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ABSTRACT
We show how to divide the edge graph of a Voronoi diagram into
a tree that corresponds to the medial axis of an (augmented) planar
domain. Division into base cases is then possible, which, inthe
bottom-up phase, can be merged by trivial concatenation. The re-
sulting construction algorithm—similar to Delaunay triangulation
methods—is not bisector-based and merely computes dual links be-
tween the sites, its atomic steps being inclusion tests for sites in cir-
cles. This guarantees computational simplicity and numerical sta-
bility. Moreover, no part of the Voronoi diagram, once constructed,
has to be discarded again. The algorithm works for polygonaland
curved objects as sites and, in particular, for circular arcs which al-
lows its extension to general free-form objects by Voronoi diagram
preserving and data saving biarc approximations. The algorithm
is randomized, with expected runtimeO(n log n) under certain as-
sumptions on the input data. Experiments substantiate an efficient
behavior even when these assumptions are not met. Applications
to offset computations and motion planning for general objects are
described.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Nonnumerical Algorithms and
Problems—geometrical problems and computations

General Terms
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1. INTRODUCTION
The divide-and-conquer paradigm gave the first optimal solution

for constructing the closest-site Voronoi diagram in the plane [27].
Though being a classical example for applying a powerful algorith-
mic method in computational geometry, the resulting algorithm be-
came no favorite for implementation, not even in the case of point
sites.

For Voronoi diagrams of general objects the situation is more
intricate, as such diagrams may have all kinds of artifacts.Their
edge graph may be disconnected, and their bisectors may be closed
curves, which complicates the construction. In particular, the ab-
stract Voronoi diagram machinery in [18, 19] is ruled out. Lit-
erature tells us that divide-and-conquer is involved if emphasis is
on the bottom-up phase, even if the sites are of relatively simple
shape. See the papers [21] and [28], respectively, for earlyalgo-
rithms on line segments and circles, and the optimalO(n log n)
variants in [17] for line segments, in [30] for line segmentsand cir-
cular arcs, and in [7] for convex distance functions. The crux is the
missing separability condition for the sites, which would prevent
the merge curve from breaking into several components. Eventhis
issue being solved, we still have to intersect complicated bisectors
and discard old parts of the diagram, which makes the algorithms
complex and hard to implement.

Many alternative strategies for computing generalized Voronoi
diagrams have been tried. Incremental insertion cannot be applied
directly to general sites without loss of efficiency. In particular,
the framework in [19] for abstract Voronoi diagrams may not ap-
ply. Still, randomized insertion can be made efficient [3], but needs
pre-requisites like splitting sites into ’harmless’ pieces, each piece
then acting as several sites. The plane-sweep technique, onthe
other hand, generalizes nicely for line segments and circles [12]
but, unfortunately, not for circular arcs or more general sites. Line
segments have to be split into 3 sites to ‘domesticate’ theirbisector.
Many implementation details occur.

In fact, in all these algorithms the bisector curves take part in the
computation. Already in the case of line segments, bisectors are



composed of up to 7 pieces, and may even be two-dimensional if
not defined carefully in the case of shared endpoints. Such situa-
tions cannot be considered degenerate; they occur naturally when
decomposing complex sites into simpler ones. Consequently, the
algorithms are involved and also suffer from numerical impreci-
son. Difficulties may be partially eluded when working in thedual
environment: Instead of intersecting two bisectors, the center of
a circle tangent to the three defining sites is calculated. This bears
the advantage of working on the sites directly, linking themaccord-
ingly rather than computing new geometric objects that themselves
take part in later calculations. The classical example is, of course,
the Delaunay triangulation for point sites. For general sites, tan-
gent circles may not be unique. Up to 8 solutions do exist, which
are usually difficult to calculate; see e.g. [11].

The algorithm we propose in the present paper works directlyon
the sites, too, but its atomic operation is much simpler, namely,
an inclusion test of a site in afixed circle. We first extract the
combinatorial structure of the Voronoi diagram, and fill in the bi-
sector curves later on. In contrast to existing Voronoi/Delaunay
algorithms, no constructed object is ever discarded. Our setting is
very general: Sites are pairwise disjoint topological disks of dimen-
sions2, 1, or0. This includes polygonal sites, circular disks, spline
curves, but also single points and straight-line segments.Bound-
aries of curved planar objects with holes can be modeled. We do
not split complex sites into pieces beforehand, because we need not
care about the bisectors.

