edge-vertex and vertex-vertex contacts do occur, but they can be regarded
as being singular. They define pseudo-structures of the medial axis, but do not
induce any sheets or seams.

An almost maximal ball with two contacts is centered on a sheet of the medial
axis, a ball with three contacts on a seam (cf. Fig. 3). An almost maximal ball
centered on a pseudo-seam is also defined by three contacts, where two of these
contacts are adjacent, meaning that the ball components, as well as the mesh
components, are incident, respectively. As a consequence, the almost maximal
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B′

o′

C1

C2

C3

v′

Fig. 3: The center o′ of an almost max-
imal ball B′ lies on a seam of the axis.
The point v′ is its projection on the con-
tact plane of C3.

B′

o′

C1

C2

C3

v′
f1

f2

Fig. 4: The contact C1 = (v, f1) is adjacent
to C2 = (v, f2). Consequently, the three
contacts define a pseudo-seam containing
o′.

ball’s contact that is induced by these two adjacent contacts is, dependent on
their types, of type vertex-edge or edge-vertex (see Fig. 4 for an illustration).

For every possible contact (x, y) the component y ∈ ∂Ω and the transformed
ball component x′ ∈ B′ span a plane, which will be called the contact plane
associated with the contact.

3.2 Projections

An almost maximal ball B′ possesses at least two contacts. Let v(x) be the
representative vertex of the ball part x of one contact (x, y) among them. We
call v′, i.e., the equivalent of v on the translated and scaled copy B′ of the unit
ball B, the projection of the center o′ into the contact plane of (x, y).

Definition 3 Given a contact (x, y), let B′(x, y) be the set of all almost maximal
balls which realize this contact (x, y). The set of all projections of the balls in
B′(x, y) into the contact plane describes a polygonal region on the contact plane
of (x, y). We will call D(x, y) the contact domain of (x, y).

A contact domain is the union of projections of medial axis components on the
contact plane. As these components are piecewise linear, so are the projections
on the plane and their union. Therefore a contact domain is a polygonal region.

Roughly speaking, the contact domain D(x, y) describes the trace of the
representative vertex v for all almost maximal balls B′ which share the con-
tact (x, y). For a vertex-facet contact (x, y), the contact domain is contained in
the mesh facet y, and there is only one contact with this facet. For the other
non-singular types of contacts, the domain is contained in a plane containing
the boundary component, and there may be several contacts sharing a bound-
ary component. A more detailed discussion will be given in [3]. The singular
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contacts (vertex-vertex, edge-vertex, and vertex-edge contacts) do not define a
two-dimensional domain.

3.3 Contact arrangements

A seam of the medial consists of the center points o′ of almost maximal balls
B′ that possess the same three contacts. For each of these three contacts (x, y),
the projections of the centers o′ into the contact plane define a line segment
on the contact plane, see Fig. 3. This line segment is contained in the contact
domain D(x, y). In a similar way we obtain line segments that are projections
of pseudo-seams.

The projections of all seams and pseudo-seams that share a given contact
(x, y) form an arrangement of line segments, which we will call the contact ar-
rangement, in the contact domain D(x, y).

Every edge of the contact arrangement represents a seam or a pseudo-seam.
The junction points of the medial axis correspond to the vertices of the contact
arrangement.

Remark 1. The medial axis may possess jump sheets, which correspond to par-
tially nested families of almost maximal balls. While general sheets of the medial
axis correspond to two-dimensional parts of the contact arrangements, the jump
sheets may be represented by one-dimensional components (i.e., edges) as well,
by choosing the representative vertex in a suitable way. Therefore, we need to
treat jump sheets in a special way. This will be described in more detail in [3].

4 Computing the contact arrangements

As an almost maximal ball is implicitly defined by its contacts, the medial axis
is fully represented by the contact arrangements. In order to analyze the me-
dial axis, we compute the contact arrangements for all possible contacts (x, y).
Consequently, we reduce the problem of medial axis computation to a finite
number of two-dimensional problems in the respective contact planes, which can
moreover be addressed in parallel, since they are mutually independent.

