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ABSTRACT

We show how to divide the edge graph of a Voronoi diagram into
a tree that corresponds to the medial axis of an (augmentaaup
domain. Division into base cases is then possible, whictihén
bottom-up phase, can be merged by trivial concatenatiom. ré&h
sulting construction algorithm—similar to Delaunay trigation
methods—is not bisector-based and merely computes dialbhier
tween the sites, its atomic steps being inclusion teststiEs & cir-
cles. This guarantees computational simplicity and nuraésta-
bility. Moreover, no part of the Voronoi diagram, once coosted,
has to be discarded again. The algorithm works for polyganadl
curved objects as sites and, in particular, for circulasavbich al-
lows its extension to general free-form objects by Vororiagdam
preserving and data saving biarc approximations. The igor
is randomized, with expected runtimi¥n log n) under certain as-
sumptions on the input data. Experiments substantiatefaieet
behavior even when these assumptions are not met. Appiicati
to offset computations and motion planning for general cisjare
described.

Categories and Subject Descriptors

F.2.2 [Theory of Computation]: Nonnumerical Algorithms and
Problems—geometrical problems and computations
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1. INTRODUCTION

The divide-and-conquer paradigm gave the first optimaltgmiu
for constructing the closest-site Voronoi diagram in thengl [27].
Though being a classical example for applying a powerfubiatiy-
mic method in computational geometry, the resulting atpanibe-
came no favorite for implementation, not even in the caseoaitp
sites.

For Voronoi diagrams of general objects the situation isenor
intricate, as such diagrams may have all kinds of artifagtseir
edge graph may be disconnected, and their bisectors mapsedcl
curves, which complicates the construction. In particulae ab-
stract Voronoi diagram machinery in [18, 19] is ruled out.t-Li
erature tells us that divide-and-conquer is involved if bags is
on the bottom-up phase, even if the sites are of relativehpks
shape. See the papers [21] and [28], respectively, for edgiy-
rithms on line segments and circles, and the optiméh log n)
variants in [17] for line segments, in [30] for line segmeatsl cir-
cular arcs, and in [7] for convex distance functions. Thegsithe
missing separability condition for the sites, which woule\ent
the merge curve from breaking into several components. Evsn
issue being solved, we still have to intersect complicaisddtors
and discard old parts of the diagram, which makes the alyost
complex and hard to implement.

Many alternative strategies for computing generalizedowor
diagrams have been tried. Incremental insertion cannoppheal
directly to general sites without loss of efficiency. In pautar,
the framework in [19] for abstract Voronoi diagrams may npt a
ply. Still, randomized insertion can be made efficient [3i beeds
pre-requisites like splitting sites into 'harmless’ pisceach piece
then acting as several sites. The plane-sweep techniqutheon
other hand, generalizes nicely for line segments and sirfd&]
but, unfortunately, not for circular arcs or more genertési Line
segments have to be split into 3 sites to ‘domesticate’ this@ctor.
Many implementation details occur.

In fact, in all these algorithms the bisector curves take ipethe
computation. Already in the case of line segments, bisscioe



composed of up to 7 pieces, and may even be two-dimensional if

not defined carefully in the case of shared endpoints. Suah-si
tions cannot be considered degenerate; they occur natuvhin
decomposing complex sites into simpler ones. Consequehtdy
algorithms are involved and also suffer from numerical ieqgdir
son. Difficulties may be partially eluded when working in theal
environment: Instead of intersecting two bisectors, thetereof
a circle tangent to the three defining sites is calculateds bbars
the advantage of working on the sites directly, linking theroord-
ingly rather than computing new geometric objects that thedues
take part in later calculations. The classical examplefisparse,
the Delaunay triangulation for point sites. For generassitan-
gent circles may not be unique. Up to 8 solutions do existctvhi
are usually difficult to calculate; see e.g. [11].

The algorithm we propose in the present paper works directly
the sites, too, but its atomic operation is much simpler, elgm
an inclusion test of a site in fixed circle. We first extract the
combinatorial structure of the Voronoi diagram, and fill iretbi-
sector curves later on. In contrast to existing Voronoifdelay
algorithms, no constructed object is ever discarded. Otinges
very general: Sites are pairwise disjoint topological diskdimen-
sions2, 1, or0. This includes polygonal sites, circular disks, spline
curves, but also single points and straight-line segmeBtsind-
aries of curved planar objects with holes can be modeled. e d
not split complex sites into pieces beforehand, becauseseg not
care about the bisectors.

Our idea is to calibrate the top-down phase of divide-and-
conquer by dividing the edge graph of the Voronoi diagraninauitt
prior knowledge. A simple plane sweep is used to generatd a se
of points whose removal from the edge graph leaves a geametri
tree. This tree is then computable as the medial axis of argkne
ized domain that, combinatorially, behaves like a simplyraxted
domain. While classical medial axis algorithms [20, 6, Shroat
be applied, not even in the presence of simple sites, we shatv t
the methods in [2, 1] are flexible enough to be extended to work
for such domains. In particular, the edge graph is splithieirtin
a recursive manner, until directly solvable base casesirenihe
bottom-up phase is trivial and consists of reassemblingebpec-
tive pieces of the edge graph.