Our idea is to calibrate the top-down phase of divide-and-
conquer by dividing the edge graph of the Voronoi diagram without
prior knowledge. A simple plane sweep is used to generate a set
of points whose removal from the edge graph leaves a geometric
tree. This tree is then computable as the medial axis of a general-
ized domain that, combinatorially, behaves like a simply connected
domain. While classical medial axis algorithms [20, 6, 8] cannot
be applied, not even in the presence of simple sites, we show that
the methods in [2, 1] are flexible enough to be extended to work
for such domains. In particular, the edge graph is split further in
a recursive manner, until directly solvable base cases remain. The
bottom-up phase is trivial and consists of reassembling therespec-
tive pieces of the edge graph.

The paper includes a theoretical and an applied part. We take
particular interest in sites represented by circular arc splines, for
several reasons. The modeling power of such splines beats that of
polylines, which results in a significantly smaller input data vol-
ume. Our algorithm naturally, and with almost no increase ofnu-
meric complexity, works for this case. Also, a stable approximation
of the Voronoi diagram for algebraically complex original sites can
be guaranteed. If the number of sites is small compared to thenum-
ber, n, of their describing arcs, the graph diameter of the medial
axis mentioned above tends to be linear, and our algorithm runs in
O(n log n) randomized time. Experiments substantiate this behav-
ior with small constants, but also show that, in the case of point
sites, the runtime is slightly larger. Thus, the simplicityand gener-
ality of our algorithm come at a price. Still, this is maybe the first
practical algorithm that works reasonably efficient for general pla-
nar sites. Existing practical methods, e.g. in [14, 10], areconfined
to polygonal inputs; curved objects, if accepted, are converted to
polygonal ones, blowing up the data volume in a non-linear man-
ner. 1

1We recently learned that the VRONI Voronoi code [14] for points
and line segments has been extended to include circular arcsas
sites [15]. The underlying algorithm is incremental insertion. A

Applications are manifold. The two ones we sketch here use
sites in piecewise circular (PC) representation. This enables mo-
tion planning in PC-environments [31] which, compared to piece-
wise linear (PL)-environments, is shown to lead to shorter and
‘smoother’ robot paths. Moreover, shape offset computations are
eased by the fact that PC representations are closed under offset
operations. Compared to other offsetting algorithms that are based
on Voronoi diagrams [16, 13, 4], our method is simpler because
we compute only a combinatorial representation of the diagram for
this application.

2. DIVIDING THE VORONOI DIAGRAM
Let us define the Voronoi diagram of general objects. Our sites

are pairwise disjoint and closed2 topological disks of dimension
two, one, or zero in the Euclidean planeR

2. That is, a site is ei-
ther homeomorphic to a disk or to a line segment, or is simply
a point. This includes polygons, circular disks, and open spline
curves as sites. Here and throughout this paper, letS denote the
given set of sites. The distance of a pointx to a sites ∈ S is
d(x, s) = miny∈s δ(x, y), whereδ denotes the Euclidean distance
function. As done e.g. in [3, 30], we define the Voronoi dia-
gram,V (S), of S via its edge graph, GS , which is the set of all
points having more than one closest point on the union of all sites.
Under the assumption that sites are represented in a reasonable way
(say, by real analytic curve pieces), this geometric graph is well de-
fined by results in [9]. An edge ofGS containing points equidistant
from two or more different points on the same sites is called aself-
edgefor s. Theregionsof V (S) are the maximal connected subsets
of the complement ofGS in R

2. They are topologically open sets.

OBSERVATION 1. The regions ofV (S) bijectively correspond
to the sites inS. Each site is contained in its region, and regions
are simply connected.

PROOF. Let x be a point in the regionR of V (S). To x there
exists a unique closest point,y, on the union of the sites inS. (Oth-
erwise,x would be a point on the edge graphGS .) The sites are
pairwise disjoint, so there is a unique sites ∈ S with y ∈ s. Sites
is the same for allx ∈ R, becaused(x, s) is a continuous function
of x. This maps regions to sites.

Now, obviously, withx also the closed line segmentxy is part
of R. This implies thatR is simply connected. In particular, we
havey ∈ R, which impliess ⊂ R and maps sites to regions.

We thus can talk of the regionof a site, s, which we will denote
with R(s) in the sequel.

The differences to a bisector-based definition of the Voronoi dia-
gram should be noticed. Self-edges are ignored in such a definition
unless the sites are split into suitable pieces. Such pieces, however,
share boundaries—a fact that, if not treated with care, may give rise
to unpleasant phenomena like two-dimensional bisectors.

To get control over the unbounded components of the diagram,
we include a surrounding circle,Γ, (or any other desired curve)
into the setS of sites. We can always chooseΓ in a way such that
each vertex ofV (S \ {Γ}) is also a vertex ofV (S). All regions
of V (S) are bounded now, except, of course, the regionR(Γ).

