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Abstract. We present a simple, efficient, and stable method for
computing—uwith any desired precision—the medial axis of-si ) )

ply connected planar domains. The domain boundaries are as- )

sumed to be given as polynomial spline curves. Our approach

combines known results from the field of geometric approxima S

tion theory with a new algorithm from the field of computatbn gb C
geometry. Challenging steps are (1) the approximation ef th

boundary spline such that the medial axis is geometrictdlyis,

and (2) the efficient decomposition of the domain into basesa

where the medial axis can be computed directly and exactyy. W J%
solve these problems via spiral biarc approximation andna ra

i i ; ST S
domized divide & conquer algorithm. Q(
_ o 4 R
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stability, divide & conquer, randomized algorithm, nuncatfiro-
bustness

1 Introduction Figure 1: Medial axis of a planar free-form shape. The shaam w
approximated by 9440 arcs within 0.65 seconds, and the compu
The medial axis has been introduced by H. Blum [5] as a concgftion of the medial axis took less than 1 second. All computa
for efficient shape description. Meanwhile it has proverfulsetions were done on standard PCs.
in many scientific areas, and its fast and stable computadion
of vital interest. However, even iR2, the task of computing
the correct medial axis of a given free-form shape is a higtipm both a theoretical and practical point of view, only paint
nontrivial one. See Fig. 1 for a first example. sample and polygonal inputs. For curved boundary objeatst m
The efficiency and quality of the axis’ computation critigal theoretically fast algorithms compute the entire Voronagdam,
depend on the available boundary representation of thet inlg@ving the need of pruning away unwanted and incorrect fea-
shape. Algorithms for polygonal boundaries [10, 22, 26, 34Jres. Complicated merging, or insertion, steps have toeve p
work at satisfactory runtimes, but do not produce stable niermed, depending on whether the algorithm was based odelivi
dial axis approximations for the original shape withoutexgive & conquer [25, 34], or on incremental insertion [3, 31]. Aslsu
pruning. The same is true for point sample representatibrgj[ Steps process previously computed parts of the medial thveig,
which also (and even more) tend to increase the data volumeare numerically involved and subject to errors if not impéerted
On the other hand, implementations that work directly dwth care [19].
curved boundaries suffer from high numeric complexity dral t  Algorithms based on domain decomposition [11] avoid these
arising robustness problems. Also, they usually are iriigre drawbacks. They lead to a divide & conquer construction]82,
slow, as many existing efficient algorithms do not apply tmeo as well, but their merging steps are trivial, as effort iftski to
plicated curved objects; see e.g. [13] for a short overvitsgle- the process of splitting into independent subproblems.thero
vant previous work until 2002. As interest in computing the-mwords, they allow for separating combinatorial calculasiérom
dial axis has found renewal in recent years, let us brieflijhiar geometric calculations in the medial axis computation. @he
comment on this challenging problem. gorithm we are going to describe in this paper is of this type.
There exist two principal problems—apart from stability Even when the topology of the medial axis is assumed to be
issues—that need to be addressed when computing a medial &riown, the (usually hard) problem of computing its bisester
One of them is determining the combinatorial structure,(ttee mains. Quite a lot of work has been devoted to this geometric
topology) of the medial axis. This problem has been wellasgd)v aspect of the medial axis. See, for example, [17] who focus on



rational boundary curves, and [15] where curvature progeaire (but is not restricted to) the proper classification andtinesat of
utilized for treating cubic boundary splines. A popularaggzh base cases, in order to establish correctness and to gaimgun
is local tracing [14, 32], where the medial axis is calcuddby speed, for both smooth and non-smooth circular boundaiyespl
tracing either the shape boundary or the axis bisectors.atn pnputs. Implementation details, experimental data, atetsed
ticular, so-called predictor/corrector methods [8, 15}énbeen examples are presented in Section 4. Finally, Section Foffe
proposed for approximating the medial axis in a piecewise-maome concluding remarks.

ner.

All these approaches described above are rather thedretjca . .
work—a practical one is given in [16]. They compute the mbdié Approximating the shape
axis by first approximating the boundary spline curve bywirc o )
lar biarcs and then applying the VRONI-package developed %@rc approximation of free-form curves has been studied _by
M. Held [22]. VRONI can compute the medial axis of a colle¢i@ny authors, see e.g. [23, 27, 33] and the references cited
tion of N points and line segments in (practicallg) N log V) therein. _In order to make this paper s_elf-c_ontamed, weqnies
time; circular arcs are accepted, too, and are convertedanthe algorithms which we use for approximating general fzen
polygonal description. The implemented algorithm is baigjc domains with domains bounded by arc splines.
incremental insertion, and is capable of constructing thée
Voronoi diagram. Although the computation is done very fagt1 Biarcs
in terms of the input sizelV, the resulting two-step approxima-
tion [16] blows up the data volume significantiyAlso, no guar- A biarc (a, a1) is obtained by joining two circular ares and
antee for the stability of the medial axis approximation ban @1 in & way such that they possess a common unit tangent vec-
given. tor at their joint.J. For any given set of* Hermite data, which