Applications are manifold. The two ones we sketch here use
sites in piecewise circular (PC) representation. This Esaimo-
tion planning in PC-environments [31] which, compared tecg
wise linear (PL)-environments, is shown to lead to shorted a
‘smoother’ robot paths. Moreover, shape offset computatiare
eased by the fact that PC representations are closed urfdet of
operations. Compared to other offsetting algorithms thatased
on Voronoi diagrams [16, 13, 4], our method is simpler beeaus
we compute only a combinatorial representation of the @iagior
this application.

2. DIVIDING THE VORONOI DIAGRAM

Let us define the Voronoi diagram of general objects. Oussite
are pairwise disjoint and closeédopological disks of dimension
two, one, or zero in the Euclidean plaR€. That is, a site is ei-
ther homeomorphic to a disk or to a line segment, or is simply
a point. This includes polygons, circular disks, and opeimsp
curves as sites. Here and throughout this papelS ldenote the
given set of sites. The distance of a pointo a sites € S is
d(z,s) = minyes 6(x, y), whered denotes the Euclidean distance
function. As done e.g. in [3, 30], we define the Voronoi dia-
gram, V' (.S), of S via its edge graphGs, which is the set of all
points having more than one closest point on the union ofitas
Under the assumption that sites are represented in a reddeonay
(say, by real analytic curve pieces), this geometric grapiell de-
fined by results in [9]. An edge @ s containing points equidistant
from two or more different points on the same sitis called aself-
edgefor s. Theregionsof V' (.S) are the maximal connected subsets
of the complement ofis in R2. They are topologically open sets.

OBSERVATION 1. The regions o/ (.S) bijectively correspond
to the sites inS. Each site is contained in its region, and regions
are simply connected.

PROOF. Letz be a point in the regio of V' (S). To x there
exists a unique closest point,on the union of the sites ifi. (Oth-
erwise,z would be a point on the edge graph.) The sites are
pairwise disjoint, so there is a unique site S with y € s. Sites
is the same for alt € R, becausel(z, s) is a continuous function
of z. This maps regions to sites.

Now, obviously, withz also the closed line segmemny is part

The paper includes a theoretical and an applied part. We take of R. This implies thatR is simply connected. In particular, we

particular interest in sites represented by circular alinsp, for
several reasons. The modeling power of such splines beattsfth
polylines, which results in a significantly smaller inputtalaol-
ume. Our algorithm naturally, and with almost no increasewf
meric complexity, works for this case. Also, a stable appr@tion

of the Voronoi diagram for algebraically complex originéks can

be guaranteed. If the number of sites is small compared touire
ber, n, of their describing arcs, the graph diameter of the medial
axis mentioned above tends to be linear, and our algorithm i
O(nlogn) randomized time. Experiments substantiate this behav-
ior with small constants, but also show that, in the case d@fitpo
sites, the runtime is slightly larger. Thus, the simpliaiyd gener-
ality of our algorithm come at a price. Still, this is maybe tirst
practical algorithm that works reasonably efficient for gext pla-
nar sites. Existing practical methods, e.g. in [14, 10],cefined

to polygonal inputs; curved objects, if accepted, are cdadeto
polygonal ones, blowing up the data volume in a non-linean-ma
ner.

1\We recently learned that the VRONI Voronoi code [14] for fsin
and line segments has been extended to include circularaarcs
sites [15]. The underlying algorithm is incremental ingsrt A

havey € R, which impliess C R and maps sites to regions[]

We thus can talk of the regiaof a site s, which we will denote
with R(s) in the sequel.

The differences to a bisector-based definition of the Vordie
gram should be noticed. Self-edges are ignored in such atitafin
unless the sites are split into suitable pieces. Such piboesver,
share boundaries—a fact that, if not treated with care, mayrise
to unpleasant phenomena like two-dimensional bisectors.

To get control over the unbounded components of the diagram,
we include a surrounding circld;, (or any other desired curve)
into the setS of sites. We can always chooBen a way such that
each vertex o/ (S \ {T'}) is also a vertex oV/(S). All regions
of V'(.S) are bounded now, except, of course, the regigi’).

For later purposes, we intend to show that removal of certain
points on the edge grapfis breaks all its cycles. Finding such

circular arc’s endpoints have to be inserted prior to theiiring
object.

2Topological properties are meant to be relative to the diiten
of the considered object.
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Figure 1: Domaind’ (right) obtained as the augmentation of a given domain)(¥eith a splitting diskD. The medial axis (dashed) is split

at the center oD.

points is nontrivial, in view of the possible presence of-gelges.
For a sites # I, let p(s) be a point ons with smallest ordinate,
and denote witly(s) the closest point 0§s vertically belowp(s).

By the boundedness @(s), the pointg(s) always exists. Without
loss of generality, let us assume tlgét) is not an endpoint of any
edge ofGs; this can always be achieved by rotating the coordinate
system slightly. We define a new geometric graph as

Ts = Gs \{a(s) | s € S\{I'}}. @)

LEMMA 1. The graphZs is a tree.