4.1 Outline of the algorithm

For each contact (x, y) and its contact plane P , we perform the following algo-
rithm, which is summarized visually in Fig. 5.

1. Create a stack of subdomains lying in P , and initialize it with the entire
contact domain.

2. If the stack is empty, then continue with step 4, otherwise take a subdomain
from the stack.

3. Check if there exists a seam or pseudo-seam which defines a projection line
segment in P that hits the subdomain. If such a projection line is found,
then split the subdomain along the line spanned by the segment into new
subdomains and add them to the stack. Continue with the previous step.
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4. Remove all line segments in the arrangement that do not represent projec-
tions of seams or pseudo-seams.

D(x, y)

(a) Contact domain

e

l

(b) Projection line

C1

C1

C2 C3

(c) Clean subdomains

C1

C2 C3

(d) Arrangement

Fig. 5: Computation of a contact arrangement in a contact plane P .

4.2 Constructing almost maximal balls

Once again, let v = v(x) be the representative vertex of the contact (x, y). The
most frequent (and also most expensive) operation of the algorithm is to compute
an almost maximal ball B′ for a point p on the contact domain, such that v′ and
p coincide. In particular, it is crucial to identify the remaining contacts of such
an almost maximal ball. If there is only one additional contact, then p lies on a
face of the contact arrangement, otherwise, it belongs to an edge.

An almost maximal ball is found by iterative shrinking, where p is the center
of scaling. We start with a ball satisfying p = v′ which is sufficiently large
to intersect the boundary mesh (see Fig. 6a). With help of an AABB (Axis
Aligned Bounding Box) tree [4], the intersections between components of the
ball boundary and the mesh are efficiently detected. The component of the mesh
closest to p determines the shrinking factor. This is done iteratively until the
shrunk ball and the mesh are intersection-free (see Fig. 6b). The last component
of the mesh which is used to define the shrinking induces the second contact of
the almost maximal ball. As all the above computations are done within the set
of rational numbers, the resulting almost maximal ball and its center point are
exact.

4.3 Finding projection lines

A projection line in the contact domain – which may be determined by a seam
or a pseudo-seam – always corresponds to a change of the second contact of
the associated almost maximal balls. Thus, the projection lines subdivide the
contact domain into subdomains whose points define almost maximal balls with
the same second contact.
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p
C

(a) Ball before shrinking

p

C

C∗

(b) almost maximal ball at p

Fig. 6: Iterative computation of an almost maximal ball with a given projection p in a
given contact plane (x, y). The second contact is C∗.

Consider two points p and q on a contact domain. If the two associated
almost maximal balls have different second contacts then we know that there
exists a projection line crossing pq. On the other hand, if the balls share the
same opposite contact, then this does not imply that there is no such crossing
line, since the faces of the contact arrangement are not necessarily convex.

If the associated second contacts Cp and Cq of p and q are different we need to
find a point on the segment pq which lies on a projection line. Roughly speaking,
this is achieved by constructing a ball based on pq and confined by the contact
planes of Cp and Cq. If this ball turns out to be a valid almost maximal ball of Ω
with three contacts, then its center lies on a seam or pseudo-seam and induces
a projection line. Otherwise the interval between q and p is split and the search
for two opposite contacts that define a projection line is continued iteratively
by binary search. In non-singular configurations, this process is guaranteed to
terminate.

On the other hand, in order to verify that no projection line crosses the
edge pq, where p and q have the same second contact, the family of almost
maximal balls along pq (which spans a convex polyhedron) has to be contained
in Ω, see again [3] for more details. If the line segment pq is not crossed by
any projection line, then we call this segment clean. The final subdomains of
the contact arrangement are characterized by the fact that they are bounded by
clean segments.

4.4 Summary

For any given point on the contact domain we can construct the associated
almost maximal ball. For two points on the domain we can decide if there exists a
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projection line that crosses the connecting segment of the points, and eventually
find such a line. This is all we need to build the contact arrangement.