In the present paper, we describe a simple and fast methbd §&sists of two endpoint&,, P, and associated unit tangent vec-
is less data consuming (and thus is efficient also in thisejen&rSvo, v1, there exists a one—parameter family of interpolating
and that comes with a stability guarantee. We use an apprd%k‘?-r cs.
mation of the shape boundary by biarcs as well, though in-a tai The possible joints/ form a circle, which is called the joint
lored manner. Our algorithm then works directly (and exacticircle, cf. Fig. 2. This circle passes through the endpalts
on shapes bounded by circular arcs. This bears two major &@d 1 and it spans the same oriented angles with the tangent
vantages: (1) For a fixed accuracy of the approximation, tta dvectorsvo and vy, respectively (see Fig. 2 and e.g. [33]); its
volume drops fromV to n = O(N?/3) compared to using acenter is found by intersecting the perpendicular bissatbthe
polygonal description. (2) The biarc approximation scheme WO point pairs(Py, P1) and(Fy + vo, 1 + v1).
be tuned to preserve monotonicity of curvature of the odgin
shape, which makes the computed medial axis converge to the
exact one. Note that the medial axis of a shape with piecewise
circular boundary is composed of conic arcs, and thus has the
same analytic complexity as for polygonal domains.

We adopt the shape decomposition approach [11] to achieve
simplicity and numerical robustness of the algorithm. As de
composition is by inscribed maximal disks, it is naturallyted
to shapes with piecewise circular boundaries. The regultin
randomized divide & conquer algorithm runs in expected time
O(nlogn) if mild assumptions on the graph diameter of the me-
dial axis are met. A high-level description, including arfa
runtime and data volume analysis, and a proof of convergence
(medial axis stability) are given in [1]. The theoreticalfala-
tions being laid, the paper at hands concentrates on pahatid

experimental aspects of the algorithm. The biarc is uniquely determined once a joihbn the joint
Section 2 details the method we use for approximating a givgitle is selected. Various possible choices have beerogashin

polynomial spline curve by spiral biarcs. A careful destop the literature [27, 33]. In view of the medial axis computative

of our medial axis algorithm follows in Section 3. Continginneed a representation of the given shape boundary tharpesse

preliminary work in [2], a variant of the algorithm is workedt the curvature extrema. We, therefore, focus on so-call@dlsp
that performs the best concerning speed while ensuringstobwgijarcs.

ness in the presence of geometric degeneracies. This exlud

Figure 2: A planar curve(t) (grey), G Hermite
data(Py, vo) and(Py, v1), joint circle (dashed) with
oriented angles (light grey), and the spiral biarc.

1We recently learned that an advanced version of VRONI is uimdglemen- 2.2 Splral biarcs

tation, which will be able to process circular arc inputsedily. A sweepline . .
algorithm for computing the Voronoi diagram of a set of @chas been pre- Meek and Walton [28] propose a biarc construction schente tha

sented in [24]. guarantees that the arc spline approximation of a smoothlspi



(i.e., of a curve with monotonic curvature) is again a spifed- Alternatively, other technigues—such as the method pregos
sume that th&Z' Hermite data are sampled from a spiral curve [23]—can be used. We choose the simple bisection alguarith
and letky andk; denote its curvatures &, andP;, respectively, because of its simplicity and the runtime complexity @¢n)
where we assume thag > k; > 0. We choose the arg, as a with respect to the number of output elements stregcs.

segment of the osculating circle of the spiralfat hence the In order to evaluate the approximation error between th@kpi
joint J is obtained by intersecting the joint circle with the osciiarc (ag, a1) and the given curve, we measure the normal dis-
lating circle. The second arg, passes through and P, and tances with respect to the circular arcs in sampled pointg(on
matches the tangemni. According to [28], radii and curvaturesSince the joint/ is not located on the curve, we first match each
satisfyrg < < 1/ky. circular arc to its corresponding segmentagf), ¢ € [to, t1].

Let P, andw, be a further given set of Hermite data, samplérhis is done by projecting to the curveq(t), whereCj is used
from the same spiral, with curvaturés > ko > 0. The first as the center of projection. The parameter valu®f the pro-
arc of the following biarc is chosen as a segment of the oscujacted jointJ, is found by solving a polynomial equation of de-
ing circle atP;, hence its radius satisfidgk; > r;. It follows greed, whered is the degree of the spline curve. If there exist
that, when using spiral biarcs, one obtains an approximéijo multiple solutions within the given interval, then the eri®set
a curve with piecewise constant, but monotonic, curvatlitee to oo, otherwise we estimate the one-sided Hausdorff distance.
approximation order of spiral biarcs is three.

In order to apply this method to a polynomial spline curve, it
is necessary to split the curve at points with stationaryature,
which we will refer to asapicesthroughout this paper (since the
notion of vertices will be used with a different meaning)dan
at points with curvature discontinuities. In the cubic ¢abe
apices can be found by numerically solving polynomials of de
greeb, and the curvature discontinuities are located at knots wit
multiplicity > 2.

The method for computing a spiral biarc is summarized in Al-
gorithm 1.