PrROOF For each bounded region &f(.5), the edge grapls
contains a unique elementary cycle, because of the simpleece
tivity of regions (Observation 1). For the same reason, #teo$
cycles does not change if self-edges are ignored. Inténgiptich
elementary cycle at a point vertically below its site leayggomet-
ric forest, because no path can continue below any site. dwere
when as many points are removed as there are elementansgcycle
and removal takes place at the interiors of edgegsgfa geometric
tree is obtained.

It remains to show that, for each siie# T, the pointg(s) € Gs
does not lie on a self-edge fer Recall thatg(s) is equidistant
from p(s) and from at least one other point, sayon the union of
all the sites. The ordinate gfis smaller than the ordinate pfs),
because(s) lies vertically above(s). Thus, assuming that such
a pointy stems froms, which has to be the casedfs) lies on a
self-edge fors, contradicts the definition gf(s). O

3. AUGMENTED DOMAINS

Our next aim is to interpret the treg; in Lemma 1 as the medial
axis of a generalized planar domain. In this way, we will beeab
to construct the Voronoi diagraf¥i(S) by means of a medial axis
algorithm, as if asimply connectedomain was the input. Usually,
the similarity between these two structures is exploitezl dther
way round: Medial axes are constructed as special casesa@fidod
diagrams.

Consider a bounded and connected two-manif)chere just
called ashape in R?. An inscribed disk foi3 is defined as a disk
which lies entirely in3. The set of inscribed disks is partially or-
dered with respect to inclusion. Tmedial axis transfornof 5,
for short MAT(B), is the set of all maximal inscribed disks. Sim-
ilarly, the medial axis MA(B), of B is the set of all centers of the
disks in MAT(B). Itis easy to interpret’(S) as the medial axis
of a planar shape. Simply take the surrounding ciiclas part of
the shape boundary, and consider each remainings siteS' as a
(possibly degenerate) hole. That is, we define

B=DBo\{s€S|s#T}, )

where B, denotes the disk bounded by The medial axis MAB)
is just the closuréof the edge grapls of V().

Our goal is, however, a different one. We want to combinatori
ally disconnect the shapé at appropriate positions, such that the
medial axis of the resulting domain corresponds to the teseih-
position7s of V(S). As observed in [9], a maximal inscribed disk
can be used to split the medial axis of a simply connectedeshap
into two components which share a point at the disk’s ceient-
der to extend this result to general shapes, we introducadtien
of anaugmented domairts definition is recursive, as follows.

An augmented domain is a set together with a projection
w4 A— R2 Initially, A is the original shapés, and the asso-
ciated projectionr is the identity.

Now, consider a maximal inscribed digk of an augmented do-
main A, which touches the boundafyA in exactly two pointsu
andv. Denote withuv and vu the two circular arcs which the
boundary ofD is split into. The new augmented shap€, which
is obtained fromA by splitting it with D, is defined as

A =A°uD'uD?

whereA° = {(2,0) | = € A\ D}, D' = {(x,1) | = € D},
andD? = {(x,2) | z € D}. See Figure 1 for an illustration. The
associated projection is

aa A= R? (2,0) — ma().

We say that the line segment.ih between point$x, 7) and(y, )
is containedin A’ if one of the following conditions is satisfied:

1. i = j and the line segmenty avoidsoD,
2. {i, j} = {0, 1} andZy intersects the arav, or
3. {i,j} = {0, 2} andzy intersects the argu.

For any two points(z,:) and (y,j) in A, their distance now
can be defined. It equals the distanceraf(x) and.4(y) in R?,
provided the connecting line segment is containedinand isco,
otherwise. An (open) disk i” with center(m, ) and radius is
the set of all points ind’ whose distance tom, ) is less thanp.
Such a disk is said to biascribedin A’ if its projection intoR? is
again an open disk.

Having specified inscribed disks fot’, the boundary of4’ and
the medial axis (transform) ofl’ can be defined as in the case of

3The reason why these two structures are not identical lig¢ken
possible existence of osculating maximal inscribed disks/.
The centers of such disks, while belonging to {8, are not part

of Gs. This subtle difference may be ignored for the purposes of
the present paper.



Figure 2: Oriented boundary of an augmented domain.

planar shapes. In particuldrA’ derives fron9.A by disconnecting
the latter boundary at the contact pointsand v of the splitting
disk D, and reconnecting it with the circular aras andow. This
process is depicted schematically in Figure 2. Note thatwhé’
is traversed in a fixed orientation, the interior.4f stays on a fixed
side.

Concerning the medial axis, every maximal inscribed disilin
different from D corresponds to exactly one maximal inscribed
disk in.A’, hence there is a bijection between M&X) \ {D} and
MAT (A’)\ {D*, D*}. The medial axis of4’ therefore is the same
geometric graph as M@4), except that the edge of MAd) con-
taining the center oD is split into two disconnected edges which
both have the center dD as one of their endpoints. These two
points are two leaves of M@4’); consult Figure 1 again.