For later purposes, we intend to show that removal of certain
points on the edge graphGS breaks all its cycles. Finding such

circular arc’s endpoints have to be inserted prior to their defining
object.
2Topological properties are meant to be relative to the dimension
of the considered object.
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Figure 1: DomainA′ (right) obtained as the augmentation of a given domain (left) with a splitting diskD. The medial axis (dashed) is split
at the center ofD.

points is nontrivial, in view of the possible presence of self-edges.
For a sites 6= Γ, let p(s) be a point ons with smallest ordinate,
and denote withq(s) the closest point onGS vertically belowp(s).
By the boundedness ofR(s), the pointq(s) always exists. Without
loss of generality, let us assume thatq(s) is not an endpoint of any
edge ofGS ; this can always be achieved by rotating the coordinate
system slightly. We define a new geometric graph as

TS = GS \ {q(s) | s ∈ S \ {Γ}}. (1)

LEMMA 1. The graphTS is a tree.

PROOF. For each bounded region ofV (S), the edge graphGS

contains a unique elementary cycle, because of the simple connec-
tivity of regions (Observation 1). For the same reason, the set of
cycles does not change if self-edges are ignored. Interrupting each
elementary cycle at a point vertically below its site leavesa geomet-
ric forest, because no path can continue below any site. Moreover,
when as many points are removed as there are elementary cycles,
and removal takes place at the interiors of edges ofGS , a geometric
tree is obtained.

It remains to show that, for each sites 6= Γ, the pointq(s) ∈ GS

does not lie on a self-edge fors. Recall thatq(s) is equidistant
from p(s) and from at least one other point, sayy, on the union of
all the sites. The ordinate ofy is smaller than the ordinate ofp(s),
becausep(s) lies vertically aboveq(s). Thus, assuming that such
a pointy stems froms, which has to be the case ifq(s) lies on a
self-edge fors, contradicts the definition ofp(s).

3. AUGMENTED DOMAINS
Our next aim is to interpret the treeTS in Lemma 1 as the medial

axis of a generalized planar domain. In this way, we will be able
to construct the Voronoi diagramV (S) by means of a medial axis
algorithm, as if asimply connecteddomain was the input. Usually,
the similarity between these two structures is exploited the other
way round: Medial axes are constructed as special cases of Voronoi
diagrams.

Consider a bounded and connected two-manifoldB, here just
called ashape, in R

2. An inscribed disk forB is defined as a disk
which lies entirely inB. The set of inscribed disks is partially or-
dered with respect to inclusion. Themedial axis transformof B,
for short MAT(B), is the set of all maximal inscribed disks. Sim-
ilarly, the medial axis, MA(B), of B is the set of all centers of the
disks in MAT(B). It is easy to interpretV (S) as the medial axis
of a planar shape. Simply take the surrounding circleΓ as part of
the shape boundary, and consider each remaining sites ∈ S as a
(possibly degenerate) hole. That is, we define

B = B0 \ {s ∈ S | s 6= Γ}, (2)

whereB0 denotes the disk bounded byΓ. The medial axis MA(B)
is just the closure3 of the edge graphGS of V (S).

Our goal is, however, a different one. We want to combinatori-
ally disconnect the shapeB at appropriate positions, such that the
medial axis of the resulting domain corresponds to the tree decom-
positionTS of V (S). As observed in [9], a maximal inscribed disk
can be used to split the medial axis of a simply connected shape
into two components which share a point at the disk’s center.In or-
der to extend this result to general shapes, we introduce thenotion
of anaugmented domain. Its definition is recursive, as follows.

An augmented domain is a setA together with a projection
πA : A → R

2. Initially, A is the original shapeB, and the asso-
ciated projectionπB is the identity.

Now, consider a maximal inscribed diskD of an augmented do-
mainA, which touches the boundary∂A in exactly two pointsu
and v. Denote with

⌢
uv and

⌢
vu the two circular arcs which the

boundary ofD is split into. The new augmented shape,A′, which
is obtained fromA by splitting it withD, is defined as

A′ = A0 ∪ D1 ∪ D2

whereA0 = {(x, 0) | x ∈ A \ D}, D1 = {(x, 1) | x ∈ D},
andD2 = {(x, 2) | x ∈ D}. See Figure 1 for an illustration. The
associated projection is

πA′ : A′ → R
2, (x, i) 7→ πA(x).