Algorithm 1 spi ral bi ar ¢(F,P1,v0,v1,k0) Figure 3: Estimating the normal distances between
{Construct a spiral biajc the curve and the approximating spiral biarc.
1. b; < bisector of Py andP;

2: by <« bisector ofPy + vg andP; + vy
3 Cy—biNbe {Centerlofjoin.t girclg The method for estimating the approximation error is summa-
4. rj — ||Cy — Pyl {radius of joint circlg rized in Algorithm 2.
5. rg < 1/ko {radius ofag}
6: Co < Py + 10 - vy {center ofag} Alqori :
i ; o gorithm 2 er r or bi ar ¢(Cy,ro,C1,r1,9(t),[to, t1])
70 J — (Ezlrcle (Cy, m)) ? circle (}Oo, r0)) \ {Po} {joint} {Distance of biarc and curye
8 ag +— (Co, 10, Py, J) {first arc ——
: ; 1: Dy — 0, Dy < 0 {initialization}
9: C; « line (J,Co) Nline (Py, P, + vi) {center ofa; } 0 L .
. 2: t line (J,Cy) Nq(t),t € [to,t roject.J onto curvi
10: 7y — [Py — C4|| {radius ofa; } o it s uni(quetﬁ)en a(t).t € [to, 1] {proj ¢
E: ?elu(;n(c(‘;’ 7"1@, {’ Fr) {second ar 4. fori=0tosdo{s...number of sampled points
: 071 5: Do «— max( Dy, | ||q (to + i(ts —to)/s) — Col — 70|)
6 Dy maxDy,|q(ts +ilts —ts)/s) — Cill — 1)
7. end for
2.3 Adaptive bisection 8 return max(Do, Dy)
9: end if

Assume we have a spline curve segmg(ity, ¢ € [to, ;] without 10: return oo
apices. In order to produce a spiral biarc approximatioreneh
the maximum error is bounded by a given threshgldve use  The sampling-based approach leads to a slight undere&timat

adaptive bisection: of the error. In practice it performs quite well and it is véagt?
1. Create the biaru, a1 ) for the given segment. 2The following alternative for bounding the error could bedisOne can di-
rectly compute the points on the curve which have extrensahdces to the given

2. Evaluate the approximation error using Algorithm 2. curve, by solving the piecewise polynomial equati@(s) - (q(t) — Ci) =0,

¢ = 0,1, wheret varies within[to, t 7] and (¢ s, t1] for the first and the second

. . . arc, respectively. In the case of cubic splines, this leadgiintic equations. The

3. If the error is too large, then split the segment into h&IVE aximum distance then can be computed as the maximum of stendes at
and apply the algorithm to the two subsegments, else stapese finitely many points. Instead of this exact approads, dlso possible to



2.4 Approximation properties approximation quality. The expected runtimed$n logn) un-

. ) ) der the assumption that the graph diameter of the medial axis
Circular arcs segments approximate a given curve Segmémt Wi o, .y Thjs condition does not mean a real restriction in prac-

approximation order three. Similarly, an approximating&p yj.o - The number of branching points of the medial axis is in-
biarc spline withn circular arcs possesses the same approXii&pendent from the input size (the number of circular arcs)
tion order, and therefore the errerimproves asd(n""); cf. which, in turn, grows arbitrarily with the user-defined auy

[27, _28]' . ) of the output.
Given a sequence of approximating curves that convergeto th

(exact) boundary of a given planar domain, the medial axésof .
approximate domains do not necessarily converge to theahedir 1 ~Overall algorithm

axis of thg givgn domain. For instance, this is obviousirmhge The algorithm is based on the fact that decomposing a given
of approximation by polygons, where each vertex creat@its gpape with an inscribed disk leaves two (or more) subdomains

branch of the medial axis. S ~__whose medial axes can be computed independently. This-obser
The case of approximation by spiral biarcs, however, i®diff \ 5(ion has been extensively made use of in [11]. It holds for

ent, and has been analyzed in [1]. Since the curvature Max¥Pgnly connected planar shapes of any form, and is partigula

are preserved by the spiral biarc approximation, the nuraber,jiteq for our purposes because we deal with piecewiselaircu
leaves of the approximate medial axis is equal to the numbeg,gndaries already.

leaves of the exact medial axis. Consequently, the app@Xxim |, 5 pytshell, the algorithm proceeds as follows. digide
tion does not create any additional branches of the medial aiencalculates a random dividing disk and checks whether the
Moreover, we have geometric convergence as follows. induced decomposition is progressive, i.e., whether theltieg
Assume that the Hausdorff distance between the exact anddfdomains are combinatorially smaller (containing less)a
approximate domain boundary is at mesFor any poinponthe  ha the domain itself. In the negative case, the disk ismeco
exact medial axis which is sufficiently far away from the leav ,teq deterministically to fulfill this requirement. Eadibsio-
(where the required distance tends to zero as 0), itis possible main is then treated recursively, until one of the base cises
to derive a bound on the distandg to the nearest point on the,ggched and the medial axis is calculated directly. ddrequer

medial axis of the approximate domain, namely, steponly concatenates the already computed medial axes for the
4 subdomains, as they fit together at the centers of the diyidin
d € disks.

< - - .
P =7 _ cos
1 —cos(&/2) Thus, the expensive and critical computations are deldgate

Here,¢, € [0, 7] is the maximum angle between any two ra)gle divide step. Iq the conquer step, the subsglutions anlysi
that connect the center of the maximal inscribed circle whsc 9/U€d together without the need of any merging or adjustment
centered ap with any two of its tangency points. Consequentl ’perations. '_I'his_ reducc_es_ the_ gffect of error accumulgtmu,
except for the vicinity of the leaves, the medial axis intsetiie <€EPS numerical imprecision, if it occurs at all, locallgirected.
approximation order 3 of the boundary approximation byapir In the remainder of this section, let denote the piecewise

biarcs. The global error—including the leaves—can be srtmenCirCUIar approximation of the original shape, anddet stand
behave a®(n~). See [1] for more information. forits boundary. The algorithm will accept any circular aptine