To draw the connection to the edge graphof V' (.S), the initial
shapeB3 in (2) is augmented withS| — 1 maximal inscribed disks,
namely, the ones centered at the poiy(ts) € Gs, whereg(s) was
the vertical projection ont@js of a point with smallest ordinate
on the sites. Denote with.As the resulting domain after these

|S| — 1 augmentation steps. We may conclude the main finding of

this section as follows.

LEMMA 2. The tree7Zs in (1) is the medial axis of the aug-
mented domaits.

4. THEALGORITHM

Using Lemma 2, the Voronoi diagraii(.S) can be obtained by
computing the medial axis of the augmented dorm4in We show
how to computeds efficiently, and how to construct its medial
axis without the need of computing distances between pints;
directly. The resulting algorithm is very simple and lentseif
to robust implementation. It runs in optimal (randomizeitt)e
O(nlogn) if certain quite realistic assumptions on the input are
met, and inO(ny/n) time in the unrestricted case. Its observed
runtime, however, is close to the former with rather smaitdas.

4.1 Computing the boundary of 45

Consider the planar shagin (2) whose augmentation has led
to the domainds. From the algorithmic point of view, augment-
ing B amounts to connecting its boundatys to a single cyclic
sequenceg As, that consists of pieces frod3 and from circles
bounding the splitting disks. (One-dimensional sites Gbute
to 9B with two curves, one for either orientation, and the special

Figure 3: Voronoi diagram for point sites.

case of point sites can be handled consistently.) Each suatdb
ary piece is used exactly once 0, and traversing.4s cor-
responds to tracing the medial axis tree [Ms) in preorder. See
Figure 2, where a shape having two planar sikesnd sz as its
holes is augmented with two disks, and the boundary of thdtres
ing augmented domain is oriented for better visualization.

The construction 0B Ag is trivial once the splitting disks are
available.* The main task is, therefore, to find these digks one
for each sites; € S\ {I'}. Recall from Section 2 thab; is hori-
zontally tangent te; at a lowest poinp(s;) of s;. The center(s;)
of D; lies on the edge grapfis of V(S) but, of courseD; need
to be found without knowledge @fs.

Indeed, a simple and efficient plane-sweep can be applied
follows. Sweep acros§ from above to below with a horizontal
line L. For a sites; # T, letz; be the abscissa @fs;), and define
Er(i) = s; N L. Note thatE (i) may consist of more than one
component. We maintain, for each sitewhose pointp(s;) has
been swept over, the sitg whereE (j) is closest tac; on L. The
unique disk with north pole(s;) and touchings; is computed, and
the minimal such disk fos; so far, Dy, (), is updated if necessary.
The abscissa; is deactivated again whePr, (i) has been fully
swept over byL.

LEMMA 3. After completion of the sweef). (i) = D; holds
for each index.

PROOF For a fixed index, let s, be the site that defines the
disk D;. We have to show thak'; (k) andz; become neighbors
on L while z; is active. Consider a point where D; is tan-
gent tosx. Then, becausd), avoids all the sites, the line seg-
mentz;t C D; does the same. ThuB. (k) andz; are adjacent
when L passes through Also, z; is active at this moment, be-
causeD; C Dy (¢) holds. O

“As a possible degenerate case, a splitting disk may havetirame
two points of contact with the bounda83. In that case, we may
choose any two contact points on different componen&®fThe
algorithm we are going to describe automatically yieldshsaipair
of points for each disk.

as
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Figure 4: A mixed set of sites

To keep small the number of neighbor pa(rs, s;) on L pro-

| n [| atomic stepq rationlog, n | ration(log, n)” |

507 6620 1.45 0.16
2070 32892 1.44 0.13
5196 91649 1.43 0.12

10474 199001 1.42 0.11
20488 417839 1.42 0.10
172198 4223178 1.41 0.09

Table 1: Five complex sites bounded bwrcs

course, not true foall possible distances.) Note that the artificial
arcs are used only to link the site segments in the corrediccyc
order; they do not play any geometric role. Computing a spgjt
disk takesO(n) time, if each object describing the sites can be
handled inO(1) time.

4.3 Practical aspects

In view of keeping the algorithm efficient, disks that sptietdo-
main.As in a balanced way are desired. Unfortunately, computing
such a disk with simple means turns out to be hard. We can, how-
ever, choose a disk randomly, by taking a random site segment
on dAs as its basis. Objects aids and edges of MAAs) cor-
respond to each other in an (almost) bijective way, whiclfices
to convey randomness from boundary objects to medial axjesd

cessed during the plane sweep, we only consider pairs wherefror the analysis, we thus may suppose that the cendérD lies

no other active abscissa,, lies betweenz; and Er(j); the
disk Dy, (i) cannot have a contact beyond the ondxf(m), oth-
erwise. The number of such pairs is linear. Thus the conttmic
can be implemented i)(n logn) time if the sites inS are de-
scribed by a total of: objects, each being managable in constant
time. Note thab.As then consist 0B (n) pieces.