We say that the line segment inA between points(x, i) and(y, j)
is containedin A′ if one of the following conditions is satisfied:

1. i = j and the line segmentxy avoids∂D,

2. {i, j} = {0, 1} andxy intersects the arc
⌢
uv, or

3. {i, j} = {0, 2} andxy intersects the arc
⌢
vu.

For any two points(x, i) and (y, j) in A′, their distance now
can be defined. It equals the distance ofπA(x) andπA(y) in R

2,
provided the connecting line segment is contained inA′, and is∞,
otherwise. An (open) disk inA′ with center(m, i) and radius̺ is
the set of all points inA′ whose distance to(m, i) is less than̺ .
Such a disk is said to beinscribedin A′ if its projection intoR

2 is
again an open disk.

Having specified inscribed disks forA′, the boundary ofA′ and
the medial axis (transform) ofA′ can be defined as in the case of
3The reason why these two structures are not identical lies inthe
possible existence of osculating maximal inscribed disks for B.
The centers of such disks, while belonging to MA(B), are not part
of GS . This subtle difference may be ignored for the purposes of
the present paper.
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Figure 2: Oriented boundary of an augmented domain.

planar shapes. In particular,∂A′ derives from∂A by disconnecting
the latter boundary at the contact pointsu and v of the splitting
disk D, and reconnecting it with the circular arcs

⌢
uv and

⌢
vu. This

process is depicted schematically in Figure 2. Note that when ∂A′

is traversed in a fixed orientation, the interior ofA′ stays on a fixed
side.

Concerning the medial axis, every maximal inscribed disk inA
different from D corresponds to exactly one maximal inscribed
disk inA′, hence there is a bijection between MAT(A) \ {D} and
MAT(A′)\{D1, D2}. The medial axis ofA′ therefore is the same
geometric graph as MA(A), except that the edge of MA(A) con-
taining the center ofD is split into two disconnected edges which
both have the center ofD as one of their endpoints. These two
points are two leaves of MA(A′); consult Figure 1 again.

To draw the connection to the edge graphGS of V (S), the initial
shapeB in (2) is augmented with|S| − 1 maximal inscribed disks,
namely, the ones centered at the pointsq(s) ∈ GS , whereq(s) was
the vertical projection ontoGS of a point with smallest ordinate
on the sites. Denote withAS the resulting domain after these
|S| − 1 augmentation steps. We may conclude the main finding of
this section as follows.

LEMMA 2. The treeTS in (1) is the medial axis of the aug-
mented domainAS .

4. THE ALGORITHM
Using Lemma 2, the Voronoi diagramV (S) can be obtained by

computing the medial axis of the augmented domainAS . We show
how to computeAS efficiently, and how to construct its medial
axis without the need of computing distances between pointsin AS

directly. The resulting algorithm is very simple and lends itself
to robust implementation. It runs in optimal (randomized) time
O(n log n) if certain quite realistic assumptions on the input are
met, and inO(n

√
n) time in the unrestricted case. Its observed

runtime, however, is close to the former with rather small factors.

4.1 Computing the boundary of AS

Consider the planar shapeB in (2) whose augmentation has led
to the domainAS . From the algorithmic point of view, augment-
ing B amounts to connecting its boundary∂B to a single cyclic
sequence,∂AS , that consists of pieces from∂B and from circles
bounding the splitting disks. (One-dimensional sites contribute
to ∂B with two curves, one for either orientation, and the special

Figure 3: Voronoi diagram for point sites.

case of point sites can be handled consistently.) Each such bound-
ary piece is used exactly once on∂AS , and traversing∂AS cor-
responds to tracing the medial axis tree MA(AS) in preorder. See
Figure 2, where a shape having two planar sitess1 ands2 as its
holes is augmented with two disks, and the boundary of the result-
ing augmented domain is oriented for better visualization.

The construction of∂AS is trivial once the splitting disks are
available.4 The main task is, therefore, to find these disksDi, one
for each sitesi ∈ S \ {Γ}. Recall from Section 2 thatDi is hori-
zontally tangent tosi at a lowest pointp(si) of si. The centerq(si)
of Di lies on the edge graphGS of V (S) but, of course,Di need
to be found without knowledge ofGS .

Indeed, a simple and efficient plane-sweep can be applied as
follows. Sweep acrossS from above to below with a horizontal
line L. For a sitesi 6= Γ, let xi be the abscissa ofp(si), and define
EL(i) = si ∩ L. Note thatEL(i) may consist of more than one
component. We maintain, for each sitesi whose pointp(si) has
been swept over, the sitesj whereEL(j) is closest toxi onL. The
unique disk with north polep(si) and touchingsj is computed, and
the minimal such disk forsi so far,DL(i), is updated if necessary.
The abscissaxi is deactivated again whenDL(i) has been fully
swept over byL.