If only nodes with valency three are present, then the spip%“ 04, and thus W?" also work iﬁ,A s polygqngl.
Before proceeding to a detailed descriptions of the algo-

biarc approximation preserves the topology of the mediad,ax. i | ll the f | definiti f digis
provided that the error of the boundary approximation igisuf 'thM's steps, let us recall the ormai de Inition o a MeGIALS.
ciently small. In the case of nodes of higher valency, thesken !_et MAT be the set _Of all _maX|mal d|sl_<s th_at can be_mscrlbed
mav split in various wavs into neighbouring nodes of lower viPto the shaped. A disk D is calledmaximalif there §X|sts no
Iengy P y ¢ g other diskD’ C A such thatD’ > D. The medial axis of4 is

' defined as

3 Computing the medial axis M(A) :={P | 3D € MAT : Pis center ofD}.

M defines a tree (in the graph-theoretical sense) because the
In this section, we develop a variant (and provide a detaited (A) o ; (I- grap )
: . L ._underlying shaped is simply connected.
plementation) of the randomized divide & conquer algorithm
in [1] which performs at high speed and is relatively robust .
against degenerate inputs. The algorithm computes thet exd€ Divide step

medial axis of a shape given in (any) piecewise circular bOURrL o ivide step carefully chooses a maximal diskand splits
ary representation. Together with the advantages fromytinal s the shape boundai.A into two or more chains, depending on
biarcs approximation, this means that the computed axis L number of tangency points Bk, The resulting subshapes are
verges towards the axis of the original shape with inCreasig, 1\, jeted with circular arcs which have as their supporting

derive an upper bound on the distance by analyzing the Besphbefficients of C?rcle- We call Such arcartiﬁCial arcs. Every maximal disk is,
lla(t) — Cil|. via its tangency points, uniquely assigned to two or mors arc




Figure 4: Constructing a disk that is tangent to two arcs.

- ~

(a) (®)

Figure 5: Base cases for smooth boundaries.

an illustration. The pointp, which is the center of the desired
maximal disk, is the matter of interest. This point must letioe
line [ throughe,, the center of;, andP. If we move from the
pointP a distance of length,, (the radius ofi;) towardsc,, we
arrive at the point;, . Together with,, andcp this point forms
an isosceles triangle. This fact can be exploited to coostil.
We compute the perpendicular bisector betwegrandc;,, and
intersect it withi, which gives the pointp. This construction

on JA. A possible way to pick a random maximal disk [1] igan, with slight modificiations, be applied to pairs of arcaibi-
to choose a random arcon d.A and to construct the disk thatrary position. If we replace the circular arg by a line segment,

is tangent taz at a fixed pointP, e.g., its midpoint or one of its the problem can be reduced to the intersection of thellinih

endpoints.

Giventhe setofaras;, 7 = 1...n, thatrepreser A in clock-
wise order, this is accomplished by iteratively constmgtlisks
that are tangent ta at the pointP and to some other arg;.
If the resulting disk still intersects or overlaps an ajcwith

an angle bisector of the line perpendiculat tbrough and the
supporting line of the segment.

This disk construction is, together with intersection amdre
lap checks, the most frequent and numerically most compégx s
in the entire medial axis algorithm. Thus the main atomicrape

1 < k <1 < n, then a new disk (which is smaller than th@ons are computing intersections of circles and lines.

preceding one) tangent t is computed, until we obtain a valid | et us proceed to the classification and analysis of appropri
maximal diskD. (For step by step details of tikaxi mal di sk ate termination conditions for the divide step. If we coesid
procedure see Algorithm 3). As we have to checknadlrcs of 1 houndary as precondition, then we can decompose any shape
the boundary, we obtain afi(n) time complexity for the com- pounded by circular arcs and line segments into only foue bas
putation of a single maximal disk. cases; see Fig. 5. This is simply accomplished by dividieg it
atively until the number of non-artifical arcs drops belowrfo

Let us argue that the cases in Fig. 5 cover all possibilit@ls-
serve first that no consecutive artificial arcs may occurabse

for smooth boundaries we construct every maximal disk at the

Algorithm 3
{Compute a maximal disk amin A}
1: if a has a reflex endpoitihen

maxi mal di sk(a,0.A)

2. P « reflex endpoint midpoint of an ara.

3: else

4 P < midpoint ofa ¢ All possible constellations with non-artificial arcs are cov-

5. end if ered in the cases (a), (c), and (d), provided no consecutive
6. D — halfplane tangentg® TR artificial arcs are allowed.

; fo;_z‘ r;u;n.b.?;ocfoarcs onA ’ e The combina}tion showq .in. case (b) is the only one which
9 a; —it"arcofdA TR o may occur with2 non-artificial arcs.