We start with the complete contact domain, and iterate over its boundary
segments (Fig. 5a). If one of the segments induces a projection line, we split the
domain at this line into two new subdomains and continue recursively (e.g., the
edge e induces projection line l in Fig. 5b). If all boundary edges of a subdomain
are clean, then the subdomain is clean and all points contained in it are associated
with almost maximal balls having the same opposite contact, and thus lie on the
same sheet of the axis (Fig. 5c). When all subdomains are clean we remove all
artifact edges between neighboring subdomains describing the same sheet (two
faces with opposite contact C1 are merged in Fig. 5d). This finally gives us the
contact arrangement.

Remark 2. As said in Remark 1, a jump sheet may, depending on the represen-
tative vertex, correspond to a one-dimensional projection on a contact plane.
Such a special jump projection edge is detected by an algorithm similar to the
one for seams and pseudo-seams, which is, however, a bit more involved. For the
computation of the contact arrangement such an edge is handled like any other
projection line. For other representative vertices the jump sheet corresponds to a
two-dimensional component (i.e., face) of the arrangement. In this case no jump
projection edge occurs. For more details in this context see [3].

5 Assembling the medial axis and offset computation

Once we have computed all contact arrangements, the medial axis can be as-
sembled by a simple algorithm. Based on this result we address the problem of
trimmed offset computation. Finally we report experimental results that indi-
cate the relation between the complexity of the input data (number of facets on
∂Ω and ∂B), the computing times and the size of the generated output.

5.1 Assembling the medial axis from its projections

When all contact arrangements are computed, the assembling of the axis can be
performed by a simple computation. Any sheet of the axis is associated with two
faces of two different contact arrangements, a seam with three edges of three
arrangements. A pseudo-seam is induced by one arrangement edge, and two
segments on the domain boundaries of two neighbored contacts. A jump sheet
is associated with a jump projection edge or a face of a contact arrangement,
depending on the representative vertex chosen for this contact. Every vertex of
the arrangement is associated with an almost maximal ball B′, and the center
points o′ span the medial axis.

The resulting medial axis is a non-manifold connected piecewise linear mesh.
Connectivity can in general be derived from the contact arrangements. This
means that two axis components are incident if their projections are incident
in a contact arrangement. The radial edge structure introduced in [25] is one of
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B with 4 facets B with 20 facets B with 128 facets

contact arrangements

medial axes

Fig. 7: Contact arrangements (top row) and medial axes (bottom row) of a slightly
perturbed octahedron with respect to polyhedral unit balls with 4, 20 and 128 facets
(from left to right). Dashed lines are projections of pseudo-seams.

several data structures that recommends itself for storing such a non-manifold
mesh.

As a first example we consider a slightly perturbed octahedron Ω and com-
pute its medial axis with respect to several polyhedral unit balls B, where the
number of facets increases from 4 to 128. The results are shown in Fig. 7.

Since Ω is convex in this example, all contact domains are contained in
the facets of Ω and only vertex-face contacts need to be considered. Conse-
quently, the projections and contact arrangements can be visualized directly on
∂Ω (shown in the first row). The medial axis of the octahedron Ω with respect to
the Euclidean unit ball consists of three squares which intersect each other along
their diagonals. The medial axis with respect to a sparse polyhedral unit ball (a
tetrahedron) is quite different (bottom left), since some of the vertices of the ball
fit into the edge and vertex wedges of of the domain. When using a a polyhedral
unit ball with a larger number of facets (bottom center and right), however, the
structure of the computed medial axis is quite similar to the Euclidean case.

As a second example, we consider the “tower” object. Fig. 8 shows the object,
the contact arrangements (projections) and the medial axis with respect to a
piecewise linear quasi-metric generated by a tetrahedron. The mesh consists of
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(a) Tower mesh (b) Projections (c) Medial axis

Fig. 8: Tower mesh, projections, and medial axis. The grey lines in (b) are the projec-
tions of pseudo-seams.

80 triangular facets and the resulting medial axis counts 269 sheets. As the object
is non-convex, not all projections are realized directly on its boundary.