LEMMA 3. After completion of the sweep,DL(i) = Di holds
for each indexi.

PROOF. For a fixed indexi, let sk be the site that defines the
disk Di. We have to show thatEL(k) andxi become neighbors
on L while xi is active. Consider a pointt where Di is tan-
gent tosk. Then, becauseDi avoids all the sites, the line seg-
mentxit ⊂ Di does the same. ThusEL(k) andxi are adjacent
whenL passes throught. Also, xi is active at this moment, be-
causeDi ⊂ DL(i) holds.
4As a possible degenerate case, a splitting disk may have morethan
two points of contact with the boundary∂B. In that case, we may
choose any two contact points on different components of∂B. The
algorithm we are going to describe automatically yields such a pair
of points for each disk.



Figure 4: A mixed set of sites

To keep small the number of neighbor pairs(xi, sj) on L pro-
cessed during the plane sweep, we only consider pairs where
no other active abscissaxm lies betweenxi and EL(j); the
disk DL(i) cannot have a contact beyond the one ofDL(m), oth-
erwise. The number of such pairs is linear. Thus the construction
can be implemented inO(n log n) time if the sites inS are de-
scribed by a total ofn objects, each being managable in constant
time. Note that∂AS then consist ofΘ(n) pieces.

4.2 Computing the medial axis of AS

Given the description of an augmented domain by its boundary, it
may, at first glance, seem complicated to compute its medial axis.
In our case, however, the domainAS has a connected boundary.
Therefore it can be split into subdomains with the same property
using maximal inscribed disks. This suggests a divide-and-conquer
algorithm for computing MA(AS). The domain and its medial axis
tree are split recursively, until directly solvable base cases remain.
For simply connected shapes, a similar approach has been applied
in [2, 1].

In fact, it is easy to obtain splitting disks forAS . Recall that
∂AS consists of pieces that bound inscribed disks (calledartificial
arcs) and pieces that stem from site boundaries (calledsite seg-
ments). Now, to calculate a splitting disk, the algorithm fixes some
pointp on a site segment and computes a maximal inscribed diskD
for AS that touches∂AS at p. Starting with an (appropriately ori-
ented) disk of large radius,∂AS is scanned and the disk is shrunk
accordingly whenever an intersection with a site segment occurs.
Intersections with artificial arcs are, however, ignored.

LEMMA 4. The algorithm above correctly computes the re-
quired diskD for AS at pointp.

PROOF. From Section 3 we know that the set of maximal in-
scribed disks is the same forAS and forB, except for the (finitely
many) disks taking part in the augmentation. The assertion fol-
lows.

In other words, the distances to the sites which are needed inthe
medial axis computation are the same inAS and inB. (This is, of

n atomic steps ration log
2
n ration(log

2
n)2

507 6620 1.45 0.16
2070 32892 1.44 0.13
5196 91649 1.43 0.12

10474 199001 1.42 0.11
20488 417839 1.42 0.10

172198 4223178 1.41 0.09

Table 1: Five complex sites bounded byn arcs

course, not true forall possible distances.) Note that the artificial
arcs are used only to link the site segments in the correct cyclic
order; they do not play any geometric role. Computing a splitting
disk takesO(n) time, if each object describing the sites can be
handled inO(1) time.

4.3 Practical aspects
In view of keeping the algorithm efficient, disks that split the do-

mainAS in a balanced way are desired. Unfortunately, computing
such a disk with simple means turns out to be hard. We can, how-
ever, choose a diskD randomly, by taking a random site segment
on ∂AS as its basis. Objects on∂AS and edges of MA(AS) cor-
respond to each other in an (almost) bijective way, which suffices
to convey randomness from boundary objects to medial axis edges.
For the analysis, we thus may suppose that the centerc of D lies
on every edge of MA(AS) with the same probability. Under the
assumption that the graph diameter of MA(AS) is linear inn, the
pointc lies on the diameter with constant probability, and MA(AS)
is split atc into two parts of expected sizeΘ(n). A randomized
runtime ofO(n log n) results.