1(1) l Cgf—aldg\sl? ar:; iaﬁg etr?tetgai E If we do allow reflex and convex vertices on the boundary,
1o endif /{,\ then we have to pay more_a_ttennon to the choice of the @@int
13- end for @ to reduce the number of arising base cases. If a riando.mlyephos
14: return D arca has some reflex endpoint, we do not choose its midpoint but

rather the reflex endpoint itself &

. . . . 3 i i -artifici _
The central part of this calculation is the geometric carestr . -\ Pase case with tweonsecutivenon-artificial arcs, connected by an ar
tificial arc while guaranteeing smoothness at all vertigeonly possible in a

tion of a di.Sk WhiCh_iS tangent to an arcat a fixed p_ointP, degenerate case: All arcs would have to be on the same simgpoircle. The
and which is arbitrarily tangent to another aic See Fig. 4 for same applies to the hypothetical case of one artificial archom-artificial arc.
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Figure 6: Base cases f6i" boundaries.
3.3 Conquer step
In the conquer step, the medial axes of the base cases are com-

Furthermore the termination conditions have to be sligetty puted directly, and then are concatenated at centers ofmadxi
tended. We keep on splitting until all of the following crigeare disks which support the respective artifical arcs. At thi;iho

satisfied: we know exactly which parts of the (global) medial axis cerre
spond to which parts of the boundary of the shape. As the shape
1. The number of non-artificial arcs is 3. boundary is piecewise circular, the medial axis consistafc

_ o _ arcs. Each such arc is assigned to two primitives on the kaynd
2. There exists no non-artificial arc with a reflex vertex.  \yhere it is equidistant from. Possible primitives are diacarcs,

o i line segments, and points (boundary vertices). Differairspof
3. If three non-artificial arcs are consecutive then no crny, imitives result in different types of conics:

vertex occurs. (Note that this last criterion might lead to
redundant cuts, which are dealt with in section 3.4.) e Two circular arcs may define an elliptic or a hyperbolic arc,
depending on the position of the two supporting disks, and
This results in nine additional possible base cases as simown  the orientation of the arcs on the boundary.

Fig. 6. These new cases cover all possible non-smooth eagati
of the cases (a), (b), (c), and the degenerate case fronofiebin
Variations include the turning of a smooth vertex into a @V 4 A circular arc and a point define an elliptic arc if the point
one and the replacement of an isolated non-artificial arb it lies inside the arc’s supporting disk, and a hyperbolic arc,
reflex vertex. The base case (d) has no non-smooth derisative gtherwise.
because of splitting rule 3. Additionally, if we consideredlex
vertex as an arc with length zero, we can maintain the observae Two line segments define a straight line.
tion that no consecutive artificial arcs do occur. Togethidr the
following analytic enumeration of the new base cases it ig-ob
ous that the arguments concerning completeness of the Bmoo}, Tyo points again define a straight line.
cases apply to the situation ot boundary as well.

e Acircular arc and a line always define a parabolic arc.

e Aline segment and a point define a parabolic arc.

For illustratory reasons, let us give two examples. Comside

e For smooth case (a) the joint vertex can become convBg base case (h) with a labeling as in Fig. 7a. The only twe non
the isolated non-artificial arc can be exchanged by a refRificial primitives on the boundary, ascand pointP, define the
vertex, or both. These variations are covered by the cagesic arcc. As P lies inside the supporting disk ef the curver,

(e), (9), and (f). leading from the center @b, to the center ofD,, is an elliptic
arc.

e The two variations of smooth case (b) are obtained by re-Next, consider base case (c) where a branching of the medial
placing either one or both non-artificial arcs by reflex veaxis occurs (Fig. 7b). Curve; is a hyperbolic arc defined by
tices. See case (h) and case (i) for a realization of this. a; anda,. The same holds for the curvegandcs which stem

from the pairsio, a3 andas, a1, respectively. The special feature

e The new base cases (j), (k), and () represent all possibfehis base case is the branching pdntA branching point is a
combinatorial variations of smooth case (c) caused by tugiwint on the medial axis which is equidistant from at least¢h
ing isolated non-artificial arcs into reflex vertices. primitives on the boundary. Its assigned maximal disk tesch

the boundary at more than two points. Branching points are re

» Finally the degenerate case mentioned in foothattows quired as endpoints for our conic arcs, and thus have to be com
one variation by creating a convex vertex from a smoofyted directly. In our example, we have to compute a pointtvhi
one. This constellation is covered by base case (m).  has the same distance to three arcs. If we replace the arirgeby |
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Figure 8: The diskD*, centered at a branching point, is con-
structed bymexi mal di sk* after detection of a non-reducing
dividing disk D.

segments or (reflex) points, as in the base cases (j), (k)(and g\

we get ten possible combinations of three primitives. What w Py . S
are looking for is the disk that is simultaneously tangenalto \
three of them.

This problem is known as the Apollonius problem, named af-
ter the ancient Greek geometer who posed this problem about
200 B.C. (discussed among others by [20]). As up to eighlasrc
may satisfy the tangency conditions to the circles (lineagp®rt-
ing the primitives, we have the problem of singling out theque
valid disk that touches them at the right portion. We havelénp
mented this task for all triples of primitives, as this is dee in
the computation of all the branching points ocurring in tlasd
cases (c), (e), (), (j), (k), and (1).

Py

(b) Division into five subshapes

Figure 9: A degenerate case where five branches of the medial
3.4 Preventing redundant cuts axis meet at a single pointp. The shape is decomposed into
five subshapes. This situation is handlechieyi mal di sk*.
During the division process—especially when dealing wettex
boundary vertices—situations may occur where a disk obthin
by themaxi mal di sk algorithm fails to decompose the shape

into (combinatorially) smaller subdomains. As the propéor "€W constructipn i_s the Iack_of a fixed poffiton any of the arcs.
shapes to shrink is needed to assure a termination of the afy®is revealedin Fig. 8b, a disk tangent to the three are$ and

rithm, such a situation may lead to an infinite loop. To see &h gets constructed firét.As long as this disk overlaps another