5.2 Offset Computation

The medial axis is a useful tool for trimmed offset computation. While this is
well-established in the two-dimensional case [1, 8], the structure has not yet been
used much in 3-space for this purpose [6].

The medial axis representation which is generated by our algorithm is directly
useful for offset computation with respect to a linear (quasi-)metric. Each sheet S
of the medial axis is associated with two contacts C1 and C2. An almost maximal
ball B′ with center point o′ on S and scaling factor s′ has a unique point of
contact pi on Ci for i ∈ {1, 2}. Let ρ be the offset size. Then the offset operation
with ρ applied to B′ gives us a new point pρi for each of the two contacts. This
new point pρi lies on the line defined by pi and o′. The position of pρi with respect
to the sheet S determines whether or not it has to be trimmed:

– If s′ > ρ then pρi lies between pi and o′. Therefore pρi is a valid point of the
offset surfaces.

– If s′ < ρ then o′ lies between pi and pρi . Therefore pρi has to be trimmed.
– If s′ = ρ then pρ1 = pρ2 = o′ and the point lies on the axis sheet where the

trimmed and valid part of the offset surfaces are joined.

The axis sheets as well as the assigned faces of the contact arrangements are
polyhedral regions. A triangulation on the sheet induces a triangulation on the
faces, leaving us with a configuration as visualized in Fig. 9, where the three
almost maximal balls at the corner points are known. Depending on the offset
size ρ, certain parts of the triangles that lie on planes parallel to the contact
planes define the valid offset surface. Note that a part derived from an edge-
edge or facet-vertex contact resides on a plane which is partially defined by
features of the unit ball.
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∆1

∆2
t(∆1)

t(∆2)

v(∆1)

v(∆2)

∆MA

Fig. 9: The triangle ∆MA of an axis sheet
induces two triangles ∆1 and ∆2 on two
different contact arrangements. The off-
set surface generated from each of these
triangles is split into a valid (v(∆)) and
a trimmed (t(∆)) part, which intersect in
the corresponding axis sheet.

We define the trimmed offset in 3D analogously to the planar one in [1]. It
should be noted that the obtained offset is induced by the distance function
d−B , where −B is the image of B under reflection at the origin o. Clearly, the
two distance functions dB and d−B are identical for centrally symmetric unit
balls B.

We performed the trimmed offset computation for the Armadillo mesh. A
typical result is shown in Fig. 10.

5.3 Computing time and size of the medial axis

The time needed for the computation of the contact arrangements depends on
various criteria. The quality of the boundary mesh influences the computing
time gain provided by the AABB-tree structure. A rather complex and strongly
branched shape has more reflex features and thus more edge-edge and facet-
vertex contacts. On the other hand the nesting complexity of the single contact
arrangements is in average higher for less ramified shapes, which also increases
the computing time.

At this stage we cannot present any theoretical results. In order to obtain
empirical data, we used several instances of the Armadillo mesh (see Fig. 10),
and tested it against various polyhedral unit balls (see Fig. 11). The computation
times are reported in Fig. 12. They, as well as the ones provided in Table 1 for
several instances of the “Venus”-shape, compare favorably with the ones reported
in [13], which is the only implementation we are aware of that constructs the
exact medial axis with respect to a specific metric. There, the computation of
the medial axis for the “Venus”-shape with 250 faces is performed in 5.6 hours,
with computing times growing considerably with respect to the number of faces.
As can be seen in Table 1, we compute the exact medial axis with respect to
the quasi-metric induced by a tetrahedral B for an instance with 267 faces (see
Figure 14) in less than 5 minutes. Also, the computation times for the Armadillo
and the Venus example grow only slightly super-linearly with respect to the
number of facets of the mesh, and even sub-linearly with respect to the number
of facets in the unit ball.



16 O. Aichholzer et al.

(a) Armadillo mesh with 3, 124 facets (b) Mesh detail

(c) Offset for tetrahedral B (d) Offset detail

Fig. 10: A version of the Armadillo mesh with 3124 facets and its trimmed offset for
dB with respect to a tetrahedral unit ball B.