4.2 Computing the medial axisof 4s

Given the description of an augmented domain by its boundary
may, at first glance, seem complicated to compute its meglial a
In our case, however, the domaifis has a connected boundary.
Therefore it can be split into subdomains with the same ptgpe
using maximal inscribed disks. This suggests a divide-@rdyuer
algorithm for computing MAAs). The domain and its medial axis
tree are split recursively, until directly solvable baseasremain.
For simply connected shapes, a similar approach has bedircpp
in[2, 1].

In fact, it is easy to obtain splitting disks fots. Recall that
0As consists of pieces that bound inscribed disks (caleiicial
arcs) and pieces that stem from site boundaries (caditel seg-
ment3. Now, to calculate a splitting disk, the algorithm fixes som
pointp on a site segment and computes a maximal inscribedidisk
for As that touche®.Ag atp. Starting with an (appropriately ori-
ented) disk of large radiug).As is scanned and the disk is shrunk
accordingly whenever an intersection with a site segmeatisc
Intersections with artificial arcs are, however, ignored.

LEMMA 4. The algorithm above correctly computes the re-
quired diskD for Ag at pointp.

PROOF From Section 3 we know that the set of maximal in-
scribed disks is the same fots and for3, except for the (finitely
many) disks taking part in the augmentation. The assertbn f
lows. O

In other words, the distances to the sites which are needixin
medial axis computation are the same4p and inB. (This is, of

on every edge of MAAs) with the same probability. Under the
assumption that the graph diameter of i4s) is linear inn, the
pointc lies on the diameter with constant probability, and ()

is split atc into two parts of expected siz8(n). A randomized
runtime of O(n log n) results.

The assumption above is realistic in scenarios where a small
number of sites is represented by a large number of individoa
jects. The required accuracy for approximating the sites tiypi-
cally leads to an input size that is independent from the dirizug
of MA(As). In particular, if biarcs are used for approximation
(see Section 5) then the number of leaves (hence also thearumb
of vertices) of MA(As) is determined by the original sites and not
by the number of biarcs used. Our tests report small corssiant
the O(nlog n) term in this case. See Table 1, where step counts
are averaged (and rounded) over 40 different equal-sizadsn

| n [| atomic stepq rationlog, n | ration(log, n)? |

400 7591 2.20 0.25
2000 54662 2.49 0.23
4000 143391 3.00 0.25

20000 1015149 3.55 0.25
40000 2659149 4.35 0.28
200000 19820012 5.63 0.32

Table 2: Uniform distribution of. point sites

The other extreme is the case wofpoint sites. Here, by the
way how.Ags is constructed, the diameter of MALs ) will be typi-
cally much smaller, because many long ‘vertical’ branchiisam-
anate from the surrounding circle As a simple heuristic, we may
choose a small number of splitting disks tangerit farst, and con-
tinue with randomly splitting the resulting augmented surbdins.
This (almost) yields an observed(n log? n) behavior, with very



small factors; see Table 2. We took uniformly distributednpo
sites — an input likely to avoid long paths in MAs) and thus
slowing down the algorithm. Note that, for point sites, KAs) is
basically the (piecewise-linear) medial axis of a unionigkd, the
augmenting disks plus the splitting disks.

Domain splitting could be combined with local tracing, aseo
in [2], to guarantee a®W(n+/n) expected time. However, the sim-
ple randomized version performed best in all our tests. We im
plemented the algorithm to accept circular arc input in itgrent
version, including (though not optimizing) the handlindiog seg-
ments and points. The Voronoi diagrams in Figures 3 and 4, and
also the structures in Figures 9 and 8 in Subsection 6.2 heee b
produced by this code.

An excerpt of our experiments for point sites and circularsar
is given in Table 1 and Table 2. For input sizethe number of
atomic steps is listed along with its ratio to the functionleg, n
andn(log, n)?.

The atomic step needed in Subsections 4.1 and 4.2 is andoters
tion test of a site-describing object and a given disk. Thimmong
the simplest imaginable tests when a closest-site Voroiagirdm
is to be computed by means of distance calculations. Neitheles
touching three given sites, nor intersection points of tusettors,
have to be calculated, apart from (but only if desired in) ase
cases delivered by divide-and-conquer. This reduces threrical
effort and liability to errors caused by such operationsichithem-
selves get rapidly complicated with the algebraic compesf the
sites; see e.g. [11]. We used CGAL [5] to implement the atapic
eration for sites described by circular arcs (the inteisacdf two
given circles).

Table 3 displays the CPU time in seconds we measured for line
segment sites as input to our algorithm (column NEW), in camp
ison to the relevant CGAL demo packages for polygons (column
POLY) and line segments (column SEG). Our algorithm’s et
have to be interpreted with care, however. In its unoptiahiire-
plementation, our algorithm treats each line segment asdixid-
ual pieces (which describe a topological disk after poesgmlit-
ting due to initial domain augmentation), whereas only tierps
would be actually needed (the split line segment). That escan
expect a speedup by a factor of three from a more tailoredampl
mentation.