The assumption above is realistic in scenarios where a small
number of sites is represented by a large number of individual ob-
jects. The required accuracy for approximating the sites then typi-
cally leads to an input size that is independent from the branching
of MA(AS). In particular, if biarcs are used for approximation
(see Section 5) then the number of leaves (hence also the number
of vertices) of MA(AS) is determined by the original sites and not
by the number of biarcs used. Our tests report small constants in
the O(n log n) term in this case. See Table 1, where step counts
are averaged (and rounded) over 40 different equal-sized inputs.

n atomic steps ration log
2
n ration(log

2
n)2

400 7591 2.20 0.25
2000 54662 2.49 0.23
4000 143391 3.00 0.25

20000 1015149 3.55 0.25
40000 2659149 4.35 0.28

200000 19820012 5.63 0.32

Table 2: Uniform distribution ofn point sites

The other extreme is the case ofn point sites. Here, by the
way howAS is constructed, the diameter of MA(AS) will be typi-
cally much smaller, because many long ‘vertical’ branches will em-
anate from the surrounding circleΓ. As a simple heuristic, we may
choose a small number of splitting disks tangent toΓ first, and con-
tinue with randomly splitting the resulting augmented subdomains.
This (almost) yields an observedO(n log2 n) behavior, with very



small factors; see Table 2. We took uniformly distributed point
sites — an input likely to avoid long paths in MA(AS) and thus
slowing down the algorithm. Note that, for point sites, MA(AS) is
basically the (piecewise-linear) medial axis of a union of disks, the
augmenting disks plus the splitting disks.

Domain splitting could be combined with local tracing, as done
in [2], to guarantee anO(n

√
n) expected time. However, the sim-

ple randomized version performed best in all our tests. We im-
plemented the algorithm to accept circular arc input in its current
version, including (though not optimizing) the handling ofline seg-
ments and points. The Voronoi diagrams in Figures 3 and 4, and
also the structures in Figures 9 and 8 in Subsection 6.2 have been
produced by this code.

An excerpt of our experiments for point sites and circular arcs
is given in Table 1 and Table 2. For input sizen, the number of
atomic steps is listed along with its ratio to the functionsn log

2
n

andn(log
2
n)2.

The atomic step needed in Subsections 4.1 and 4.2 is an intersec-
tion test of a site-describing object and a given disk. This is among
the simplest imaginable tests when a closest-site Voronoi diagram
is to be computed by means of distance calculations. Neithercircles
touching three given sites, nor intersection points of two bisectors,
have to be calculated, apart from (but only if desired in) thebase
cases delivered by divide-and-conquer. This reduces the numerical
effort and liability to errors caused by such operations, which them-
selves get rapidly complicated with the algebraic complexity of the
sites; see e.g. [11]. We used CGAL [5] to implement the atomicop-
eration for sites described by circular arcs (the intersection of two
given circles).

Table 3 displays the CPU time in seconds we measured for line
segment sites as input to our algorithm (column NEW), in compar-
ison to the relevant CGAL demo packages for polygons (column
POLY) and line segments (column SEG). Our algorithm’s runtimes
have to be interpreted with care, however. In its unoptimized im-
plementation, our algorithm treats each line segment as sixindivid-
ual pieces (which describe a topological disk after possible split-
ting due to initial domain augmentation), whereas only two pieces
would be actually needed (the split line segment). That is, we can
expect a speedup by a factor of three from a more tailored imple-
mentation.

n NEW POLY SEG

100 0.14 0.26 0.29
500 0.85 1.50 1.62

1000 2.22 3.11 3.44
5000 13.75 18.54 19.85

10000 39.26 37.63 42.50
50000 395.26 201.6 221.85

Table 3: Comparison to CGAL forn line segments

The structure and variety of the base cases depend on the sites.
For point sites, there are only two of them, if the surrounding cir-
cle Γ is handled symbolically. They are of the simple form shown
in Figure 5. (Artificial arcs are drawn dashed.) For circulararc
splines, we get four generic base cases forC1 continuity and nine
for C0 continuity; see [1]. These numbers do not increase for poly-
nomial splines of higher order. Solving a base case includescalcu-
lating the equations describing the bisectors curves.

Figure 5: The two base cases for point sites.

Note that the algorithm allows us to separate geometric from
combinatorial issues. If one is interested only in the topological
structure ofV (S), then the base cases need not be resolved at all,
because the type of a base case already determines the degreeof
the involved Voronoi vertices.

5. SITE APPROXIMATION
We put particular emphasis on circular arcs as sites, because

no practical algorithm for constructing their Voronoi diagram is
available, and our algorithm naturally offers the ability to handle
them. Moreover, so-called biarcs enable a data-inexpensive and
Voronoi diagram preserving approximation of general polynomial
spline curves, as is described briefly below.

A biarc is the concatenation of two arcs which meet with a com-
mon tangent at a jointJ . It connects two given endpointsp0, p1

with associated tangent vectorst0, t1, possibly sampled from a
given curve. There exists a one-parameter family of biarcs match-
ing these data, and the locus of all possible jointsJ is a circle.