Finally we analyze the relation between the size (i.e., the number of planar
sheets) of the computed medial axis and the number of facets on the boundaries
of ∂Ω and of ∂B, see Fig. 13, again for the Armadillo example. The size of the
medial axis grows linearly with the size of ∂Ω, but only very slowly (much less
than linear) with the size of ∂B. This will be analyzed in more detail in the
future.

6 Convergence

The quasi-metric defined by a convex polyhedron B can be seen as an approx-
imation of the Euclidean metric. Indeed, if the unit ball B converges to the
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(a) B with 4 facets (b) Medial axis detail

(c) B with 128 faces (d) Medial axis detail

Fig. 11: The medial axis of the armadillo mesh from Fig. 10 for two different unit balls
B.

# faces 4 8 20 128

115 115.54 270.44 834.66 4645.03
267 284.04 594.75 1846.20 11770.50
575 525.19 1117.43 3011.68 21619.20

1396 1209.51 2120.49 6005.36 37837.30

Table 1: Computation times in seconds for different combinatorial sizes of B (rows)
and different instances (columns) of the Venus model shown in Figure 14.

Euclidean unit ball, then the quasi-metric defined by it converges to the Eu-
clidean metric. The convergence of the unit balls can be described with the help



18 O. Aichholzer et al.

# faces 4 8 20 128

96 0.03 0.05 0.15 1.28
194 0.05 0.12 0.34 2.63
390 0.10 0.24 0.66 5.05
780 0.21 0.51 1.43 10.13

1562 0.43 0.95 2.44 19.17
3124 0.85 1.74 4.67 34.24
6250 1.66 3.34 8.40 58.09

12500 3.37 6.23 15.39 101.12
25000 7.32 12.39 28.13 170.69
50000 18.28 27.46 57.38 -

100000 52.30 66.80 124.09 -

Fig. 12: Left: Computation times (in hours)
for several polyhedral unit balls (shown in
the different columns; the first row specifies
the number of faces) and various instances
of the Armadillo mesh (shown in the rows)
on a single CPU with 2.5 GHz. Right: Re-
sults plotted on a log-log scale.
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# faces 4 8 20 128

96 315 325 375 542
194 661 714 819 1097
390 1410 1437 1709 2315
780 2879 3154 3661 4945

1562 6106 6689 7316 10091
3124 12514 13365 15043 20655
6250 24764 26519 29841 39906

12500 48592 52655 58055 78155
25000 94715 101733 111355 148967

Fig. 13: Number of sheets of the medial axis
for several polyhedral unit balls (shown in
the different columns; the first row specifies
the number of faces) and various instances
of the Armadillo mesh (shown in the rows).
Right: Results plotted on a log-log scale.
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(a) Mesh (b) Medial axis (c) Trimmed offset

Fig. 14: (a) A mesh instance of the Venus model with 267 faces. (b) The medial axes
induced by a unit ball B with 4 faces. (c) The resulting trimmed offset.

of the Hausdorff distance. Recall that the Hausdorff distance of two sets X and
Y is defined as

HD(X,Y ) = max(sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖). (2)

In this section we consider simultaneously two metrics and the associated medial
axes. On the one hand, we have the piecewise linear (quasi-) metric dB defined
by the convex polyhedron B and the medial axis MAB(Ω) of the given domain
Ω with respect to it. On the other hand, we have the usual Euclidean metric
and the standard medial axis, which we will now denote with MA(Ω).

6.1 Planar domains

For planar domains Ω ⊂ R2, the following result establishes a close connection
between the two skeletal structures MAB(Ω) and MA(Ω):

Theorem 1 Consider a planar domain Ω ⊂ R2 with piecewise linear boundary
∂Ω. If the convex polygon B that serves as the unit ball of the (quasi-) metric dB
converges to the Euclidean unit circle, then the Hausdorff distance between the
medial axes MAB(Ω) and MA(Ω) with respect to the piecewise linear (quasi-)
metric and the Euclidean metric, respectively, tends to zero.