. ; : \
example, an are for the construction of the maximal disk may'¢ (here e.gas), a new disk oru, o', and this very arc is con-

be chosen that causes base cases of the form (h) to be cut ZWA§ted- This process terminates with the desired distecen

from a over and over again. The remaining subdomains have fié Pranching point of the medial axis. Each of the threelresu

same number of non-artificial arcs as the preceding onessan#'d Subshapes is lacking at least one non-artificial arc,afam
undergo no combinatorial reduction. See Fig. 8a for antitus °"€ of the tangent primitives. Thus a reduction is guarahtee
tion. This unwanted phenomenon can be detected, and subséhemexi mal di sk* algorithm also recognizes and handles
quently be avoided, by a more sophisticated choice of thie-divnulti-branchings, i.e., nodes of the medial axis with vajefour
ing disk. As a pleasing side effect, this choice will also diian ©F more. If a valid branching point disk is tangent (or, for the
the intriguing case of multi-branching of the medial axis. implementationg-tangent for a predefined smal) to m > 4
As soon as a non-reducing digk as shown in Fig. 8a, is de-Primitives, then such a multiple branching point occurs. - Ev
tected, we invoke algorithmaxi mal di sk*, which computes 7Y tangent arc defines a point of tangency foon the shape
adiskD* that is tangent to the shape boundary at three (or mop&yindary, and the shape is divided imtosubshapes which are
points instead of only two. Similar to the original algorith @lljoined togetherab. Fig. 9 gives an illustration.
maxi mal di sk, the procedure traverses all boundary arcs. [tWhen several reflex vertices agglomerate in a relativelyllsma
checks, however, which of them yields the third point of tar
ency of the needed branching point disk. The first two cdntac 4Unlike in this example, the first defining atg aftera’ does not necessarily
9 . y gp ’ , result in an applicable starting disk. Note that anarén unfavorable geometric
points are known to be on the footar@nd on the ara’ chosen position mignt lead to a disk which has its center on the wrsidg of the line
by themaxi mal di sk algorithm forD. The main feature of the defined by the points of tangency aranda’.




area of the shape (perhaps with no separating boundary) paxtgorithm 4

nedi al axi s(A)

then another non-reducable case may occur: a subshapsteorqgompute the medial axis of}

ing of an arbitrary number of artificial arcs, separated lng af
zero length (as they result from reflex boundary vertices)e T ».

1: if Ais base casthen

compute medial axis ofl

medial axis of such a case is a subset of the standard Vorongig|ge

diagram, with the zero length arcs as the defining pointshWit,.
a construction very similar to theaxi mal di sk* algorithm, .
these cases can be reduced to base cases of the form (I) frgm
Fig. 6. Two zero length arcs (points) neighboured on the suly-
shape’s boundary are fixed. A third zero length arc is theardet .
mined in the iterative process, such that the disk definetieset 4.
three points does not contain any other point. This disk iliav 4.
maximal disk, which is tangent to the boundary at three goint ;.

12:
3.5 Putting things together 13:

14
By combining the procedures introduced above we obtain the
main algorithm for the medial axis computation, as lined out

cend if

a « random arc ir0 A
D «— maxi mal di sk(a, 0.A)
if D is non-reducing ai’ then

D « maxi mal di sk*(a, a/, 0.A)
end if
k «— # tangent points ol
splitAinto Aq,..., A
fori=1...kdo

nedi al axi s(A;)
end for

in Algorithm 4. Its input is the shape approximatiana, rep-
resented by its piecewise circular boundér¢. The algorithm
dividesA recursively into partial shapes, until they match any of
the base cases introduced before. The choice of the disk (con
structed bynmaxi mal di sk) which is used for the decomposi-
tion is random at first. If a non-reducing disk occurs, then a disk
centered at a branching point is computed by the extended alg
rithm maxi mal di sk*. If the state of a base case is reached, we
may proceed in two possible ways:

e The medial axis of the base case is computed directly. It
exclusively consists of conic arcs. This is one of the bemefit
from the circular boundary representation.

e For certain applications, the curve equations of the axjs se
ments may be of small or no interest at all, as rather the
topological or combinatorial structure is needed. Through
the use of base cases, which reveal various special features
of the shape and its medial axis (branching points, local cur
vature maxima, etc.), it is easy to derive useful informatio
on the axis without calculating the conic arcs right away. By
storing the combinatorics of all base cases, the exact hedia
axis can be computed at a later point, and for any required
part of the shape.

4 Detalls and examples
4.1

The algorithm presented in the previous section has been im-
plemented in C++ for matters of performance and availabil-
ity of supporting libraries. As many geometrical constioigs
and checks are necessary during the course of the algoritE[ﬁ

Implementation with CGAL

(a) Non-smooth lion shape

(b) Non-smooth Austria shape

ure 10: Two shapes whose boundaries are not entirelytimoo
"have some convex and reflex corners.

The medial axis

5As discussed in [1] it is possible to achieve a more balanesomposition reaches the boundary at the convex vertices.

of the shape (and thus a stronger theoretical bound on thiene)nby using the
so-called cut and walk principles for the determination afiading disk. For
multi-processor architectures and parallel processiisgntiight prove useful, on

single CPU architectures, however, using solely randonicelchas turned out the Computational Geometry Algorithms Library (CGAL) [9]

to be more efficient [2].

proved to be the most appropriate choice. CGAL is a C++ pack-



age for combinatorial, algorithmic, and geometrical Sohs

with an emphasis on flexibility, stability, exactness, aedfqr-

mance. It provides simple geometric calculations as ietgisn,

position, and distance checks and also supports the visitjalib
with simple GUIs and visualization libraries as Qt [30].