[ n] NEW[POLY] SEG ]

100 0.14| 0.26 0.29

500 0.85| 1.50 1.62

1000 2.22] 311 3.44
5000|| 13.75| 18.54 | 19.85
10000 39.26| 37.63 | 42.50
50000 | 395.26| 201.6 | 221.85

Table 3: Comparison to CGAL fat line segments

The structure and variety of the base cases depend on tke site
For point sites, there are only two of them, if the surrouigdéir-
cleT" is handled symbolically. They are of the simple form shown
in Figure 5. (Artificial arcs are drawn dashed.) For circudac
splines, we get four generic base cases@orcontinuity and nine
for C continuity; see [1]. These numbers do not increase for poly-
nomial splines of higher order. Solving a base case inclod&s-
lating the equations describing the bisectors curves.

Figure 5: The two base cases for point sites.

Note that the algorithm allows us to separate geometric from
combinatorial issues. If one is interested only in the togial
structure ofV (S), then the base cases need not be resolved at all,
because the type of a base case already determines the dégree
the involved Voronoi vertices.

5. SITE APPROXIMATION

We put particular emphasis on circular arcs as sites, becaus
no practical algorithm for constructing their Voronoi diag is
available, and our algorithm naturally offers the abilityhandle
them. Moreover, so-called biarcs enable a data-inexpereid
Voronoi diagram preserving approximation of general polyiel
spline curves, as is described briefly below.

A biarc is the concatenation of two arcs which meet with a com-
mon tangent at a joinf. It connects two given endpoinis, p1
with associated tangent vectors, t1, possibly sampled from a
given curve. There exists a one-parameter family of biaratcht
ing these data, and the locus of all possible joihis a circle.

Several different choices for the joint of a biarc are meghih
see e.g. [23, 29]. The equal chord (EC) biarc generates fecgial
length, whereas the parallel tangent (PT) biarc makes thgeta
at the joint parallel to the lingopi. The intersection (IS) biarc
determines/ by intersecting the joint circle with the given curve.
The spiral (SP) biarc chooses one of the arcs as a segment of an
osculating circle of the given curve.

For data sampled from a smooth boundary segment of a site, the
Hausdorff distance between the biarc and the segment desrea
with the biarc lengthh. Table 4 provides the Taylor expansions of
the errors, wheres; is thei-th derivative of the curve’s curvature
with respect to the arc length parameter at the point of éster
see [25] for more detalils.

Comparing the different methods for biarc interpolatiorfirst
observation is that the error in all four methodigh®) (for non-
circular input). Consequently, when the tolerated maxinaurore
is decreased, the numberof arcs grows moderatel¥d( {/1/¢).

This is much less than the number of line segments needed to ge

Type Maximal distance error (up t@(h*))
EC | max (|53:h° — 153 h*|, | — 357h" — 5 h*)
PT [max (| & £;h® + Sioron )
IS | max (|%h3 + 237;828 | = ;714}’3 - 35;828h4|)
SP ||—5th® — sz hY|

Table 4: Approximation quality of biarcs



The number of needed

the same accuracy, which 8(
sample points even 8(1/¢). For high accuracies, the use of circu-
lar arcs for site approximation thus leads to a significaathaller
data volume.

1/e).

Note that the constants At are identical for EC, PT, and IS. An
analysis of thex* terms (see Figure 7) reveals that the IS method
performs better than EC or PT in most situations, exceptHer t

2 2
caseg%é < Ky < 172;1 where PT is better. In the case of SP, the

constant of the:* term is(2)? times larger. Consequently, when
approximating a site with spiral biarcs, the number of segsie
needed to achieve the same accuracy is roughignes larger. The
experimental data listed in Tables 5 and 6 in Subsectionedl@at
this fact.

On the other hand, the approximation of sites by spiral Biarc
guarantees convergence of the Voronoi diagram. More phgis
the error of the Voronoi diagram 8 (n~?), wheren is the number
of biarcs. This can be proved by extending the arguments] ifof2
the convergence of the medial axis and using the observiiain
the leaves of the edge graph correspond to self-edges oitéise s

According to our experience, in most cases the first threestyp
of biarcs preserve the curvature distribution too. Thisl$® aup-
ported by theoretical results [24]. So all biarc schemesvet
suited for fast approximate Voronoi diagram computatioriar&
approximations of polynomial spline curves can be found®{m)
time, by simple bisection or iteration algorithms.

H%/Ho

0.005 —

0.0025 —|

—0.0025 4

Figure 7: Coefficients oh* in the maximal errors for the biarc
types EC, PT and IS. The lower envelope gives the smallest err

Figure 6: (a) Definition of the
trimmed offset, (b) segmentation of
the edge graph (additional arc end-
points are marked with), (c) seg-
mentation of the shape, (d) offsets
of subshapes.

6. APPLICATIONS

To document the practicality of the Voronoi diagram alduarit
let us briefly describe two of its appications.

6.1 Robot motion planning

Motion planning is among the classical applications of gaRe
ized Voronoi diagrams [30, 3, 22]. It is based on the obs@mwat
that moving on the edge graph keeps the robot locally away fro
the sites (obstacles) as far as possible.