Thus, the convergence of the unit ball implies the convergence of the medial
axis. Before proving this result we present the following result, which is visualized
in Fig. 15.
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Fig. 15: Each center of a maxi-
mal (or almost maximal ) ball sees
any two of its associated boundary
points under a certain angle. For
piecewise linear boundaries, which
are in general position with respect
to the unit ball, this angle has a
lower bound.

Lemma 1. Each point c′ of the medial axis MAB(Ω) of the planar domain Ω
sees any two of its associated closest points on the boundary under a certain angle
α′(c′). For polygonal unit balls B that are sufficiently close to the Euclidean unit
circle, there exists a lower bound ϕ′ of this angle, which is independent of B.
Each point c of the medial axis MA(Ω) sees any two of its associated closest
points on the boundary under a certain angle α(c). There exists a lower bound
ϕ of this angle.

Proof. First we observe that none of the almost maximal polyhedral balls B′

has a contact with the boundary of Ω in a convex vertex, provided that B is
sufficiently close to the Euclidean unit circle. Similarly, none of the maximal
Euclidean balls touches the boundary of Ω in a convex vertex. Consequently,
each almost maximal polyhedral ball B′ and each maximal Euclidean ball has
contact

– with two edges of ∂Ω (both contacts are of type 1),
– with an edge and with a reflex (non-convex) vertex of ∂Ω (the contacts are

of type 1 and type 2), or
– with two reflex vertices of ∂Ω (both contacts are of type 2).

Some balls may have more than two contacts, but we need to consider only two
of them.

In the latter two cases, we consider the minimum distance d between any
two reflex vertices and between any reflex vertex and any edge not starting
or ending at this vertex. For all points c corresponding to these two types of
contact, the angle α(c) satisfies α(c) ≥ 2 arcsin(d/D), where D is the diameter
of Ω (which is also an upper bound on the diameter of the maximal Euclidean
circles). Consequently, if B is sufficiently close to the Euclidean unit circle, the
angle α′(c′) satisfies α′(c′) ≥ arcsin(d/D).

In the first case, the two contacts are realized at two non-parallel edges of
∂Ω. Let β be the smallest angle between any two non-parallel edges of ∂Ω. Here
we consider all pairs of edges, not just the adjacent ones. For all points c corre-
sponding to this type of contact, the angle α(c) satisfies α(c) ≥ β. Consequently,
if B is sufficiently close to the Euclidean unit circle, the angle α′(c′) satisfies
α′(c′) ≥ β/2. �
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b
b′

b′′

c′

(a) c′ on MAB(Ω)

b

b′

c
c′

α

(b) c on MA(Ω)

Fig. 16: The almost maximal polyhedral ball with center c′ (left) and the construction
of the associated maximal Euclidean ball (dashed) with center c (right).

Now we are ready to prove the convergence result.

Proof (Theorem 1). First we consider a point c′ ∈ MAB(Ω) and prove that there
exists a point c ∈ MA(Ω) such that ‖c′ − c‖ ≤ ε(B), where ε(B) tends to zero
as B converges to the Euclidean unit ball.

For a given c′ ∈ MAB(Ω) we consider the associated almost maximal ball
B′, along with its inscribed circle and circumscribed circle. The almost maximal
ball B′ touches the boundary in at least two points b′, b′′ ∈ ∂Ω, see Fig. 16a.

Consider the largest inscribed Euclidean ball with center c′. It touches the
boundary ∂Ω at a point b, which is generally different from both b′ and b′′.
The boundary of this Euclidean ball lies between the inscribed circle and the
circumscribed circle. The center c′ sees b and one of the other two points – say
b′ – under an angle α > ϕ′

2 .
We consider the maximal inscribed Euclidean ball which is obtained by ap-

plying uniform scaling with center b and scaling factor 1+δ to the ball with center
c′, see Fig. 16b. This scaling maps the center c′ into a new center c satisfying