The main benefit of CGAL is, however, the possibility to
choose between various number types which satisfy the de-
manded requirements, and which may be varied with minimal
effort due to CGAL's template architecture. The impleménta
of the medial axis algorithm has been realized in two diffiére
versions:

e To achieve an implementation as reliable as possible, the
exact rational number typ&mpq from the GNU Multiple
Precision Arithmetic Library [21] has been chosen in one
version. The main reason for this decision is the represen-
tation of a circle as a quadratic equation in CGAL. An arbi-
trary point on a circle is a solution of this equation, andsthu
has irrational coordinates, in general. As float numbens the
are necessarily imprecise, we seek rational points whieh ex
actly lie on a circle defined by three rational points. It is
known that such a circle has the following properties:

— The center of the circle has rational coordinates.

— Points with rational coordinates lie dense on the circle.

So it is possible to find a rational point as near to any point
on a circle as desired. This has been implemented in our
program following the instructions from [7]. Due to the very
large integers needed in these calculations, the choice of a
elaborate rational type &mpq is inevitable for a reliable
implementation.

¢ If exactness is not the main issue (and, as observed in prac-
tical tests, the results do often not decisively differ)thiee

A

(a) Initial Bézier curve (snow flake shape)

(b) Approximation details with error magnified by 10

Figure 11: Bézier curve and its biarc approximation.

use of a float number type results in faster runtimes. A Vei-this context are, on one hand, the parallel handling ofsey-
sion of the program which uses explicitelyuble NUmMbers grate kernels (what is hopefully only a matter of clever ieapl
has been implemented for this purpose. As the statistigalhtation), and on the other hand, the recognition of a piaten

evaluation below will show, the gain in runtime is consi

%rror as soon as it occurs (what may be the more challenging

erable, but computational inaccuracy may possibly resultilgye). Efforts in this direction are among the motivatiéors

incorrect (though locally restricted) partial solutions.

future work.

Problems with thedouble implementation arise especially The described algorithms offer several features for theipaan:
when dealing with very large circles, which result from teg- ulatlon of both the input and the output. Usmg some of them is
most collinear points defining an arc. Lines which are neaftfcasionally necessary to generate appropriate datarsathe
parallel also raise a problem, as the resulting interseqimnt P€ S€en as a possibility to experiment with the problem:

can often not be properly represented by a float type. If sitch s

uations occur, théouble implementation reaches its limitations,

and locally incorrect sets of maximal disks are the outcome.
The ideal solution for this problem would be an algorithm

which computes the medial axis with one of both number types,

dependent on which one is needed. In fact, almost all calculae

tions can be handled hjpuble without difficulties. Only in case

of an error, an exact number type, @s:pq, should recompute

the relevant (and by use of our approach, locally restrjqbedt

of the shape, and provide the correct result. The main pnoble

The algorithm for the computation of spiral biarc approx-

imations offers a convenient possibility to vary the param-
etere that bounds the allowed Hausdorff distance between
the original shape and its circular boundary represemtatio

As the approximating boundary is a collection of arcs and

line segments, and does not consist of one single differen-
tiable function, it does make sense to take a closer look at
the connecting vertices between two arcs. The spiral biarcs
approximation generally assures a smooth boundary, but as



the representation is not totally exact, it makes sense-to in Approximation quality
troduce a small error constant. Via this constant it is dettid 10 ‘

whether a vertex defines a (convex or reflex) corner of the
shape, or if the shape is considered smooth in the neighbor-
hood of this vertex. The constant can be varied to fit the  °o1f
quality of the used input data.

T
CAD —&—
austria --—---

1

0.01 |

e The output of the computed circular boundary representa-
tion and its medial axis is realized in two different ways. Orf
one hand, the popular Qt library from Trolltech [30] is used  o.0001 |
for the visualization on screen, supporting various fuorddi
as translation and zoom. On the other hand, it is possible to
write the obtained medial axis directly to PostScript, veher .4
the conic arcs are represented either simply by line segment
or by cubic Bézier curves; cf. footnofe Le-07 = 1000 7000 PR S

number of arcs

0.001

1e-05

e There exist various other possible modifications to tune the
input or the ouput, as for example the possibility to con- Figure 12: Relation between accuracy and data volume.
vert the input arcs into x-monotone arcs before processing,
or the use of a bound flag for the arc’s radii which causes
arcs defined by almost collinear points to be recognized as
line semgents (which makes sense to avoid numerical errors
especially when working with théouble kernel).

4.2 Examples

In this section we report on the experimental behavior ofadur
gorithms, and display and interpret the produced outpusésr
lected examples. We start with commenting on the biarcs ap-
proximation algorithm.

Depending on the number of spiral biarcs used to represent
a shape boundary, the error between the original shape &ind it (a) Polygon approximation
approximation varies. This deviation from the original shas
not uniformly distributed along the boundary, as can be seen
Fig. 11b. For simple and smooth shapes these errors aretedpec
to be rather small, even for a small number of approximatiog.a

The relation between the achieved accuracy and the data vol-
ume is visualized in Fig. 12 for several example shapes: CAD,
Austria, tree, and snow flake shape. The slopes of the shown
graphs confirm an approximation order of three, as is theoret
cally provable for circular splines.