We may use the Voronoi diagraii (S) of a setS of cir-
cularly approximated sites as a tool for planning a robot mo-
tion in a piecewise-circular environment [31]. ComparedPio-
environments, this offers several advantages. The edgés afe
still of degree only two—all types of conics can occur now-+bu
a more data-saving approximation of the real scene is gtesdn
by the results in Section 5. Not only c&h(.S) be computed more
quickly now, butGs also will consist of significantly fewer edges,

namely,@(ng) instead ofx. This leads to a more compact descrip-
tion of the paths the robot is supposed to move on. Anothéufea
not shared by PL-environments is that the paths are localipe-
tween any two sites witl'* boundaries, except for junctions with
self-edges.

Note that, in order to keep maximal distance to the sites ithe
robot will not move on self-edges &f(S). Such edges thus can be
pruned before planning a motion (with possible exceptidosecto
start and target of the robot). As self-edges are the onlyeplehere
leaves ofV/(S) are present, the convergence spee®¢h —3) of
the relevant parts of the Voronoi diagram is ensured.

6.2 Trimmed offsets

Offsetting is a fundamental operation for planar shaped,itzis
needed frequently, e.g., in computer-aided manufactyfifg26].
Several authors base their offsetting algorithms on theNoirdia-
gram or the medial axis [16, 13, 4]. Once more, a PC-repratient
of the input shape is advantageous, because the class cftsyobs
is closed under offsetting operations.

Our Voronoi diagram algorithm is particularly well suitealthis
task, because it delivers the necessary combinatoriatateiwith-
out computing the edge graph explicitly. Depending on ti@iega-
tion, we can compute the inner or the outer offset of a givamat
shapeA. For inner offsets, we take the outer boundary.4ofas
the surrounding curve (replacing the cirdlg and the holes of4
as the sites. For outer offsets, we compute the inner oftddtse
complement of4 within a suitable disk coveringl.

Let A be a shape given in PC-representation. {thenmed in-
ner) offsetof A at distance is defined as

A=A\ | D(z,9)
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(a) Complete shape

Figure 8: Shape, offset,

whereD(z, ¢) is the disk with centex and radius); see Figure 6a.
Its boundaryd.4° consists of circular arcs again, which are off-
sets of the circular arcs iRA. However, simply offsetting.A
does not gived. A%, since self-intersections may be present. We
use the corresponding Voronoi diagrabi(.S), to trim away these
self-intersecting parts.

We first define certain subshapes.4f consult Figure 6bc. The
edge graphjs consists of conic segments, each being the bi-
sector of two arcsi} anda?. For a pointz on either arc, con-
sider the segment of the normal which is containedliand con-
nectsz with e;. The union of these line segments forms the sub-
shapeA; C A associated witle;. In addition, each lead; of Gs
defines a subshapé; as the circular region consisting of all line
segments which connect the points of the arc with its cenger,

A subshaped; is said to banonotonidf the radii of the maximal
disks of A with centers ore; have no inner extrema. The extremal
radii rmin, rmax are then realized at the boundaries. Depending on
the position (respect tol;) of the line L spanned by the centers
of the arcsal, a2, the radii have no, one, or two extrema. The
subshapes associated with leaves are already monotortie .t
for splitting into monotonic subshapes we simply intersegta?
with the line L, rather than computing the bisector of these arcs.

V7=

(e

Figure 9: Inner offsets for different values &f

(b) Detail with axis

and edge graph details.

The offsetting is done separately for each monotonic suyjesha
If § < rmin, then the offsets of the arcs at distacare fully con-
tained iNOA?. Forrmin < & < rmax, the offset arcs are trimmed
at their intersection; see Figure 6d, bottom. Finally;if.x < 4,
then the subshape does not contributé 45 .

Error SP PT| Diagram Offset
k-1071 732 468 0.07 0.02
k-1072 | 1230 916 0.16 0.04
k-107% | 2656 1860 0.30 0.07
k-107* | 5678 3872 0.64 0.15
k-107° | 12044 8156 1.39 0.31

Table 5: Numbers of arcs (left) and runtimes (right) for thase

in Figure 9. The biarc types SP and PT have been used. Times
are given in seconds for the type PT on a Pentium IV 2.8Ghz. The
parametek is a constant related to the bounding box of the input.

Error SP PT| Diagram Offset
k-1071 9440 8768 2.24 0.29
k-107%2 | 20132 17080 4.08 0.56
k-107% | 43332 34008 7.14 1.03
k-107* | 93224 69312 17.10 2.06
k-107° | 201688 143348 29.53 4.25

Table 6: Arcs and runtimes for the shape in Figure 8.

An implementation shows that offset computations requity o
little additional time after the Voronoi diagram constiioct, Ta-
bles 5 and 6 give two examples. The total time thus will not in-
crease much in applications where many different offsetigare
needed. Note the difference in the numbers of biarcs neeuled t
reach a given accuracy for both shapes.

7. REFERENCES

[1] O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl,
B. Jlttler, and M. Rabl. Medial axis computation for planar
free-form shapeComputer-Aided Desigio appear.



[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jittler,
M.Oberneder, and Z. Sir. Computational and structural
advantages of circular boundary representatiorspringer
Lecture Notes in Computer Sciengelume 4619, pages
374-385, 2007.