‖c− c′‖ = δ‖c′ − b‖ ≤ δD (3)

where D is the diameter of the domain Ω. We find an upper bound on δ by
considering the intersection p of the line segment from b to b′ with the Euclidean
circle with center c′. The uniform scaling moves this point towards b′, but not
beyond b′, hence

δ <
‖p− b′‖
‖p− b‖ , (4)

cf. Fig. 17a. This upper bound on δ remains valid if the following operations
are applied: First, we apply a uniform scaling with center c′ and a scaling factor
≤ 1 which moves b and p to the inscribed circle. Second, we shift b′ to the
circumscribed circle along the line bb′. Third, the enclosed angle ∠bc′b′ is reduced
to ϕ′

2 , see Fig. 17b.
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(a) b, p and b′
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p

c
c′

ϕ
2

(b) The bound δ0

Fig. 17: The construction of an upper bound on the scaling factor 1 + δ.

b’’

b

c

b’

(a) c on MA(Ω)

b’
b

c

c’

α

(b) c′ on MAB(Ω)

Fig. 18: The maximal Euclidean ball with center c (left) and the construction of the
associated almost maximal polyhedral ball (dashed) with center c′ (right).

Let δ0 be the upper bound on δ obtained after these operations, i.e., from the
configuration in Fig. 17b. We can bound the distance ‖c−c′‖ by ε(B) = δ0(B)D.
Finally, if the polyhedral ballB converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks. Consequently, we
obtain δ0(B)→ 0 and hence ε(B)→ 0.

In the second part of the proof we consider a point c ∈ MA(Ω) and prove that
there exists a point c′ ∈ MAB(Ω) such that ‖c′ − c‖ ≤ ε′(B), where again ε′(B)
tends to zero as B converges to the Euclidean unit ball. This can be proved by
swapping the roles of circles and polyhedral balls with respect to the Euclidean
and the piecewise linear metric, as follows.

For a given c ∈ MA(Ω) we consider the associated maximal Euclidean ball,
along with its inscribed piecewise linear circle and circumscribed piecewise linear
circle. This situation is visualized in Fig. 18a. The inscribed and circumscribed
piecewise linear circles are shown as dashed polygons.
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The inscribed piecewise linear circle possesses an inscribed Euclidean circle,
and the circumscribed piecewise linear circle possesses a circumscribed Euclidean
circle. We will now refer to these two Euclidean circles as the inscribed circle
and the circumscribed circle, respectively.

The maximal Euclidean ball with center c touches the boundary in at least
two points b′, b′′ ∈ ∂Ω, see Fig. 18a. Consider the largest inscribed piecewise
linear ball with the same center c. It touches the boundary ∂Ω at a point b,
which is generally different from both b′ and b′′. The boundary of this Euclidean
ball lies between the inscribed circle and the circumscribed circle. The center c
sees b and one of the other two points – say b′ – under an angle α > ϕ

2 .
Similar to the first part of the proof we consider the almost maximal inscribed

piecewise linear ball which is obtained by applying uniform scaling with center
b and scaling factor 1 + δ′ to the piecewise linear ball with center c, see Fig. 18b.
This scaling maps the center c into a new center c′ satisfying

‖c− c′‖ = δ′‖c− b‖ ≤ δ′D. (5)

As in the first part of the proof we are now able to construct an upper bound δ′0
on δ′. If the polyhedral ball B converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks, which again implies
δ′0(B)→ 0, and hence ε′(B)→ 0.

Finally, by combining the results of both parts we see that the Hausdorff
distance of MA(Ω) and MAB(Ω) tends to zero as B converges to the Euclidean
unit ball. �

Let h denote the Hausdorff distance between B and the Euclidean ball. The
upper bounds δ0 and δ′0 can be bounded by Ch, where the constant C depends
on the angles ϕ and ϕ′. Consequently, the Hausdorff distance of MA(Ω) and
MAB(Ω) is bounded by CDh. The constant C, however, is rather large for
small values of ϕ and ϕ′.