The size of the error, however, does not affect the number of
leaves of the resulting medial axis. This is not true for golyal
representations, no matter how small is the deviation opthg-
gon from the approximated shape. As can be seen in Fig. 13a,
many additional branches show up in the medial axis, which do
not appear in the original shape’s axis, nor in the axis afpisal

biarcs approximation (Fig. 13b). Figure 13: The calculation of the CAD shape was done @éth
With growing approximation quality of the boundary, the conprimitives in both cases. The medial axis of the polygonal ap

puted medial axis converges to the exact axis of the origipabximation has additional branches at the convex cormérite

shape. To rate the influence of the approximation accuracyth medial axis of the circular boundary representationf®1

the speed of the implementation, several different bounid- |ogically correct and geometrically more accurate.
resentations of a particular shape (the tree shape in Fidha\#

been generated. The resulting runtimes are shown in detail i
Table 1. (The calculation of the coefficients for the equatiof of elapsed seconds grows in an almost linear fashion witardeg
the conics building the medial axis is includ®d.The amount

(b) Spiral biarcs approximation

For the output to PostScript it has proven more useful to shambic Bézier
6These coefficients can be stored and assigned to the regpbasie cases. curves that approximate the conic arcs.

10



error arcs ofl MAT bfl MA Gpq Runtimes for tree and snow shape
k-10-! 2096 | 0.06 0.18 0.03 12.15 A T T T
k-1072 3736| 0.14 0.36 0.04 19.31 100 L :
k-1073 7840| 0.32 0.67 0.08 42.54
k-10=* 16970 0.75 153 0.12 90.55 "
k-1075 36674| 1.65 3.45 0.24f 194.43 g
k-1076 78736| 359 7.21 058 427.36 g w0f
k-10"7 169418| 7.76 16.25 1.23 918.35 B
k-107® 364528| 16.91 36.49 2.81 21695 g
k-10~° 784972| 36.76 83.04 5.89 4607.18 ¢ 1L
Table 1: Runtimes in seconds for different approximatidrtbe o
shape in Fig. 14. The coluninf I shows the time needed for the S
boundary conversion with an error relative to a boundingiex 10000 100000 1e+06

rameterk. The twoMA columns give the seconds elapsed for the number of arcs

medial axis construction usingpuble and Gmpq, respectively.

(We have averaged over 5 runs). The time needed for the bEiggire 15: Runtimes for snowflake (Fig. 11a) and tree (Fig. 14

cases (columb f | ) is already included. shape. The two dotted lines show linear reference funcfons
hypothetical runtimes of 12bs per arc (upper) and s per arc
(lower).

Runtimes for Austria and CAD shape

10

elapsed seconds

Austria ---%---
CAD —8—
linear slopels ——————

10000 100000
number of arcs

Figure 16: Runtimes for Austria shape (Fig. 10b) and CAD let-
tering (Fig. 13b). The two dotted lines show linear referenc
functions for hypothetical runtimes of 12 per arc (upper) and
60 us per arc (lower).

Figure 14: Tree shape and its medial axis.

tion. The snowflake shape (Fig. 11a) and the tree shape @)g. 1
evaluated in Fig. 15 branch similarly, so the resulting imes
to the number of arcs. Note that, by construction, the numbge almost the same.
of branching points of the medial axis stays the same formll a oyt of the two shapes interpreted in Fig. 16, the medial aixis o
proximations, because the number of leaves is the same #®fothe Austria shape (Fig. 10b) has more branching points than t
original free-form shape. CAD lettering (Fig. 13b). This results in a better relativatime
In Fig. 15 and Fig. 16, for several shapes the ratio between the latter shape, shown as offset between the two graphs i
the computation time and the number of arcs is displayedigrapog-log scale.
cally. Note that the coordinate axes of the graphs are ItgaH  The configuration used for all tests is a 64 bit installatién o
cally scaled. Linux Debian on an Intel Core 2 Duo 6700 architecture with 8
The graphs in both figures show that in practice runtimes gr&B RAM. As no parallel processing is implemented yet, only
(almost) linear with the number of arcs used for the appraxinone core is used so far.
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5 Conclusion [7] Burnikel C. Rational points on circles. Research Report
MPI-1-98-1-023, Max-Planck-Institut fur Informatik, Im

We have provided an efficient and stable implementation of a Stadtwald, D-66123 Saarbriicken, Germany. 1998

medial axis algorithm for planar free-form shapes. To ouvkn

edge, this is the first algorithm that runs fast in practicdarthe [8] Cao L and Liu J. Computation of medial axis and offset

same time guarantees convergence to the exact medial axis of curves of curved boundaries in planar domain. Computer-

the input shape. The program can compete with currentsfate- ~ Aided Design 2008; in press.

the-art implementations on this field with regard to comess,

speed, and reliability. The basic idea was using a piecesiise

cular boundary conversion, which allows for appropriatetee

preservation of the shape, as well as for a simple and fasiained o] Chin F, Snoeyink J, Wang CA. Finding the medial axis of

axis algorithm. An implementation of the algorithm whicmto a simple polygon in linear time. Discrete & Computational
bines thelouble and theGmpq kernels to achieve speed and sta-  Geometry 1999; 21: 405-20.

bility in one single program is possibly an issue for futurerkv

In addition, we plan to the extend the method to multiply cofitl] Choi HI, Choi SW and Moon HP. Mathematical theory
nected domains and we will apply the results to obtain efficie of medial axis transform. Pacific Journal of Mathematics
methods for the computation of offset curves. 1997; 181: 57-88.
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