[3] H. Alt, O. Cheong, and A. Vigneron. The Voronoi diagram
of curved objectsDiscrete & Computational Geometry
34:439-453, 2005.

[4] L. Cao and J. Liu. Computation of medial axis and offset
curves of curved boundaries in planar domain.
Computer-Aided Desigd0(4):465-475, 2008.

[5] CGAL. Computational Geometry Algorithms Library.
http://www.cgal.org/.

[6] B. Chazelle. A theorem on polygon cutting with applicets.
In Proc. 23" Ann. IEEE Symp. Foundations of Computer
Sciencepages 339-349, 1982.

[7] L.P. Chew and R.L. Drysdale. Voronoi diagrams based on
convex distance functions. Proc. 1st Ann. ACM
Symposium on Computational Geomepgges 235-244,
1985.

[8] F.Y.L. Chin, J. Snoeyink, and C.A. Wang. Finding the nadi
axis of a simple polygon in linear tim®iscrete &
Computational Geometry21:405-420, 1999.

[9] H.I. Choi, S.W. Choi, and H.P. Moon. Mathematical theory

of medial axis transfornPacific Journal of Mathematic¢s

181:57-88, 1997.

G. Elber, E. Cohen, and S. Drake. MATHSM: Medial axis

transform toward high speed machining of pockets.

Computer-Aided Desigi87:241-250, 2005.

I.Z. Emiris, E.P. Tsigaridas, and G.M. Tzoumas. The

predicates for the Voronoi diagram of ellipsesHroc. 22nd

Ann. ACM Symposium on Computational Geomegtages

227-236, 2006.

[12] S. Fortune. A sweep line algorithm for Voronoi diagrams

Algorithmicg 2:153-174, 1987.

[13] M. Held. Voronoi diagrams and offset curves of curvélar

polygons.Computer-Aided Desigr80(4):287-300, 1998.

M. Held. VRONI: An engineering approach to the reliable

and efficient computation of Voronoi diagrams of points and

line segmentsComputational Geometry: Theory and

Applications pages 95-123, 2001.

M. Held. Topology-oriented incremental computatidn o

Voronoi diagrams of circular arcs and straight line segreent

Computer-Aided Desigiio appear.

M. Held, G. Lukacs, and L. Andor. Pocket machining based

on contour-parallel tool paths generated by means of

proximity maps.Computer-Aided Desigmpages 189-203,

1994.

D.G. Kirkpatrick. Efficient computation of continuous

skeletons. IrProc. 20th Ann. IEEE Symp. Foundations of

Computer Sciencgages 18-27, 1979.

R. Klein. Concrete and Abstract Voronoi diagrangpringer

Lecture Notes in Computer Science 400, 1990.

R. Klein, K. Mehlhorn, and S. Meiser. Randomized

incremental construction of abstract Voronoi diagrams.

Computational Geometry: Theory and Applicatipns

3:157-184, 1993.

D.T. Lee. Medial axis transformation of a planar shdp&E

Trans. Pattern Analysis and Machine Intelligence

4:363-369, 1982.

[21] D.T. Lee and R.L.S. Drysdale. Generalization of Vorono

[10]

[11]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

diagrams in the plan&IAM Journal on Computing
10:73-87, 1981.

[22] M. McAllister, D. Kirkpatrick, and J. Snoeyink. A compg
piecewise-linear Voronoi diagram for convex sites in the
plane.Discrete & Computational Geometr§5:73-105,
1996.

[23] D. S. Meek and D. J. Walton. Spiral arc spline approxiorat
to a planar spirald. Comput. Appl. Math107:21-30, 1999.

[24] D.S. Meek and D.J. Walton. Approximating smooth planar
curves by arc splines. Comput. Appl. Math59:221-231,
1995.

[25] E. Pilgerstorfer. Asymptotischer Vergleich versateeer
Verfahren der Biarc-ApproximatiomMaster Thesis,
Johannes Kepler University Linz, Austr2008.

[26] J-K. Seong, G. Elber, and M-S. Kim. Trimming local and
global self-intersections in offset curves/surfaces gisin
distance mapsComputer-Aided Desigr38:183-193, 2006.

[27] M.l. Shamos and D. Hoey. Closest-point problemsPtac.
16th Ann. IEEE Symp. Foundations of Computer Science
pages 151-162, 1975.

[28] M. Sharir. Intersection and closest-pair problemsdaet of
circular discsSIAM Journal on Computindl4:448-468,
1985.

[29] Z. Sir, R. Feichtinger, and B. Jiittler. Approximatingrees
and their offsets using biarcs and Pythagorean hodograph
quintics.Computer-Aided Desigr38:608-618, 2006.

[30] C.-K. Yap. AnO(n logn) algorithm for the Voronoi
diagram of a set of simple curve segmeimgscrete &
Computational Geometrp:365-393, 1987.

[31] C.-K. Yap and H. Alt. Motion planning in the
CL-environment. IrLecture Notes In Computer Science 382
pages 373-380, 1989.