6.2 Towards a convergence proof for the 3D case

In order to extend this approach to the spatial case, it is first necessary to analyze
the possibility of generalizing Lemma 1. Unfortunately, for triangulated solids in
3D, it turns out that no such lower bound the angles α and α′ exists in general.

If the piecewise linear ball is sufficiently close to the Euclidean one, then it
suffices again to consider only piecewise linear balls that do not fit into any of
the convex edges of the domain. Each almost maximal piecewise linear ball and
each maximal Euclidean ball of Ω has contact

– with two facets of ∂Ω, or
– with two entities of ∂Ω, where at least one of them is a reflex edge or a

non-convex vertex.

In the first case, a lower bound on the angles ϕ and ϕ′ can be derived as in the
planar case. In the second case, this is possible only if the two contact entities
do not possess any common points.
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More precisely, if the two entities which are present in the second case are
two reflex edges with a common vertex, or a reflex edge and a facet possessing
a common vertex, then the technique used for proving the result in the planar
case can no longer be applied, since it requires a lower bound on the distance
between the two entities. Thus, a more sophisticated approach is required in
order to generalize the convergence result to the 3D case.

We expect that the following approach allows to extend Theorem 1 to tri-
angulated solids in space. First, we consider only the subset of the medial axes
which are generated by almost maximal balls and by maximal Euclidean balls
where the angle introduced in Lemma 1 exceeds a certain threshold φ∗. We
denote these subsets by MA∗B(Ω) and MA∗(Ω), respectively.

Next we consider a sequence (Bn)n=1,2,... of unit balls with the property
that the ratio between the radii of the circumscribed and the inscribed ball
has the upper bound 1 + 1/n3. For each of these balls we use the associated
threshold φ∗n = 1/n to define the subsets MA∗B(Ω) and MA∗(Ω). Thus, after an
appropriately scaling of Bn, the Hausdorff distance between the piecewise linear
unit ball and the unit ball tends to zero as 1/n3, while the lower bound on the
angle tends to zero as 1/n.

Using the same techniques as in the proof of Theorem 1, we can conclude that
the one-sided Hausdorff distances between MA∗B(Ω) and MA(Ω) and between
MA∗(Ω) and MAB(Ω) converge to zero as n → ∞. Simultaneously, the lower
bound φ∗n on the angle φ used for defining MA∗B(Ω) and MA∗(Ω) tends to zero.

Finally, it should be possible to prove that the Hausdorff distances between
MA∗(Ω) and MA(Ω), and between MA∗B(Ω) and MAB(Ω) converge to zero as
well. The desired convergence result can then be obtained by combining these
observations. The details of this proof cannot be described satisfactorily in the
frame of this paper and will be reported elsewhere.

7 Concluding remarks

We have presented an algorithm which computes a piecewise linear medial axis
representation MA(Ω) of a triangulated polyhedron Ω with respect to a piece-
wise linear quasi-metric dB . The representation allows convenient trimmed offset
computation, and all computations can be performed within the field of rational
numbers. We would like to point out that the shape is not required to be simply
connected, as the axis-representing contact arrangements are computed indepen-
dently. This makes the algorithm easily accessible for parallel implementation.
The algorithm shows convincing computational complexity and is suitable for
larger meshes.

The complexity of the polyhedral unit ball can be chosen depending on the
respective application. This is also one of the interesting issues for future research
in this area. Given a mesh, what does a (preferably combinatorially small) poly-
hedral unit ball have to look like to reduce the occurrence of pseudo-seams? With
a decreasing number of pseudo-seams, a combinatorial structure close to the Eu-
clidean medial axis is to be expected. On the other hand the implicit pruning
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induced by the piecewise linear metric might be a welcome feature. This leads
to the question how to locate points on the unit sphere, such that the vertices
of the resulting convex polyhedral ball enter as many flat convex features of a
mesh as possible.

Modifications of the unit ball B do affect the geometric as well as the com-
binatorial appearance of MA(Ω). Another interesting task is to identify and
isolate the combinatorially stable – and thus essential – parts of the medial axis
by comparing the representations for different quasi-metrics dB resulting from
several different polyhedral unit balls B.
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