Several different choices for the joint of a biarc are meaningful;
see e.g. [23, 29]. The equal chord (EC) biarc generates arcs of equal
length, whereas the parallel tangent (PT) biarc makes the tangent
at the joint parallel to the linep0p1. The intersection (IS) biarc
determinesJ by intersecting the joint circle with the given curve.
The spiral (SP) biarc chooses one of the arcs as a segment of an
osculating circle of the given curve.

For data sampled from a smooth boundary segment of a site, the
Hausdorff distance between the biarc and the segment decreases
with the biarc lengthh. Table 4 provides the Taylor expansions of
the errors, whereκi is thei-th derivative of the curve’s curvature
with respect to the arc length parameter at the point of interest;
see [25] for more details.

Comparing the different methods for biarc interpolation, afirst
observation is that the error in all four methods isΘ(h3) (for non-
circular input). Consequently, when the tolerated maximumerrorε
is decreased, the numbern of arcs grows moderately,Θ( 3

p

1/ε).
This is much less than the number of line segments needed to get

Type Maximal distance error (up toO(h5))

EC max
`

| κ1

324
h3 − κ2

1944
h4|, | − κ1

324
h3 − 7κ2

1944
h4|

´

PT max
“

| ± κ1

324
h3 +

6κ2

1
−κ0κ2

1944κ0

h4|
”

IS max
`

| κ1

324
h3 + 7κ2

3888
h4|, | − κ1

324
h3 − 5κ2

3888
h4|

´

SP
˛

˛−κ1

96
h3 − κ2

192
h4

˛

˛

Table 4: Approximation quality of biarcs



⋆

⋆
⋆

⋆

∂Aδ

∂A

A

Aδ

A1

A1

A2

A2

e2

A3e3

A4

e4

A5

A6e6

A7

D(x, δ)

Aδ
2

(a) (b) (c) (d)

Figure 6: (a) Definition of the
trimmed offset, (b) segmentation of
the edge graph (additional arc end-
points are marked with⋆), (c) seg-
mentation of the shape, (d) offsets
of subshapes.

the same accuracy, which isΘ(
p

1/ε). The number of needed
sample points even isΘ(1/ε). For high accuracies, the use of circu-
lar arcs for site approximation thus leads to a significantlysmaller
data volume.

Note that the constants ath3 are identical for EC, PT, and IS. An
analysis of theh4 terms (see Figure 7) reveals that the IS method
performs better than EC or PT in most situations, except for the

case4κ2

1

3κ0
≤ κ2 ≤ 12κ2

1

7κ0
where PT is better. In the case of SP, the

constant of theh3 term is( 3

2
)3 times larger. Consequently, when

approximating a site with spiral biarcs, the number of segments
needed to achieve the same accuracy is roughly3

2
times larger. The

experimental data listed in Tables 5 and 6 in Subsection 6.2 reflect
this fact.

On the other hand, the approximation of sites by spiral biarcs
guarantees convergence of the Voronoi diagram. More precisely,
the error of the Voronoi diagram isΘ(n−3), wheren is the number
of biarcs. This can be proved by extending the arguments in [2] for
the convergence of the medial axis and using the observationthat
the leaves of the edge graph correspond to self-edges of the sites.

According to our experience, in most cases the first three types
of biarcs preserve the curvature distribution too. This is also sup-
ported by theoretical results [24]. So all biarc schemes arewell
suited for fast approximate Voronoi diagram computation. Biarc
approximations of polynomial spline curves can be found inO(n)
time, by simple bisection or iteration algorithms.

0
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1

1

2

2

0.0025
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1/κ0

h
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PT

EC

Figure 7: Coefficients ofh4 in the maximal errors for the biarc
types EC, PT and IS. The lower envelope gives the smallest error.

6. APPLICATIONS
To document the practicality of the Voronoi diagram algorithm,

let us briefly describe two of its appications.

6.1 Robot motion planning
Motion planning is among the classical applications of general-

ized Voronoi diagrams [30, 3, 22]. It is based on the observation
that moving on the edge graph keeps the robot locally away from
the sites (obstacles) as far as possible.

We may use the Voronoi diagramV (S) of a set S of cir-
cularly approximated sites as a tool for planning a robot mo-
tion in a piecewise-circular environment [31]. Compared toPL-
environments, this offers several advantages. The edges ofGS are
still of degree only two—all types of conics can occur now—but
a more data-saving approximation of the real scene is guaranteed
by the results in Section 5. Not only canV (S) be computed more
quickly now, butGS also will consist of significantly fewer edges,
namely,Θ(n

2

3 ) instead ofn. This leads to a more compact descrip-
tion of the paths the robot is supposed to move on. Another feature
not shared by PL-environments is that the paths are locallyC1 be-
tween any two sites withC1 boundaries, except for junctions with
self-edges.

Note that, in order to keep maximal distance to the sites inS, the
robot will not move on self-edges ofV (S). Such edges thus can be
pruned before planning a motion (with possible exceptions close to
start and target of the robot). As self-edges are the only place where
leaves ofV (S) are present, the convergence speed ofΘ(n−3) of
the relevant parts of the Voronoi diagram is ensured.

6.2 Trimmed offsets
Offsetting is a fundamental operation for planar shapes, and it is

needed frequently, e.g., in computer-aided manufacturing[16, 26].
Several authors base their offsetting algorithms on the Voronoi dia-
gram or the medial axis [16, 13, 4]. Once more, a PC-representation
of the input shape is advantageous, because the class of suchshapes
is closed under offsetting operations.

Our Voronoi diagram algorithm is particularly well suited to this
task, because it delivers the necessary combinatorial structure with-
out computing the edge graph explicitly. Depending on the applica-
tion, we can compute the inner or the outer offset of a given planar
shapeA. For inner offsets, we take the outer boundary ofA as
the surrounding curve (replacing the circleΓ) and the holes ofA
as the sites. For outer offsets, we compute the inner offsetsof the
complement ofA within a suitable disk coveringA.

Let A be a shape given in PC-representation. The(trimmed in-
ner) offsetof A at distanceδ is defined as

Aδ = A \
[

x∈∂A

D(x, δ)



(a) Complete shape (b) Detail with axis

Figure 8: Shape, offset, and edge graph details.

whereD(x, δ) is the disk with centerx and radiusδ; see Figure 6a.
Its boundary∂Aδ consists of circular arcs again, which are off-
sets of the circular arcs in∂A. However, simply offsetting∂A
does not give∂Aδ, since self-intersections may be present. We
use the corresponding Voronoi diagram,V (S), to trim away these
self-intersecting parts.

We first define certain subshapes ofA; consult Figure 6bc. The
edge graphGS consists of conic segmentsei, each being the bi-
sector of two arcsa1

i and a2

i . For a pointx on either arc, con-
sider the segment of the normal which is contained inA and con-
nectsx with ei. The union of these line segments forms the sub-
shapeAi ⊆ A associated withei. In addition, each leafvj of GS

defines a subshapeAj as the circular region consisting of all line
segments which connect the points of the arc with its center,vj .

A subshapeAi is said to bemonotonicif the radii of the maximal
disks ofA with centers onei have no inner extrema. The extremal
radii rmin, rmax are then realized at the boundaries. Depending on
the position (respect toAi) of the lineL spanned by the centers
of the arcsa1

i , a2

i , the radii have no, one, or two extrema. The
subshapes associated with leaves are already monotonic. Note that
for splitting into monotonic subshapes we simply intersecta1

i , a2

i

with the lineL, rather than computing the bisector of these arcs.

Figure 9: Inner offsets for different values ofδ.

The offsetting is done separately for each monotonic subshape.
If δ < rmin, then the offsets of the arcs at distanceδ are fully con-
tained in∂Aδ. Forrmin ≤ δ ≤ rmax, the offset arcs are trimmed
at their intersection; see Figure 6d, bottom. Finally, ifrmax < δ,
then the subshape does not contribute to∂Aδ.

Error SP PT Diagram Offset

k · 10−1 732 468 0.07 0.02
k · 10−2 1230 916 0.16 0.04
k · 10−3 2656 1860 0.30 0.07
k · 10−4 5678 3872 0.64 0.15
k · 10−5 12044 8156 1.39 0.31

Table 5: Numbers of arcs (left) and runtimes (right) for the shape
in Figure 9. The biarc types SP and PT have been used. Times
are given in seconds for the type PT on a Pentium IV 2.8Ghz. The
parameterk is a constant related to the bounding box of the input.

Error SP PT Diagram Offset

k · 10−1 9440 8768 2.24 0.29
k · 10−2 20132 17080 4.08 0.56
k · 10−3 43332 34008 7.14 1.03
k · 10−4 93224 69312 17.10 2.06
k · 10−5 201688 143348 29.53 4.25

Table 6: Arcs and runtimes for the shape in Figure 8.

An implementation shows that offset computations require only
little additional time after the Voronoi diagram construction; Ta-
bles 5 and 6 give two examples. The total time thus will not in-
crease much in applications where many different offset layers are
needed. Note the difference in the numbers of biarcs needed to
reach a given accuracy for both shapes.
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